用户名: 密码: 验证码:
格构式输电塔及输电塔—线体系风振响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电塔-线体系兼有质轻、高柔、大跨和小阻尼等特点,对风荷载十分敏感。输电线路的风致破坏现象时有发生。当前,对于格构式输电塔的具体抗风设计方法以及输电塔-线体系的风振响应均处于研究阶段,尚未建立起一个包括细节在内且公认有效的具体实施方案,甚至关于格构式输电塔横风向振动的作用机理还仍处于探讨阶段,尚未有统一定论。
     本文从指出并完善广义气动力谱理论公式的固有缺陷入手,并通过三种典型格构式输电塔气动弹模型的风洞试验,主要对格构式输电塔横风向振动的作用机理、风振激励模型、位移响应实用计算模型以及内力响应新的计算方法等方面作了系统性研究。通过研究,不仅对横风向振动的作用机理有了更为清晰的认识,同时还为格构式输电塔风振响应计算提供了一个参数明确、实用性强且更加方便快捷的可行性实施方案;此外,通过三种典型格构式输电塔-线体系的风洞试验,对输电塔-线体系研究对象的合理选定、中塔(气动弹塔,下同)的风振特性及其风振响应规律等方面进行了研究,其中的部分内容具有“首次”和“发现”意义。本文工作主要包括如下几个方面:
     (1)明确指出了当前消除基底力矩一阶振型共振贡献理论公式的固有缺陷,并对该公式进行了理论完善。首先,明确指出当前消除基底力矩一阶振型共振贡献理论公式的固有缺陷;然后,引入理应客观存在的且能够体现输入与输出相关性的交叉项,明确交代了具体推导过程,从而推导出相应的计算公式;进一步,明确指出了由此公式得到的广义力谱是已包括了气动阻尼在内的广义气动力谱,并给出物理解释和有助于理解的理论说明。因此,可不必为此对气动阻尼再进行评估。
     (2)全面且深入考究了格构式输电塔横风向振动的作用机理。首次明确指出了高频漩涡脱落在性质上的存在性及其在量化上的可忽略性;深入并全面分析了格构式输电塔横风向振动诱因,由此可知横风向振动是由于来流风与格构式输电塔相互作用过程中产生了一种垂直于来流方向的大尺度尾流所致,从而考证了邹良浩博士在结论层面上的研究结果;对紊流场与均匀流场试验结果进行对比分析,进而明确指出:紊流场中诱发格构式输电塔横风向振动的大尺度尾流主要是由于来流风中的脉动成分所致,而不是均匀流。这一点,使得对格构式输电塔横风向振动诱因的认识又更进了一步。
     (3)提出了求解格构式输电塔构件内力的新途径—“位移加载法”,建立了风振激励模型并推导出了风振位移响应计算模型。基于本文气动弹模型风洞试验结果以及完善了的广义气动力谱计算公式,首先建立了一阶广义气动力谱实用计算模型,同时给出了各风攻角工况下的具体拟合参数和广义气动力均方差系数;然后,定义“位置矩阵”和“广义气动力谱振型系数”这两个关键性参数,进而推导出了高阶广义气动力谱模型表达式;为便于工程应用,进一步推导出了风振位移响应实用计算模型,该模型可考虑高阶振型的贡献;最后,提出了理论严格合理且现实可行的“位移加载法”求解输电塔构件内力的新途径,其突出优点是:可完全避免传统方法中需要建立等效静力风荷载的这一步骤。
     (4)深入研究并发现了格构式输电塔-线体系中塔风振响应的特性及其规律。首先,通过试验对比分析,指出了有必要将五塔四线体系作以研究中塔的风振响应;通过风洞试验,深入并全面考察风速与弧垂这两种可变因素分别对顺风与横风向位移响应的影响,通过分析得到了一致性的变化规律;深入考察风速对顺风与横风向位移功率谱的影响,通过分析得到了具有发现性质的规律,并通过经典理论对这一规律进行合理解释与说明,进而给出了合理性推断。这一规律,在输电塔-线体系试验研究结果层面上具有“发现”意义;图列出若干不同风速下中塔的位移响应平面运动轨迹及其随时间变化的空间位移轨迹,并对文中各种风速下的轨迹图进行对比和归纳,由此发现了具有一致性的确定性变化规律和特征,这一工作结果具有“首次”意义。
Since transmission tower-line system is characterized by lightweight, tall, flexible, long-span and low damping, it is very sensitive to wind load. The wind-induced disasters in transmission tower-line system occur frequently. At the present time, the specific wind resistance design method for lattice transmission tower and study on wind-induced responses of transmission tower-line system are still in the process of research and there is not a well-known, effective and specific wind resistance program. Moreover, the exciting mechanism of cross-wind vibrations of lattice transmission tower are also in the explore stage and not be confirmed thoroughly.
