用户名: 密码: 验证码:
杆系结构几何非线性动静态分析方法及其在塔机中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以大型动臂式塔式起重机金属结构为代表的复杂杆系结构的应用日趋广泛,对其进行准确和高效的几何非线性动静态分析受到越来越多的关注。本文在国家十一五科技支撑计划项目(2006BAJ12B03)资助下,以D6560/50t大型建筑主体施工动臂变幅大吨位起重机为应用背景,对杆系结构的整体稳定性、几何非线性大位移分析、轴力对动态刚度的影响和动载荷作用下瞬态动力学分析的关键问题进行了深入的探讨和研究。
     从变截面Bernoulli-Euler梁静态挠度微分方程出发,推导出转角位移方程,并列写为有限元格式,给出惯性矩二次变化和四次变化变截面梁单元精确刚度阵。应用该精确刚度阵分析其稳定性问题时只需将每个杆件划分为一个单元即可得到数值精确解。通过微分方程法得到了这两种变截面梁单元的静态精确形函数,从而可通过此精确形函数由经典有限元方法推导出相应变截面梁的精确刚度阵。建立了使用精确形函数表达变截面Bernoulli-Euler梁精确刚度阵的积分和微分格式,其中微分格式更为简洁和易用。将具有弹性支撑的非共线链式分支子结构当作一个超单元,使用传递矩阵法联系两端载荷和位移关系,提出了梁杆结构稳定性分析的传递矩阵模型缩减法,该方法在保证精度的同时使得系统刚度阵的阶数得到极大降低。
     为了准确的分析变截面梁结构大位移、大转动小应变问题,提出了一种基于更新拉格朗日(UL)格式和随动坐标法的Bernoulli-Euler梁单元计算方法。考虑了弯曲变形引起轴向长度变化的非线性,分别由转角位移方程和精确形函数这两种方法推导了计入弓形效应的附加刚度,修正了变截面梁单元计及二阶效应的切线刚度阵。结合随动坐标法,在变形后位形上建立了简支梁式的单元随动坐标系,得到变截面梁单元的大位移全量平衡方程。使用Newton-Raphson法进行多载荷步数值迭代求解,迭代过程中不断修正由于轴力变化以及位形变化导致结构刚度的改变。
     与动力刚度法(Dynamic Stiffness Method)推导等截面梁自由振动分析的动态刚度阵不同,本文首先获得承受常轴力的Bernoulli-Euler梁横向自由振动微分方程的通解,并通过位移边界条件消去待定常数,得到精确形函数;使用有限元方法,建立了使用精确形函数表达等截面Bernoulli-Euler梁动态刚度阵的微分格式,该微分格式精确刚度阵同样适用于等截面梁静态刚度阵。运用虚功原理完整地证明了该微分格式对于自由振动问题和静态问题的正确性和适用性。仿照静态挠度的Timoshenko放大系数,提出了Bernoulli-Euler梁横向振动固有频率的轴力影响系数近似公式,结合Wittrick-Williams算法和动态刚度阵证明了当轴力在±0.5倍第一阶欧拉临界力之间变化时,该近似公式最大误差不超过2%。
     针对动态刚度阵不能分析杆系结构的瞬态动力学问题,通过梁单元横向和纵向自由振动的精确形函数推导了完整描述等截面Bernoulli-Euler梁的横向和纵向位移场,使用有限元方法分别推导了质量阵和刚度阵,质量阵和刚度阵各元素均为固有频率和轴力的超越函数。刚度阵考虑了二阶效应的影响;质量阵考虑了截面自身旋转惯性影响。建立了用于杆系结构瞬态动力学分析的动力平衡方程,并给出了稳定和高效的求解方案。
     在上述理论研究中,均通过经典算例验证了方法的正确性和有效性。最后,以上述理论研究为基础,对D6560/50t塔机梭形变截面动臂以及整机进行了几何非线性动静态分析。由稳定性分析结果可知,随着幅度的增加,动臂整体欧拉临界力单调递减,而该动臂所能承受的极限起重力矩则不断增长,并在75.5123m幅度时达到峰值;随着吊臂幅度的增加,整机的稳定性安全系数是不断增加的。由整机的动刚度分析结果可知,其第一阶固有频率为塔身前后摆动引起吊臂的点头运动,当动臂俯仰角增大而幅度减小时,其第一阶固有频率不断减小,考虑和不考虑轴力引起的几何非线性导致固有频率的误差不断增大,当动臂俯仰角超过57°时,两者误差超过工程允许误差5%,此时必须考虑轴力对于固有频率的影响。由整机的大位移分析结果可知,当动臂俯仰角小于63°时,可以使用二阶效应分析代替大位移分析,此时最大相对误差小于工程允许误差5%;而当动臂俯仰角大于63°时,此时必须使用大位移分析才能得到准确的计算结果。由此,本文的理论研究为D6560/50t动臂式塔机的研发提供了有力的支持。
The complicated beam structures, which is represented by large luffing jib tower crane's metal skeletal structure, gets more and more abroad attention on its accurate and efficient geometric nonlinear static and dynamic analysis. Sponsored by the National Key Technology Research and Development Program (Grant No. 2006BAJ12B03) and the application background of D6560/50t—the large tonnage luffing jib tower crane for the main construction of large buildings , several theories and technologies for geometric nonlinear static and dynamic analysis of beam structures, such as global stability analysis, the large displacement analysis, free vibration analysis and transient dynamic analysis, are discussed in this dissertation.
