用户名: 密码: 验证码:
带有分布参数的串联体系地震响应分析及智能控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带分布参数的串联体系是土木工程中常见的结构体系,比如:高压电气设备支架串联结构、高层框架结构、高层框架-剪力墙结构等。由于这类串联体系既有集中参数又有分布参数,而且集中参数与分布参数的节点又有柔性连接的情形,同时在地震作用下会产生较大的倾覆弯矩,因此在地震作用下带分布参数的串联体系地震响应求解、被动隔震及智能隔震比较复杂。为此本文针对带分布参数的串联体系地震响应求解、被动隔震及智能隔震的几个热点、难点问题展开研究,其中主要的工作有以下几方面:
     (1)首先以单节柔性节点高压电气设备为研究对象建立单节分布参数串联体系的动力分析模型,通过分布参数梁振动理论,避免对结构的离散,集中参数通过边界条件的引入,推导出其频率方程,根据Betti定律,推导出具有单节带分布参数柔性节点串联体系的正交条件,应用此正交条件对集中参数与分布参数的振动方程解耦,推导出该单节带分布参数串联体系的广义质量及广义荷载,进一步通过振型叠加的方法求解结构的地震响应。仿真结果表明,该半解析法与有限元法计算结果相一致,说明该半解析法的正确性。最后将上述方法应用于多节柔性节点带分布参数串联体系,求解多节柔性节点高压电气设备支架串联体系的地震响应。
     (2)建立了高层剪力墙结构动力分析简化模型,仿照推导柔性节点带分布参数串联体系地震响应半解析解的方法,推导出多节刚性节点带分布参数串联体系——高层剪力墙结构地震响应的半解析解;进一步建立了高层框架-剪力墙结构的动力分析模型,框架结构部分对整体结构的影响通过边界条件的引入,然后通过应用求解多节刚性节点带分布参数地震响应的求解方法求解框架-剪力墙结构的地震响应。仿真结果显示,建立的高层结构动力分析简化模型优于悬臂梁模型,而且本文推导的求解地震响应的半解析解是正确的及计算工作量小。
     (3)通过并联橡胶隔震支座,实现以带分布参数的高架电气设备支架串联体系的隔震,然后建立高架电气设备支架串联隔震体系的力学模型,通过串联体系集中参数与分布参数的振动方程,推导出该串联隔震体系的频率方程、振型正交条件、广义质量与广义刚度,由于该串联隔震体系为非比例阻尼体系,通过把该串联隔震体系的非比例阻尼分解为比例阻尼部分和非比例阻尼部分,非比例阻尼部分由隔震支座的阻尼所引起,应用Hamilton原理推导出非比例阻尼部分等效振型阻尼,从而实现该体系运动方程的解耦,通过振型叠加法进行该串联隔震体系地震响应的求解。最后进行有限元软件数值积分法求解的地震响应与该半解析法求解地震响应的比较,分析半解析法求解地震响应的正确性及隔震技术的有效性。
     (4)针对以高层建筑为研究对象的带分布参数串联体系,研制出双向抗拔滑动装置,该双向抗拔滑动装置既能抵抗拉力又能承受压力。将该装置设置于隔震层较大拉力的位置,与夹层橡胶隔震垫同时使用,当高层建筑在地震作用下倾覆力矩较大时,该双向滑动装置可以抵抗倾覆力矩产生的拉力,使夹层橡胶隔震垫处于受压状态。然后建立刚性节点带分布参数串联隔震体系力学模型,用推导多节柔性节点带分布参数串联隔震体系地震响应求解的方法进行推导求解刚性节点带分布参数串联隔震体系地震响应的半解析解。
     (5)针对带分布参数的串联体系,借用本课题组提出的序列最优控制算法,推导出序列最优模态控制算法,然后用该算法进行带分布参数串联体系的智能隔震。由于序列最优模态控制算法振动控制时需要结构全状态,在工程应用中难于实现,因此,提出了针对序列最优模态控制算法的全维状态观测器,实现在振动控制时只要测量容易测量的状态,然后通过全维状态观测器重构结构的全部状态,从而实现序列最优模态控制算法用于带分布参数串联体系的振动控制。由于在线实时控制过程中,结构响应测量、在线计算和驱动器响应都需要消耗时间,因此时滞是不可避免的,为了解决时滞问题,提出了将径向基神经网络和序列最优模态控制算法有机结合而形成的序列最优预测模态控制器,仿真结果表明,在无时滞与有时滞情况下该控制器的控制效率良好。
     (6)在双向抗拔滑动装置的基础上,设计出双向压电变摩擦控制装置,该控制装置可以在两个方向滑动产生控制力,进一步推导出该控制装置应用于结构振动控制的半主动控制算法。最后设计出一压电变摩擦控制装置,进行数值仿真,根据仿真结果,将该控制装置应用于带分布参数串联体系的智能隔震,显示出良好的控制效果。
     (7)对目前进行地震响应分析及振动控制仿真软件Simulink作了详细介绍,讲述了Simulink仿真地震响应及振动控制的技术。讲述Simulink的扩展工具——S-函数的工作原理,用Simulink/S-函数实现序列最优模态控制算法变增益矩阵的技术,实现序列最优模态控制算法的模块化。最后通过Simulink软件分别建立经典最优控制算法、线性二次型高斯算法和序列最优控制算法及基于状态观测器的序列最优模态控制算法的仿真模块图。
     (8)在理论研究和计算机仿真的基础上,进行了带分布参数体系的动力响应、隔震的扫频振动台试验。设计出压电变摩擦控制装置,并进行力学性能试验,然后将该控制装置用于带分布参数隔震体系,分别进行应用Passive-on与Passive-off算法的带分布参数串联隔震体系振动控制的扫频振动台试验,为该控制器的工程应用奠定了基础。
     (9)将本文带分布参数地震响应分析理论及隔震技术应用于实际工程,进行了完整的带分布参数串联体系隔震分析及设计,通过计算与分析,采用本文的并联橡胶隔震支座进行带分布参数体系的隔震技术具有较好的减震效果。通过讲述该隔震技术的设计过程,为该技术广泛应用于实际工程奠定了基础。
Serial system with concentrated and distributed parameters is usually used in civil engineering, for instance serial electrical equipment and supporter with distributed parameters, tall shear-wall structure, tall frame-shear-wall structure and so on. Due to the serial system with concentrated and distributed parameters, flexible node between concentrated and distributed parameters and large overturning moment produced under earthquake, it is rather difficult to solve the seismic response of serial system with concentrated and distributed parameters, make passive and smart isolation for this serial system. Therefore, this paper is to aim to the some focuses and difficult points in the research of the solution of seismic response of this serial system, passive and smart isolation for this serial system, and mainly focuses on the following aspects:
     (1) Firstly, the dynamic analysis model of serial system with concentrated and distributed parameters is presented by taking single level flexible node electric porcelain high-voltage equipments as the research object and the frequency equation of this serial system is derived by the vibration theory of beam with distributed parameters and introducing the boundary conditions of concentrated parameters, then frequency and mode shape can be obtained by the numerical method. According to the Betti law, the orthogonal conditions of modes of serial system with concentrated and distributed parameters are deduced. Then we can use these orthogonal conditions to decouple vibration equation of concentrated and distributed parameters and obtain the generalized mass and stiffness. Therefore the responses of serial system under earthquake excitation can be solved by the mode superposition method. The simulation results show the responses obtained by two methods are basically consistent, which indicated the correctness of this semi-analytical method. Finally, the semi-analytical solution of the seismic response for several levels serial system with distributed parameters and flexible nodes is deduced by imitating the process to deduce the seismic response of the single level serial system, and then the seismic response of serial system of the supporter and high-place electrical equipment with the flexible nodes and electric porcelains is solved by the semi-analytical solution.
     (2) The dynamic modal of tall shear-wall building is presented and the semi-analytical solution of several levels serial system with distributed parameters and rigid nodes is deduced by imitating the process to deduce the seismic response of the several levels serial system with flexible nodes, namely,tall shear-wall building. Finally, the dynamic modal for tall frame-shear-wall building is presented and the influence of the part of frame structure to frame-shear wall building is considered by boundary conditions, then we can obtain the seismic response of frame-shear wall building by the method to solve the seismic response of several levels serial system with distributed parameters and rigid nodes.
     (3) Serially isolated electrical equipment and supporter with distributed parameters is presented by in-parallel laminated rubber bearings and mechanics model of this system is built. Based on the vibration theory of beam with distributed parameters and the boundary conditions of concentrated parameters, the frequency equation of this serially isolated system is derived, and the frequencies and mode shapes are obtained by the numerical method. According to the Betti law, the orthogonal conditions of modes of this serially isolated system with concentrated and distributed parameters are deduced and the generalized mass and stiffness can be obtained. By decomposing the non-proportional damping of serially isolated system to the party of proportional damping and non-proportional damping, which is induced by laminated rubber bearings, the equivalent mode damping ratio of the non-proportional damping is derived by Hamilton principle. Therefore the vibration equation of the non-proportional damping of the isolated system is decoupled, and the responses of structure under earthquake excitation can be solved by the mode superposition method. Then validity of the semi-analytical method to solve the seismic response of serially isolated system with distributed parameters and effectiveness of isolated system designed by author are proved by comparison the seismic response of isolated system with ordinary system solved by the semi-analytical method and numerical integration of finite element method, separately.