     In this thesis, a theoretical deficiency inherent in the current formula for calculating generalized aerodynamic force spectrum is improved and the wind tunnel tests of the aeroelastic models for three typical lattice transmission towers are performed. In order to provide a practical, convenient and feasible program including the specific parameters, investigations on the exciting mechanism of cross-wind vibrations, wind loading model, model for calculating wind-induced displacement response including higher modal contributions, new approach for calculating wind-induced internal forces of tower and so on are systematically processed. Moreover, the reasonable subject investigated of transmission tower-lines system is selected through test analysis in order to get more reasonable analytical. results of middle tower(aeroelastic tower). Finally, the wind-induced responses are investigated and some regularity test results are firstly addressed. The main works are summarized in the following:
     (1) The theoretical deficiency inherent in the current formula for calculating generalized aerodynamic force spectrum is explicitly point out and improved. The correlation between input and output is sufficiently considered and the specific inducing process and improved formula are given explicitly. Then, it explains and emphasizes that the influence of aerodynamic damping force,in actuality, has been included in the formula. So, it is not necessary for the influence to evaluate the aerodynamic damping specially.
     (2) Intensive investigations and studies on the exciting mechanism of cross-wind vibrations are performed. It explicitly points out that the high-frequency vortex shedding does exist but its contribution to wind-induced displacement response is small and might be ignored. Then, the investigations on the reason of cross-wind vibration are intensively and comprehensively performed and the results show that it is a large-scale wake flow generated in the process of interaction between wind and transmission tower induces tower's cross-wind vibration. The research result, in terms of conclusion, confirms the analysis result given by Dr. Zou Lianghao. Moreover, by comparing the test results obtained from uniform flow field and turbulent flow field, it points out that it is the fluctuating components, instead of the mean components, of turbulent flow field that generate the large-scale wake flow mentioned above,. The conclusion makes more progress for understanding the exciting mechanism of the cross-wind vibration.
     (3) A new approach to solve the internal forces of frame member of transmission tower is presented, and the calculating model of wind load and fomula for displacement response are separately deduced as well.. Based on the improved formula of fundamental mode generalized aerodynamic force spectrum and the results of wind tunnel test in this thesis, a practical model for calculating fundamental mode generalized aerodynamic force spectrum is established, and the corresponding fitting parameters and RMS deviation coefficients of generalized aerodynamic force are also given. Then, two new variables, location matrix and generalized aerodynamic force spectrum mode coefficient, are firstly defined, and a model for calculating higher mode generalized aerodynamic force spectrum in along-wind direction is further derived. Furthermore, a practical model for calculating alongwind-induced displacement response, including the contribution of higher modes, is deduced. Finally, a new approach named "applying load using displacement" is presented and proposed to solve the internal force of tower. The method is not only rational and feasible, but also avoids establishing the equivalent static wind loads.