     From the governing differential equation of lateral deflection of the tapered Bernoulli-Euler beam, the slope-deflexion equations are derived and transformed into the finite element formulation. The exact stiffness matrix of the tapered beam are proposed whose inertia moment are quadratic and quartic, respectively. The proposed exact stiffness matrix will lead to the exact numerical solution by modelling each member by only one element in the buckling analysis. The exact static shape functions of the two tapered beam are presented, and can be used in developing the exact stiffness matrix through classic finite element method. The integral and differential formulation of exact stiffness matrix of the tapered beam are proposed expressed in the exact shape function, and the differential formulation is more concise and effective. The model reduction technique of transfer matrix in the stability analysis of beam strcutures is presented. The noncollinear branch chain substructure with elastic supports is modelled as a super element, and the force-displacement relation between both ends is developed by the transfer matrix method, so the order of the model is greatly reduced and guarantee the accuracy of the computation.
     A Bernoulli-Euler beam mechanism for static analysis of large displacement, large rotation but small strain planar tapered beam structures is proposed using the Updated Lagrangian formulation and the moving coordinate method. The nonlinear effect of the bending distortions on the axial action is considered to manifest itself as an axial change in length. The aforementioned stiffness matrix with second-order effects is amended, by developing the auxiliary stiffness of bowing effect through the slope-deflexion equations and the exact shape fuctions, respectively. The moving coordinate method is employed for obtaining the large displacement total equilibrium equations, and the hinged-hinged moving coordinate system is constructed at the last updated configuration. The multipe load steps Newton-Raphson scheme is adopted for the solution of the nonlinear equations, and the global stiffness is modified due to the variation of axial load and configuration in each iteration.
     Unlike the dynamic stiffness method(DSM) to develop the dynamic stiffness matrix for free vibration of the uniform beam, the exact solutions of the differential equation governing the lateral vibration of an axially loaded uniform beam are found, and then the dynamic exact shape function are obtained by eliminating the intergal constants through the displacement boudary conditions. The differential formulation of dynamic stiffness matrix of the beam are proposed expressed in the dynamic exact shape function, and the differential formulation can be used to obtain the static exact stiffness matrix if the the static exact shape function is introduced. The principle of virtual work is adopted to elaborate the validity of the generalized differential formulation. To follow the Timoshenko magnification factor of lateral deflection, the approximated formula to compute axially loaded influence factor of the natrual frequencies for lateral vibration of Bernoulli-Euler beam is proposed, and the Wittrick-Williams algorithm and the dynamic stiffness matrix are used to prove that the maximum relative error of the proposed approximate formula is smaller than 2%, when axial load is between the postive and negative half of the first order Euler critical load.