     (4) Aimed to serial system with distributed parameters and rigid nodes taken the tall building as the research object, the bidirectional anti-pulling sliding device which can resist tension and bear pressure is developed. This device is set at the place of isolation layer where the large tension exists, and the laminated rubber bearings are used at isolation layer at the same time. This device can resist tension produced by over-turning moment and make laminated rubber bearings confine in pressured state when the large over-turning moment at the bottom of tall building is generated under earthquake. Then the mechanics model of serial isolated system with distributed parameters and rigid nodes is presented, and the semi-analytical solution of serial isolated system is deduced by imitating the process to deduce the seismic response of the serial isolation system with distributed parameters and rigid nodes.
     (5) The Sequential Optimal Mode Control (SOMC) algorithm for serial system with distributed parameters is presented by expanding the Sequential Optimal Control (SOC) algorithm. Then SOMC algorithm is used to the smart isolation of serial system with distributed parameters. For it is difficult to obtain the full state of structural response needed by SOMC in engineering application, the SOMC based on state observer which can realize the vibration control of structure by partial state of structure measured easily is presented. Due to time consumed by the measure of response of structures, on-line calculation and reaction of actuators in the process of on-line real-time control, time lag always exists in the control system. In order to solve the problem of time lag, Sequentialoptimal predicted mode controller is founded by organically combining RBF neural network with sequential optimal control algorithm. The simulation results show that control effect of this predicted mode controller is better in the case of time lag and no time lag.
     (6) Based on the bidirectional anti-pulling sliding device, the bidirectional piezoelectric variable friction control device which can produce control force in two orthogonal directions is designed. Then semi-active control algorithm which is used to the vibration control of structure by this control device is presented. Finally one piezoelectric variable friction control device is designed and simulated numerically, and according to mechanical properties of this control device obtained by numerical simulation, this control device is used to smart isolation of serial system with distributed parameters and simulation results show the smart isolation is of excellent control effect.
     (7) The simulation technique of Simulink software which is always used to make the analysis of seismic response and vibration control of structure is described in detail. Especially working principle of S-function, namely, the extended tool of Simulink software is emphatically introduced, and at the same time the technique of realizing the variable gain matrix of SOMC is presented, therefore the modularization of SOMC is realized. Finally, the simulation modules of SOC, COC, LQG and SOMC based on state observer of Simulink which are used to make vibration control of structure are designed.
     (8) Based on the research of theoretical research and computer simulation, the sweep frequency shaking table test of dynamic response and isolation for serial system with distributed parameters is carried out. The actual piezoelectric variable friction control device is designed and the mechanical properties of the actual control device are test. Then this control device is used to isolation of serial system with distributed parameters and the sweep frequency shaking table test of vibration control for isolation of serial system with distributed parameters is performed under the control of Passive-on and Passive-off control algorithms. So the foundation of engineering application of this control device is established.
     (9) The analysis theory of seismic response and isolation technique for serial system with distributed parameters are applied for the actual project and the process of analysis and design of serially isolated system with distributed parameters is presented. The serially isolated system adopted the in-parallel laminated rubber bearings has a better effect of seismic reduction by the calculation and analysis and All those have laid solid foundation for the wide application of this isolation technique.
引文
[1]赵成刚,冯启民.生命线地震工程[M].北京:地震出版社.1994.
    [2]N.R.Gillon etal. The Loma Prieta, Califonria, Earthquake of oct.17,1989[J]. Buletin of the New Zealand National Society for Earthquake Engineering,1990, 23(1):1550-1554.
    [3]Jean-Robert Pierre. First experience concerning the seismic behavior of an electric power system in eastern north America[C]. Lifeline Earthquake Engineering, Proceedings of the 3rd US conference,1991,266-274.
    [4]Anshel J.Schiff, Ron Tognazini, Dennis Ostrom, Power system after the Northridge earthquake:Emergency operations and changes in seismic equipment specifications, practice, and system configuration[C]. Lifeline Earthquake Engineering. Proceedings of the 4th US conference,1995,549-556.
    [5]李亚,李小军,刘锡荟.电力系统抗震研究概况[J].世界地震工程,2002,18(04):79-84.