     (4) Intensive test investigations on the wind-induced response of middle tower of transmission tower-lines system are performed and some new discoveries about the corresponding regularity are firstly addressed. It point out that it is necessary to select the system including five tower and four line segments as system investigated in order to get more reasonable test results. The influence of wind velocity and sag on along-wind and cross-wind displacement responses is investigated and analyzed comprehensively. Besides, the power spectrums of displacement responses in along-wind and cross-wind direction are further analyzed and it discovers some new phenomena which are not addressed in previous literatures. According to the phenomena, the rational explanation and further inference are given. Moreover, the plane and space motion path of displacement response under different wind velocity are also given. Through further analysis, the uniform variation regularity of the motion path, with the increase of wind velocity, is discovered and firstly addressed.
引文
[1]项立人.应该加快我国特高压输电前期工作研究.电网技术,1999,20(2):54-58.
    [2]Li Hongnan, Bai Haifeng. High-voltage transmission tower-line subjected to disaster loads[J]. Progress in Natural Science,2006,16 (9):899-911.
    [3]李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,40(2):39-46.
    [4]白海峰.输电塔-线体系环境荷载致振响应研究[D].大连理工大学博士学位论文,2007.
    [5]谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131.
    [6]中华人民共和国建设部.建筑结构荷载规范GB 50009-2001[S](2006年版),2006.
    [7]亚历山大罗夫.超高压送电线路的设计.北京:水利电力出版社,1987.
    [8]李庆伟.输电塔-线体系的风致动力稳定性研究[D].大连理工大学硕士学位论文,2008.
    [9]楼文娟,孙柄楠.风与结构的耦合作用及风振响应分析[J].工程力学,2000,17(5):16-22.
    [10]邹良浩,梁枢果.半刚性模型风洞试验荷载谱的处理方法[J].实验流体力学,2007,21(3):76-81.
    [11]邹良浩.格构式高耸结构动力风荷载模型与风振响应研究[D].武汉大学博士学位论文,2006.
    [12]Irvine H M. Cable Structures. Cambridge:MIT Press,1981.
    [13]Ozono S, Maeda J. In-plane dynamic interaction between a tower and conductors at lower frequencies. Engineering Structure.1992,14:210-216.
    [14]Yasui H. Marukawa H, Momomura Y and Ohkuma T. Analytical studies on wind-induced vibration of power transmission towers. Joural of Wind Engineering and. Industrial Aerodynamics.1999,83(2):431-441.
    [15]李宏男,陆鸣,王前信.大跨越自立式高压输电塔电缆体系的简化抗震计算[J].地震工程与工程振动,1990,10(2):73-87.
    [16]Li H N, Wang Q X, Singh M P. Seismic Response Analysis Method for Coupled System of Transmission Lines and Towers, Part Ⅰ:In Plane. Journal of Earthquake Engineering and Engineering Vibration.1996,16(4):37-45.
    [17]Li H. N, Wang Q. X, Singh M. P. Seismic Response Analysis Method for Coupled System of Transmission Lines and Towers, Part Ⅱ:Out of Plane. Journal of Earthquake Engineering and Engineering Vibration.1996,16(9):67-75.
    [18]李宏男,王前信.大跨越输电塔体系的动力特性.土木工程学报,1997,30(5):28-36.
    [19]梁枢果,乐俊旺,瞿伟廉.中央电视塔桅杆驰振分析[M].同济大学出版社,1993.
    [20]Liang S g, Wang L z, Ma Zx. An analysis of wind-induced vibration for Dashengguan electrical transmission towen-line system across the Yangtze River[C]. Wind Engineering into the 21st century. Proceedings of the 10th International Conference on Wind Engineering, Published by Balkema, June, Copenhagen:1999.
    [21]马振新.高压输电塔-线的动力特性分析[D].武汉水利电力大学硕士学位论文,2000.
    [22]朱继华.高压输电塔-线的动力特性分析[D].武汉大学硕士学位论文,2002.
    [23]马星.输电塔-线耦合体系风振响应分析[C].第十届结构风工程会议论文集,广西龙胜:2001.