     Due to the dynamic stiffness matrix cannot be used in transient dynamic analysis of beam structures, the lateral and axial displacement field are derived from the dynamic exact shape function of free lateral and axial vibration of the uniform beam, the mass matrix and stiffness matrix are developed by finite element method. Each element of the mass matrix and stiffness matrix is the transcendental function of the natrual frequencies and axial load. The second order effect is considered in the stiffness matrix while the self rotate inertia of the section is considered in the mass matrix. The dynamic equilibrium equations are presented for the transient dynamic analysis of beam structures, meanwhile the stable and efficient solution scheme is proposed to solve the equations.
     The validity and efficiency of the proposed theories and technologies are shown by solving various numerical examples found in the literatures. Finally, based on the former theories and technologies, the geometric nonlinear static and dynamic analysis of the D6560/50t's shuttle-type tapered luffing jib and overall structrues are implemented. From the result of the stability analysis, as the lifting range increases, the global Euler critical load of the luffing jib is monotonously decreasing, while the extreme lifting moment of the jib is increasing, and reach the peak value at the lifting range 75.5123m. The buckling safety factor of the overall structures is increasing as the lifting range increases. From the result of the dynamic stiffness analysis of the overall structures, the first frequency is dive motion of the luffing jib induced by the swinging of the crane shaft. when the luffing angle inceases, that means lifting range decreases, the first frequency is monotonously decreasing, and the frequency error due to the second order effect is increasing. When the luffing angle exceeds 57degree, the frequency error exceeds the engineering allowable error 5%, so it should consider the impact on the frequencies due to the axial load. From the result of the large displacement analysis of the overall structures, if the luffing angle is less than 63degree, the large displacement analysis can be replaced by the second-order effect analysis, the maximum relative error is smaller than the engineering allowable error 5%, while the luffing angle exceeds 63degree, only the large displacement analysis lead to the more accurate result. So the proposed theories and technologies provide strong support for the research and development of the D6560/50t luffing jib tower crane.
引文
1李丽,牛秀艳,赵爽,于颖超.塔式起重机事故分析与对策.吉林建筑工程学院学报. 2007,24(1):67~70
    2 ISO 8686-3-1998. Cranes-Design Principles for Loads and Load Combinations-Part 3: Tower Cranes.1998
    3 ANSI/ASME B30.4-2003. Portal, Tower, and Pedestal Cranes.2003
    4 DIN 15018-1-1984. Cranes; Steel Structures; Verification and Analyese. 1984
    5 GB/T 13752-92.塔式起重机设计规范, 1992
    6 K.J.Bathe. Finite Element Procedure. Prentice Hall, New Jersey.1996
    7王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社. 1997
    8 N. Silvestre, D. Camotim. Elastic Buckling and Second-order Behaviour of Pitched-roof Steel Frames. Journal of Constructional Steel Research.2007,63(6):804~818
    9朱达力,王姗姗,朱镜清.高耸结构P ?Δ效应分析的精确问题.哈尔滨建筑大学学报. 2002,35(3):49~51
    10 A.K.W.So, S.L.Chan. Buckling and Geometrically Nonlinear Analysis ofFrames Using One Element/Member. Journal of Constructional Steel Research.1991,20(4):271~289
    11 C. E. Augarde. Generation of Shape Functions for Straight Beam Elements.Computers & Structures. 1998,68(6):555~560
    12夏拥军,陆念力.梁杆结构稳定性分析的高精度Euler-Bernoulli梁单元.沈阳建筑大学学报. 2006,22(3):362~366
    13夏拥军,缪谦.一种新型空间梁单元及其在梁杆结构稳定分析中的应用.工程力学. 2009,26(4):86~91
    14 S. L. Chan, Z. H. Zhou. Pointwise Equilibrating Polynomial Element forNonlinear Analysis of Frames. Journal of Structural Engineering.1994,120(6):1703~1717
    15 Z. H. Zhou, S. L. Chan. Self-Equilibrating Element for Second-Order Analysis of Semirigid Jointed Frames. Journal of Engineering Mechanics. 1995,212(8):896~902
    16许红胜,周绪红,舒兴平.空间刚框架几何非线性分析的一种新单元.工程力学. 2003,20(4):39~44
    17 J. Ko, A. J. Kurdila, M. S. Pilant. Class of Finite Element Methods based onOrthonormal, Compactly Supported wavelets. Computational Mechanics. 1995,16(4):235~244.