    [24]Li H N, Xiao S Y, Shi W L, et al. Model of transmission tower-pile-soil dynamic interaction under earthquake:in-plane. American Society of Civil Engineers,2002, 445(2):143-147.
    [25]李宏男,肖诗云.纵向地震作用下输电塔相互作用体系分析.岩土工程学报,1998,20(6):102-104.
    [26]李宏男,石文龙,贾连光.导线对输电塔体系纵向振动的影响界限及简化抗震计算方法.振动与冲击,2004,23(2):1-7.
    [27]李宏男,石文龙,贾连光.考虑导线影响的输电塔侧向简化抗震计算方法[J].振动工程学报,1997,16(2):233-237.
    [28]顾明,郑远海,张庆华.典型输电塔平均风荷载和响应研究[J].中国工程机械学报,2008,6(1):6-12.
    [29]张庆华,顾明,黄鹏.典型输电塔塔头风力特性试验研究[J].振动工程学报,2008,21(5):452-457.
    [30]张庆华,顾明,黄鹏.格构式塔架风力特性试验研究[J].振动与冲击,2009,28(2):1-4.
    [31]Katzmayr D, Seitz H. Windruck auf Fachwerkkurme von quadratischem quershmitt[J]. Der bauingenieur,1934,21 (3):218-221.
    [32]Walker H B. Wind forces on unclated tubular structures[R]. Constructional Steel Research and Development Organization, Crodon:U. K.,1975.
    [33]Schulz G. The drag of lattice structures constructed from cylindrical members (Tubes) and its calculation[R]. Dusseldorf:West Germany,1969.
    [34]Schulz G. International comparison of standards on the wind loading of structures[R]. Dusseldorf:West Germany,1969.
    [35]Gould R W, Raymer W G. Measurements over a wide range of Reynolds Numbers of the wind forces on models of lattice frameworks[J].1972,5 (72):1121-1143.
    [36]Holmes J D. Along-wind responses of lattice towers:Part I-Derivation of expressions for gust response factor[J]. Engineering Structures,1994,16(4):287-292.
    [37]Holmes J D. Along-wind responses of lattice towers:Part Ⅱ-Aerodanamic damping and deflections[J]. Engineering Structures,1996,8(7):483-488.
    [38]Holmes J D. Along-wind responses of lattice towers:Part Ⅲ-Effective load distribut ions[J]. Engineering Structures,1996,18(7):489-494.
    [39]楼文娟,叶尹,孙炳楠等.高耸格构式钢管输电塔体形系数风洞试验研究.第七届全国结构风效应学术会议[C],重庆:1995.
    [40]楼文娟.大跨越输电铁塔风振响应研究[D].浙江大学博士学位论文,1995.
    [41]楼文娟,孙炳楠,唐锦春.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,1996,9(3):318-322.
    [42]程志军,付国宏,楼文娟,孙炳楠.高耸格构式塔架风荷载试验研究[J].实验力学,2000,15(1):51-55.
    [43]邹良浩,梁枢果.半刚性模型风洞试验荷载谱的处理方法[J].实验流体力学,2007,21(3):76-81.
    [44]邹良浩.格构式高耸结构动力风荷载模型与风振响应研究[D].武汉大学博士学位论文,2006.
    [45]邹良浩,梁枢果,邹垚,熊铁华.格构式塔架风载体型系数的风洞试验研究[J].特种结构,2008,25(5):41-43.
    [46]邓洪洲,吴昀,刘万群,金晓华.大跨越输电塔风振系数研究[J].特种结构,2006,23(3):66-69.
    [47]邓洪洲,张永飞.输电塔风振响应研究[J].特种结构,2008,25(2):9-13.
    [48]邓洪洲,司瑞娟.特高压大跨越输电塔动力特性和风振响应分析[J].建筑科学与工程学报,2008,25(4):23-30.
    [49]吴昀.输电高塔风振系数研究[D].同济大学硕士学位论文,2007.
    [50]梁峰.输电塔的风振控制研究[D].华中科技大学硕士学位论文,2006.
    [51]贺鲲.输电塔的风振响应及控制[D].北京交通大学硕士学位论文,2007.
    [52]徐永波.输电塔法兰联接节点螺栓松动等效模型及风振响应分析[D].武汉理工大学硕士学位论文,2007.
    [53]王锦文.强风作用下输电线塔结构塑性疲劳破坏机理研究[D].武汉理工大学博士学位论文,2008.
    [54]瞿伟廉,秦文科,梁政平.基于输电塔风致响应的节点螺栓脱落损伤自动诊断小波识别方法[J].地震工程与工程振动,2008,28(4):146-153.
    [55]何文飞.高耸格构式塔架风振响应研究[D].湖南大学硕士学位论文,2009.
    [56]肖正直,李正良,汪之松,晏致涛.基于高频天平测力试验的输电塔风荷载空间分布估计[J].华南理工大学学报(自然科学版),2009,37(6):147-152.
    [57]Manuzio C, Paris L. Statistical determination of wind loading effects on overhead line conductors[R].CIGRE:Paris France,1964.
    [58]Gastanheta M. Dynamic behaviour of overhead power lines subject to the action of wind[R].CIGRE:Paris France,1970.
    [59]Davenport A G. Gust response factors for transmission line loading[C]. Wind engineering: proceedings of the fifth International wind engineering. Press:Oxford and New York,1980.
    [60]Yasui H, Marukawa H, Momomura Y. Analytical study on wind-induced vibration of power transmission towers[J]. JournalofWind Engineering and Industrial Aerodynamics,1999,83 (1-3):431-441.
    [61]Loredo-Souza A M, Davenport A G. A novel approach for wind tunnel modelling of transmission lines[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001 89(11-12):1017-1029.
    [62]Loredo-Souza A M. The Behaviour of transmission lines under high winds[D]. The University of Western Ontario,1996.
    [63]Battista C, Rodrigues R S, Pfei M S. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003(91):1051-1067.
    [64]Ball N G, Rawlins C B, Renowden J D. Wind tunnel errors in drag measurements of power of power conductor [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992 41(1-3):847-857.
    [65]张琳琳,李杰.风荷载作用下输电塔结构的动力可靠度分析[J].福州大学学报(增刊),2005,45(145):17-27.
    [66]张琳琳.随机风场研究与高耸、高层结构抗风可靠性分析[D].同济大学博士学位论文,2006.
    [67]李杰,张琳琳.实测风场的随机Fourier研究[J].振动工程学报,2007,21(1):66-72.
    [68]王杨.风荷载下输电塔体系动力可靠性分析[D].大连理工大学硕士学位论文,2008.
    [69]郭勇.大跨越输电塔-线体系的风振响应及振动控制研究[D].浙江大学博士学位论文,2006.
    [70]郭勇,孙炳楠,叶尹等.大跨越输电塔-线体系气弹模型风洞试验[J].浙江大学学报(工学版),2007,41(9):1482-1486.
    [71]郭勇,孙柄楠,叶尹,楼文娟等.大跨越输电塔-线体系风振响应频域分析及风振控制[J].空气动力学学报,2009,27(3):288-294.
    [72]贺业飞,楼文娟,孙炳楠等.悬挂质量摆对大跨越输电塔的风振控制[J].浙江大学学报(工学版),2005,39(12):1891-1896.
    [73]贺业飞.大跨越输电塔结构的风振控制研究[D].浙江大学硕士学位论文,2005.
    [74]刘万群.大跨越输电塔-线体系风振响应研究[D].同济大学硕士学位论文,2006.
    [75]任月明.风雨激励下输电塔-线体系的动力响应分析[D].大连理工大学硕士学位论文,2007.
    [76]李雪.高压输电塔-线体系气象条件致灾因素分析[D].大连理工大学硕士学位论文,2008.