    18何正嘉,陈雪峰.小波有限元理论研究与工程应用的进展.机械工程学报. 2005,41(3):1~11.
    19 J. R. Banerjee, F. W. Williams. Exact Bernoulli-Euler dynamic Stiffness Matrix for a Range of Tapered Beams. International Journal for Numerical Methods in Engineerng. 1985,21(12):2289~2302
    20陆念力,兰朋,李良.二阶理论条件下的梁杆系统精确有限元方程及应用.哈尔滨建筑大学学报. 1998,31(4):67~74
    21 Q. S. Li, H. Cao, G. Q. Li. Stability Analysis of A Bar with Multi-Segments of Varing Cross-Section. Computers & Structures. 1994,53(5):1085~1089
    22 Q. S. Li. Buckling of Multi-Step Non-Uniform Beams with Elastically Restrained Boundary Conditions. Journal of Constructional Steel Research.2001,57(7):753~777
    23 Q. S. Li. Buckling Analysis of Non-Uniform Bars with Rotational and Translational Springs. Engineering Structures. 2003,25(10):1289~1299
    24刘庆谭,倪国荣.变截面压杆稳定性计算的传递矩阵法.长沙铁道学院学报. 1995,13(3):60~68
    25刘庆谭.含锥形变截面压杆稳定计算的传递矩阵法.计算结构力学及其应用. 1996,13(3):364~368
    26 A. R. Rahai, S. Kazemi. Buckling Analysis of Non-Prismatic Columns Based on Modified Vibration Modes. Communications in Nonlinear Science andNumerical Simulation. 2006,13(8):1721~1735
    27 N. Bazeos, D. L. Karabalis. Efficient Computation of Buckling Loads for PlaneSteel Frames with Tapered Members. Engineering Structures.2006,28(5):771~775
    28楼梦麟,李建元.变截面压杆稳定问题半解析解.同济大学学报. 2004,32(7):857~860
    29 C. K. Wang. Stability of Rigid Frames with Nonuniform Members. Journal ofthe Structure Division. 1967,93(1):275~294
    30 H. Ganga, C. C. Spyrakos. Closed Form Series Solutions of Boundary Value Problems with Variables Properties. Computers & Structures.1986,23(2):211~215
    31 G. P. Dube, P. C. Dumir. Tapered Thin Open Section Beams on ElasticFoundation-I. Buckling Analysis. Computers & Structures. 1996,61(5):845~857
    32 Z. Frieman, J. B. Kosmatka. Exact Stiffness Matrix of a Nonuniform beam—extension, torsion and bending of a Bernoulli-Euler Beam. Computers & Structures. 1992,42(5):671~682
    33 M. C. Kim, G. C. Lee, K. C. Chang. Inelastic Buckling of Tapered Memberswith Accumulated Strain. Structural Engneering and Mechanics.1995,3(6):611~622
    34宋启根,徐梁,宋丹.变截面梁柱刚度方程的Bessel函数解.计算力学学报. 2001,13(3):355~357
    35宋启根,庄星和,吕令毅.变截面梁柱刚度方程的近似解.东南大学学报. 2003,33(5):553~556
    36卞敬玲,王小岗.变截面压杆稳定计算的有限元法.武汉大学学报. 2002,35(4):102~104
    37张元海.一个改进的平面梁单元.计算力学学报. 2002,19(1):109~111
    38 J. M. Gere, W. O. Carter. Critical Buckling Loads for Tapered Columns. Journalof the Structure Division.1962,88(1):1~11
    39 V. C. Girijavallabhan. Buckling Loads of Nonuniform Columns. Journal of the Structure Division.1969,95(11):2419~2431
    40 J. R. Banerjee, F. W. Williams. Exact Bernoulli-Euler Static Stiffness Matrix for a Range of Tapered Beam-Column. International Journal for NumericalMethods in Engineerng. 1986,23(9):1615~1628
    41杨楏一,金建国.变截面Timoshenko梁的有限元法.北京科技大学学报. 1992,(3):389~392
    42 W. L. Cleghorn, B. Tabarrok. Finite Element Formulation of a TaperedTimoshenko Beam for Free Vibration Analysis. Journal of Sound and Vibration.1992,152(3):1531~1544
    43 G. Q. Li, J. J. Li. A Tapered Timoshenko-Euler Beam Element for Analysis of Steel Portal Frames. Journal of Constructional Steel Research.2002,58(12):1531~1544.