    [77]沈国辉,默增禄,孙炳楠,楼文娟.突然断线对输电塔-线体系的冲击作用研究[J].振动与冲击,2009,28(12):4-8.
    [78]肖正直,李正良,汪之松等.1000kV汉江大跨越塔-线体系风洞实验与风振响应分析[J].中国电机工程学报,2009,29(34):84-89.
    [79]肖正直.特高压输电塔风振响应及等效风荷载研究[D].重庆大学博士学位论文,2009.
    [80]梁政平,李正良.高压输电塔-线体系气弹性模型设计[J].重庆大学学报,2009,32(2)131-136.
    [81]肖正直,晏致涛,李正良等.八分裂输电导线结冰风洞及气动力特性试验[J].电网技术,2009,33(5):90-94.
    [82]邓洪洲,朱松晔,陈晓明,王肇民.大跨越输电塔-线体系气弹模型风洞试验[J].同济大学学报,2003,31(2):132-137.
    [83]邓洪洲,朱松晔,苏速,王肇民.大跨越输电塔-线体系风振控制风洞试验[J].同济大学学报,2003,31(9)1009-1013.
    [84]刘静.特高压输电塔-线耦联体系风振响应及风洞试验研究[D].重庆大学硕士学位论文,2007.
    [85]刘智虎.汉江大跨越输电线路风振系数及风振响应研究[D].重庆大学硕士学位论文,2007.
    [86]谢强,丁兆东,赵桂峰,李杰.不同横隔面配置方式的输电塔抗风动力响应分析[J].高电压技术,2009,35(3):683-687.
    [87]赵桂峰,谢强,粱枢果,李杰.高压输电塔-线体系风致非线性振动气弹模型风洞试验[J].同济大学学报,2009,37(9):1157-1163.
    [88]赵桂峰,谢强,梁枢果,李杰.输电塔架与输电塔-线耦联体系风振响应风洞试验研究[J].建筑结构学报,2010,31(2):39-77.
    [89]赵桂峰,谢强,梁枢果,李杰.高压输电塔-线体系抗风设计风洞试验研[J].高电压技术,2009,35(5):1206-1212.
    [90]李黎,尹鹏.大跨越输电塔-线体系风振控制研究[J].工程力学(增刊),2008,25:213-229.
    [91]尹鹏.大跨越输电塔-线体系动力特性和风振控制研究[D].华中科技大学,2009.
    [92]尹鹏,李黎,胡亮霞,陈元坤.橡胶铅芯阻尼器控制下输电塔风振系数研究[J].水电能源科学,2009,27(1):187-191.
    [93]刘云,钱振东,夏开全,李正.鼓型塔输电线路绝缘子破坏非线性动响应分析[J].振动工程学报,2009,22(1):6-22.
    [94]杜扬.流体力学[M].中国石化出版社,2008.
    [95]约翰芬纳莫尔,弗朗兹尼编著.流体力学及其工程应用[M].机械工业出版社,2006.
    [96]White F M. Fluid Mechanics[M].清华大学出版社,2004.
    [97]王英,谢晓晴,李海英.流体力学实验[M].中南大学出版社,2005.
    [98]黄鹏.高层建筑的风致干扰效应[D].同济大学大学博学位论文,2001.
    [99]中华人民共和国国家标准GB 5009-2001.建筑荷载规范(2006年版).北京:中国建筑工业出版社,2002.
    [100]American Society of Civil Engineers. Wind Tunnel Studies of Buildings and Structures [R]. ASCE Manuals and Reports on Engineering Practice No.67,1801.
    [101]American Society of Civil Engineers. Guidelines for Electrical Transmission Line Structural Loading, ASCE Manuals and Reports on Engineering Practice No.74, New York, 1991.
    [102]顾明,朱川海.体育场主看台弧形挑蓬气弹模型风洞试验和响应特性[J].土木工程学报,2006,39(10):54-59.