    44 M. Eisenberger. Nonuniform Torsional Analysis of Variable and OpenCross-Section Bars. Thin-Walled Structures. 1995.21(2):93~105
    45 J. D. Yau. Stability of Tapered I-Beams under Torsional Moments. Finte Elements in Analysis and Design. 2006,42(10):914~927
    46 B. A. Izzuddin. Eulerian Approach to the Large Displacement Analysis ofThin-Walled Frames. Proceedings of the Institution of Civil Engineers: Structures and Buildings. 1995,110(1):50~65
    47 O. Millet, A. Hamdouni, A. Cimetiere. An Eulerian Approach of Non-linear Memberane Shell Thoery. International Journal of Non-linear Mechanics, 2003,38(9):1403~1420
    48 K. J. Bathe, S. Bolourchi. Large Displacement Analysis of Three-Dimensional Beam Structures. International Journal for Numerical Methods in Engineering.1979,14(7):961~986
    49 P. Nanakorn, L. N. Vu. A 2D Field-Consistent Beam Element for Large Displacement Analysis Using the Total Lagrangian Formulation. Finite Elements in Analysis and Design. 2006,42(14):1240~1247
    50 P. F. Pai, T. J. Anderson, E. A. Wheater. Large-deformation Tests and Total Lagrangian Finite-Element Analyses of Flexible Beams. International Journalof Solids and Structures. 2000,37(21):2951~2980.
    51 G. Turkalj, J. Brnic, J. P. Orsic. Large Rotation Analysis of Elastic Thin-Walled Beam-type Structures Using ESA Approach. Computers & Structures.2003,81(18):1851~1864
    52 M. Shugyo. Elastoplastic Large Deflection Anaylsis of Three-dimensional of Three-Dimensional Steel Frames. Journal of Structural Engineering.2003,129(9):1259~1267
    53黄文,李明瑞,黄文彬.杆系结构的几何非线性分析——I.平面问题.计算结构力学及其应用. 1995,12(1):7~16
    54黄文,李明瑞,黄文彬.杆系结构的几何非线性分析——II.三维问题.计算结构力学及其应用. 1995,12(2):133~141
    55 T. Belytschko, W. K. Liu, B. Moran. Nonlinear Finite Elements for Continuaand Structures. John Wiley & Sons, 2000
    56陆念力,王友海,孟小平.空间桁架单元精确全量平衡方程及切线刚度.哈尔滨建筑大学学报. 1998,31(1):90~94
    57刘光栋.空间梁单元的几何非线性刚度矩阵的分解形式.湖南大学学报. 1992,19(1):60~71
    58陈政清,增庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报. 1992,25(5):34~44
    59陈务军,关富玲.伯努力梁平面几何非线性分析的刚度矩阵.浙江大学学报(自然科学版). 1998,32(5):563~569
    60 J. X. Gu, S. L. Chan. New Tangent Stiffness Matrix for GeometricallyNonlinear Analysis of Space Frames. Jouranl of Southeast University(English Edition). 2005,21(4):480~485
    61 J. X. Gu, S. L. Chan. A Refined Finite Element Formulation for Flexural andTorsional Buckling of Beam-Columns with Finite Rotations. Engineering Structures. 2005,27:749~759