    [103]韩银全,梁枢果,邹良浩,吴海洋,陈寅.输电塔-线体系完全气弹模型设计[C].第十三届全国结构风工程学术会议论文集,2007.
    [104]梁枢果.输电塔-线体系的气弹模型风洞试验与动力特性、风振响应分析[R].同济大学土木工程防灾国家重点实验室访问学者基金项目结题报告,2002.
    [105]李素超,李惠.大跨越输电塔-线耦联体系的动力特性及风振响应[C].第十三届全国结构风工程学术会议论文集,2007.
    [106]Tanaka H. Similitude and Modelling in Wind Tunnel Testing of Bridges[J]. Journal of Wind Engineering,1988 (37):429-446.
    [107]A.M. Loredo-Souza, A. G. Davenport. The effects of high winds on transmission lines [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998 (74-76):987-994.
    [108]Armitt J, Cojan M, Manuzio C, Nicolini P. Calculation of wind loadings on components of overhead lines [C]. Proceeding of Institute of Electrical and Electronics Engineers, 1975.
    [109]Vickery B J. The response of chimneys and tower-like structures to wind loading, A State of the Art in Wind Engineering[C]. Ninth International Conference on Wind Engineering, New Delhi, India,1995.
    [110]A.M. Loredo-Souza, A.G. Davenport. Wind tunnel aeroelastic studies on the behavior of two parallel cables [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002 (90):407-414.
    [111]柳国环,李宏男.格构式塔架的实用高阶广义荷载谱模型与共振分量表达式改进[J].土木工程学报,2009,42(2):53-57.
    [112]柳国环,李宏男.格构式塔架顺风位移响应实用计算模型与求解内力位移加载法[J].振动工程学报,2009,22(1):1-5.
    [113]Liu G H, Li H N. A new framework for evaluating along-wind responses of a transmission tower [J]. Earthquake Engineering and Engineering Vibration,2009,8(1):87-93.
    [114]顾明,周印,张峰等.用高频天平研究金茂大厦的动力风荷载和风振响应[J].建筑结构学报,2000,21(4):55-61.
    [115]顾明,王凤元,张峰等.用测力天平技术研究超高层建筑的动力风载[J].同济大学学报,1999,27(3):259-263.
    [116]顾明,周晅毅,黄鹏等.广州新电视塔第二阶段风洞试验研究(二期项目)研究报告[R],上海:同济大学土木工程防灾国家重点实验室,2006.
    [117]顾明;黄鹏:周晅毅等.广州新电视塔模型测力风洞试验及风致响应研究I:风洞试验[J].土木工程学报,2009,42(7):8-13.
    [118]周晅毅,顾明,朱乐东等.试验及风致响应研究Ⅱ:风致响应分析[J].土木工程学报,2009,42(7):14-2.
    [119]Gu M, Xie Z N. Along-wind dynamic interference effectsof tall buildings[J]. Advances in Structural Enginecring,2005,8(6):623-636.
    [120]Xie Z N, Gu M. Mean Interference effects among Tall Buildings[J]. Engineering Structures,2004, (26):1173-1183.
    [121]Xie Z N, Gu M. Simplified evaluation of wind-induced interference effects among three tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007, 95(1):31-52.
    [122]石碧青,谢壮宁,倪振华.用高频底座力天平研究广州西塔的风效应[J].土木工程学报,2008,41(2):42-48.
    [123]谢壮宁.典型群体超高层建筑风致干扰效应研究[D].同济大学博士学位论文,2003.
    [124]邹良浩,梁枢果,熊铁华,赵林,葛耀君.格构式塔架顺风向风振响应[J].土木工程与环境工程,2009,31(3):42-47.
    [125]周暄毅.大跨屋盖风荷载与风致响应研究[D].同济大学大学博士学位论文,2004.
    [126]张亮亮.建筑物动态天平实验技术研究[J].西南交通大学研究生学报,1992,2:20-27.