    62王世来,凌道盛.适用于大变形分析的平面协调梁单元.浙江大学学报(工学版). 2007,41(5):818~822
    63 J. Argyris. Excursion into Large Rotations. Computer Methods in AppliedMechanics and Engineering. 1981,32(1):85~155
    64谈梅兰,王鑫伟.梁的三维空间大转动的有效处理方法.南京航空航天大学学报. 2004,36(6):718~722
    65吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论.计算结构力学及其应用. 1995,12(4):485~490
    66 J. L. Meek, Q. Xue. Study on the Instability Problem for 2D-Frames. Computer Methods in Applied Mechanics and Engineering. 1996,136(3):347~361
    67 J. L. Meek, Q. Xue. Study on the Instability Problem for 3D-Frames. Computer Methods in Applied Mechanics and Engineering. 1998,158(3):235~254
    68 W. Y. Lin, K. M. Hsiao. Co-rotational Formulation for Geometric NonlinearAnalysis of Doubly Symmetric Thin-Walled Beams. Computer Methods in Applied Mechanics and Engineering. 2000,190(8):6023~6052
    69 H. H. Chen, W. Y. Lin, K. M. Hsiao. Co-rotational Finite Element formulation for Thin-Walled Beams with Generic Open Section. Computer Methods inApplied Mechanics and Engineering. 2006,195(19):2334~2370
    70 N. L. Lu. Eine Methode zum Aufbau ebener, elastokinetischer Modelle für Lenkerkrane. Dissertation Technische Hochschule Darmstadt.1988
    71陆念力.大位移梁杆系统非线性分析的一种实用方法.建筑机械.1990,9:17~21
    72蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法.工程力学.2006,23(S1):69~72
    73周凌远,李乔.基于UL法的CR列式三维梁单元计算方法.西南交通大学学报. 2006,41(6):690~695
    74李忠学.采用矢量型转动变量的二维协同转动梁元法.浙江大学学报(工学版). 2006,40(7):1219~1223
    75 S. P. Timoshenko, D. H. Young. Vibration Problems in Engineering. John Wiley& Sons, New York. 1974
    76袁驷,叶康生, F. W. Williams, D. Kennedy.杆系结构自由振动精确求解的理论和算法.工程力学. 2005,22(S1):1~6
    77周平,赵德有.动态刚度阵法的研究概况.振动与冲击. 2006,25(4):104~108
    78 J. R. Banerjee. Dynamic Stiffness Formulation for Structural Elements: AGeneral Approach. Computers & Structures. 1997,63(1):101~103
    79 J. R. Banerjee, S. Guo, W. P. Howson. Exact Dynamic Stiffness Matrix of a Bending-Torsion Coupled Beam Including Warping. Computers & Structures.1996,59(4):613~621
    80 J. R. Banerjee, W. D. Gunawardana. Dynamic Stiffness Matrix Developmentand Free Vibration Analysis of a Moving Beam. Journal of Sound andVibration. 2007,303(1):135~143
    81 J. R. Banerjee. H. Su, C. Jayatunga. A Dynamic Stiffness Element for FreeVibration Analysis of Composite Beams and Its Application to Aircraft Wings.Computers & Structures. 2008,86(6):573~579
    82 S. M. Hashemi, M. J. Richard. Free Vibrational Analysis of Axially LoadedBending-Torsion Coupled Beams: a Dynamic Finite Element. Computers &Structures. 2000,77(6):711~724
    83 S. M. Hashemi, M. J. Richard. A Dynamic Finite Element(DFE) Method forFree Vibrations of Bending-Torsion Coupled Beams. Aerospace Science and Technology. 2000,4(1):41~55
    84 F. W. Williams, W. H. Wittrick. An Automatic Computational Procedure forCalculating Natrual frequencies of Skeletal Strucutres. International Journal ofMechanical Sciences. 1970,12(9):781~791
    85周平,赵德有.动态刚度阵法在船体总振动计算中的应用.船舶力学.2006,10(4):126~132
    86 Z. H. Qi, D. Kennedy, F. W. Williams. An Accurate Method for TranscendentalEigenproblems With a New Critieron for Eigenfrequencies. InternationalJournal of Solids and Structures. 2004,41(11):3225~3242
    87 S. Yuan, K. S. Ye, F. W. Williams. Second Order Mode-Finding Method in Dynamic Stiffness Matrix Methods. Journal of Sound and Vibration.2004,269(3):689~708
    88 J. S. Przemieniecki. Theory of Matrix Structural Analysis. McGraw-Hill, New York. 1968
    89 K. K. Gupta. On a Finite Dynamic Element Method for Free Vibration Analysisof Structures. Computer Methods in Applied Mechanics and Engineering.1976,9(1):105~120
    90孙世基.结构动力分析中的动态有限元法.武汉水运工程学院学报. 1993,17(4):391~398
    91贺国京,杨荣根.框架结构振动分析的动态有限元法.铁道学报. 1999,21(3):81~83
    92王静,赵德有,郑治国.用动态有限元法计算加筋板固有频率.大连理工大学学报. 2001,41(1):90~93
    93汪梦甫,王朝晖,曹秀娟.结构动力分析的高精度有限单元法.湖南大学学报(自然科学版). 2006,33(1):1~5
    94 M. A. Dokainish. New Approach for Plate Vibrations: Combination of TransferMatrix and Finite-Element Technique. Journal of Engineering for Industry,Transaction of The ASME. 1972,94(2):526~530
    95 M. Geradin, S. L. Chen. An Exact Model Reduction Technique for BeamStructures: Combination of Transfer and Dynamic Stiffness Matrices. Journal of Sound and Vibration. 1995,185(3):431~440
    96 S. L. Chen, M. Geradin, E. Lamine. An Improved Dynamic Stiffness Methodand Modal Analysis for Beam-like Structures. Computers & Structures. 1996,60(5):725~731
    97于海龙,芮筱亭,何斌,王广伟.火炮身管固有振动特性的有限元传递矩阵法.弹道学报. 2006,18(3):62~64
    98乔爱科,孙洪鹏,高斯,赵亮,刘保华.基于传递矩阵法的连续梁内力计算.北京工业大学学报. 2008,34(8):806~810
    99 U. Lee. Vibration Analysis of One-Dimension Structures Using the Spectral Transfer Matrix Method. Engineering Structures. 2000, 22(6): 681~690