    [127]张亮亮,吴云芳,余洋等.高层建筑风荷载高频测力天平试验技术[J].重庆大学学报(自然科学版),2006,29(2):99-102.
    [128]庄表中,王行新,随机振动概论[M].地震出版社[M],1982.
    [129]星谷胜.随机振动分析[M].地震出版社,1977.
    [130]欧进萍,王光远.结构随机振动[M].高等教育出版社,1998.
    [131]王济,胡晓.MATLAB在信号中处理中的应用[M].中国水利水电出版社,2006.
    [132]庄表中,陈乃立..随机振动的理论及实例分析[M].地震出版社,1985.
    [133]李杰,陈建兵.随机振动理论与应用新进展[M].同济大学出版社,2009.
    [134]楼文娟,孙炳楠.风与结构的耦合作用及风振响应研究[J].工程力学,2000,17(5):16-22.
    [135]杨庆山,王基盛,王莉.薄膜结构风振反应中的流固耦合作用[J].空间结构,2003,9(1):20-24.
    [136]邹良浩,粱枢果,顾明.高层建筑气动阻尼评估的随机减量技术[J].华中科技大学学报,2003,20(1):30-33.
    [137]Tamura Y, Suganuma S. Evaluation of amplitude-dependent damping and natural frequency of buildings During strong winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:115-130.
    [138]Marukawa. Experimental evaluation of aerodynamic damping of tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:177-190.
    [139]Frank M W. Fluid mechanics[M]. (5th ed). Boston:McGraw-Hill,2003.
    [140]顾明.土木结构抗风研究进展及基础科学问题[R].同济大学报告,2006.
    [141]李国豪主编.桥梁结构稳定与振动.中国铁道出报社,1996.
    [142]埃米尔.西缪,罗伯特.H.斯坎伦著,刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论.同济大学出版社,1992.
    [143]任淑琰.斜拉桥拉索参数振动研究[D].同济大学博士学位论文,2007.
    [144]孙友义.海洋钻井隔水管系统涡激振动安全性评估研究[D].中国石油大学硕士学位论文,2004.
    [145]R.D.白莱文斯.流体诱发振动[M].北京:机械工业出版社,1981.
    [146]Yong B, Qiang B. Subsea Pipelines and Risers(2nd ed)[M]. USA:Elsevier Science Ltd,2005.
    [147]卞建春,乔劲松,吕达仁.大气近地层湍流能谱特征的再分析[J].大气科学,2002,26(4):474-480.
    [148]孙瑛.大跨屋盖结构风荷载特性研究[D].哈尔滨工业大学博学位论文,2007.
    [149]National Research Council of Canada.National Building Code of Canada[S].1995
    [150]张相庭.结构风工程[M].北京:中国建筑工业出版社,2006.
    [151]Anil K. C. Dynamics of Structures:Theory and Applications to Earthquake Engineering (2nd ed)[M]. Prentice-Hall,2000.
    [152]D.E纽兰著,方同等译.随机振动与谱分析概论[M].北京:机械工业出版社,1982.
    [153]Guoqing Huang, Xinzhong Chen. Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements[J]. Enginnering Structures, 2007(1):287-292.
    [154]于秀雷.格构式塔架风振响应与等效风荷载简化计算[D].武汉大学硕士学位论文,2006.
    [155]周晅毅,顾明.大跨度屋盖结构考虑模态耦合的抖振共振响应分析方法[J].振动工程学报,2006,19(2):179-183.
    [156]Wilson E. L. Three-Dimensional Static and Dynamic Analysis of Structures-A Physical Approach With Emphasis on Earthquake Engineering(3rd ed)[M]. Computers and Structures, Inc,2003.
    [157]Wilson E. L.著.北京金土木软件技术有限公司,中国建筑标准设计研究院译.结构静力与动力分析-强调地震工程学的物理方法(第四版)[M].中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700