    100白长青,许庆余.复杂链式结构动力分析中的直接迁移子结构方法.计算力学学报. 2003,20(5):587~591
    101何斌,陈树辉.连续梁瞬态振动离散时间精细传递矩阵法.振动与冲击. 2008,27(4):4~6
    102于百胜,郑钢铁,杜华军.分叉结构系统传递矩阵计算方法.振动与冲击. 2003,22(1):94~95
    103田广范.空间杆系结构的几何非线性分析及塔式起重机塔身计算的研究.哈尔滨建工学院. 1987
    104石来德,周中坚,张正元.塔式起重机双吊点水平动臂的线性和非线性计算及其比较分析.同济大学学报. 1992,20(4):483~492
    105张正元.塔机水平臂主载荷下线性和非线性变形与内力.同济大学学报. 2000,28(6):731~737
    106陆念力,兰朋,白桦.起重机箱形伸缩臂稳定性分析的精确理论解.哈尔滨建筑大学学报. 2000,33(2):89~93
    107郑昭明,严彬,郑亮.高层塔式起重机稳定性的半解析公式.武汉科技大学学报(自然科学版). 2004,27(3):280~282
    108兰朋,陆念力,李以申.多跨压杆非线性变形与稳定计算的精确递推公式.哈尔滨建筑大学学报. 1997,30(4):89~95
    109王川.工程起重机非线性分析方法初探.哈尔滨建工学院. 1990
    110王恒华.平面运动弹性梁杆系统动力分析的实用方法及其应用.同济大学. 1996
    111王恒华,沈祖炎,陆瑞明.平面梁杆结构几何非线性分析的一种简便方法.计算力学学报. 1997,14(1):119~123
    112王恒华,沈祖炎.平面运动弹性梁杆系统动力分析的实用方法.东南大学学报. 1997,27(S1):95~102
    113张俊. Algor FEAS软件在塔式起重机结构动态分析中的应用.机械设计与研究. 2001,17(2):20~22
    114尹强,陈世教,冀满忠.基于ANSYS的塔式起重机结构模态分析.重庆建筑大学学报. 2005,27(6):97~100
    115 F. Ju, Y. S. Choo. Dynamic Analysis of Tower Cranes. Journal of EngineeringMechanics. 2005,131(1):88~96.
    116韩守习,张大可.基于SIMULINK的起重机起升机构动态仿真.重庆建筑大学学报. 2003,25(6):67~73
    117张大可.起升机构动态仿真系统输入激励的构造及研究.重庆建筑大学学报. 2004,26(4):55~61
    118 G. F. Sun, J. Liu. Dynamic Responses of Hydraulic Crane during LuffingMotion. Mechanism and Machine Theory. 2006, 41(11): 1273~1288
    119王贡献,沈荣瀛.起重机臂架在起升冲击载荷作用下动态特性研究.机械强度. 2005,27(5):561~566
    120 F. Ju, Y. S. Choo, F. S. Cui. Dynamic Response of Tower Crane Induced by thePendulum Motion of the Payload. International Journal of Solids andStructrues. 2006,43(2):376~389
    121于兰峰,王金诺.塔式起重机动态分析的计算模型. 2006,22(5): 112~117
    122于兰峰,王金诺.塔式起重机结构系统动态优化设计. 2007,42(2):206~210
    123于兰峰,王金诺.基于遗传算法和神经网络的塔机结构动态优化设计.中国机械工程. 2008,19(1):61~63
    124 S. P. Timoshenko, J. M. Gere. Thoery of Elastic Stability. McGraw-Hall, New Jersey.1961
    125 M. Sekulovic, R. Salatic. Nonlinear Analysis of Frames with FlexibleConnections. Computers & Structures. 2001,79(11):1097~1107
    126李国强,刘玉姝.一种考虑初始缺陷影响的非线性梁单元.计算力学学报. 2005,22(1):69~72
    127陈至达.杆、板、壳大变形理论.科学出版社. 1996:68~74
    128林佳铿,张阿舟.具有轴向力的连续质量梁元素.南京航空航天大学学报. 1984,2:94~101
    129 W. P. Howson, F. W. Williams. Natural Frequencies of Frames with AxiallyLoaded Timoshenko Members. Journal of Sound and Vibration. 1973,26(4):503~515
    130楼梦麟,洪婷婷.体外预应力梁动力特性的分析方法.同济大学学报(自然科学版). 2006,34(10):1284~1288
    131楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法.工程力学. 2006,23(1):107~111
    132吕中荣,罗绍湘,刘济科.预应力对预应力梁振动的影响.中山大学学报(自然科学版). 2006,45(2):119~128
    133吴国荣.一种求解梁动力响应的新方法.振动与冲击. 2006,25(4): 146~148
    134王恒华.平面运动弹性梁杆系统动力分析的实用方法及其应用.同济大学.1996
    135冯虹,卢耀祖,付耀民.特大型汽车起重机臂架结构起升动特性分析.同济大学学报. 1999,27(5):511~514
    136兰朋,陆念力.塔带机输送臂转向工况动力学分析.哈尔滨工程大学学报. 2006,27(3):345~348
    137陆念力,夏拥军,刘明思.塔式起重机结构动态分析的两种有限元模型及比较.建筑机械. 2002, (11):49~52
    138薛渊.塔式起重机塔身刚度计算分析的高效方法.哈尔滨工业大学. 2002
    139孟丽霞.具有变截面臂架格构式起重机结构计算分析方法研究.哈尔滨工业大学. 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700