    [6]GB50260-96.电力抗震设计规范[S].北京:中国计划出版社.1996.
    [7]李树桢,孙柏涛,贾相玉.包头西6.4级地震震害及经济损失评估[J].自然灾害学报,1998,7(3):97-105.
    [8]非明伦,周光全.盐津5.1级地震现场调查与烈度分布[J].地震研究,2006,29(4):412-417.
    [9]M. Shinozuka, A. Rose, R. T Eguchi. Engineering and Socioeconomic Impacts of Earthquakes-An Analysis of Electricity Lifeline Disruptions in the New Madrid Area[R], MCEER.1998.
    [10]国电华北电力设计院有限公司.高压电气设备减震技术规定(报批稿),中国电力出版社.
    [11]IEC Std.1463. Bushings-Seismic Qualification. International Electrotechnical Commission[S].1996.
    [12]IEEE Std.693-1997. IEEE Recommended Practice for Seismic Design of Substations[S]. The Institute of Electrical and Electronics Engineers, In c.1997.
    [13]董伟民,周书瑞.断路器及其减震体系的抗震研究[J].地震工程与工程振动,1982,2(1):53-66.
    [14]徐健学,邹曼君,朱国培,吴慧中.KW4型空气断路器抗震分析[J].地震工程与工程振动,1985,(3):
    [15]李晓玉,陈淮,李天.高压电气设备动态特性分析[J].郑州工业大学学报,1999,20(2):61-63.
    [16]李晓玉,陈淮,吴勘.高压电气设备地震时程响应分析[J].郑州工业大学学报,2002,23(4):72-75.
    [17]李天,李杰,沈祖炎.高压变电站抗震可靠性分析(二)[J].地震工程与工程振动,2000,(04):39-43.
    [18]李天,李杰,沈祖炎.高压变电站抗震可靠性分析(一)[J].地震工程与工程振动,2000,(03):43-49.
    [19]李亚琦.电瓷型高压电气设备体系抗震性能分析[D].中国地震局地球物理研究所.2002.
    [20]张伯艳,方诗圣,范知好.高压电气设备的抗震计算[J].中国电力,2001,34(1):44-47.
    [21]傅修恒.GW6, GW9高压隔离开关模拟地震试验及其抗震能力分析[R].沈阳高压开关厂
    [22]赵玉祥,朱伯龙.500kV隔离开关抗震性能研究[A],设备抗震学术会议报告汇编[R].1987.
    [23]杨亚弟,张其浩.具有柔性结点的有限元法及其应用[J].工程力学,1988,(03):87-94.
    [24]曲乃测,沈丰修,张钟鼎等.少油断路器的动力地震响应[A].设备抗震学术会议报告汇编[R],1987.
    [25]Bellorini S, Salvetti M, Bettinali M, Zafferani G. Seismic qualification of transformer high voltage bushings[J]. IEEE Transaction on Power Delivery, 1998,13(4):1208-1213.
    [26]Filiatrault A, Kremmidas S. Seismic interaction of interconnected electrical substation equipment [J]. Journal of Structural Engineering,2000.126(10): 1140-1149.
    [27]Dastous J B, Pierre J R. Experimental investigation on the dynamic behavior of flexible conductors between during an earthquake [J]. IEEE Transactions on Power Delivery,1996,11(2):801-807.
    [28]Wang H M, Chou T. Evaluation of seismic performance of an electric substation using event tree technique [J]. Probabilistic Engineering Mechanics, 1988,13(2):17-124.
    [29]Amir S.Gilani, A pderwS. W hlttaker, Gergory L. Fenves, Eric FrIsaki. Seismic Evalation of 550 KV Porcelain Transformer Bushings[R]. PEER Report.1999.
    [30]Armen Der Kiureghian, Jeorme L.Sackman, Kee-Jeung Hong. Interaction in Interconnected Electrical Substation Equipment Subjected to Earthquake Ground Motions[R]. PEER Report.1999.
    [31]Armen Der Kiuerghian, Kee-JeungHong, Jerome L.Sackman. Further Studies on Seismic Interaction in Interconnected Electrical Substation Equipment[R]. PEER Report.2000.
    [32]Amir M, Andreas Kuhner, P. Reinhardt, A. Marinescu, I. Manea. Seismic Qualification of High-voltage Substations (420kV Circuit Breakers with Coupled Poles) [J]. Optimization of Electrical and Electronic Equipments. 1998,(1):225-230.
    [33]Selahattin Ersoy, M. Ala Saadeghvaziri, Gee-Yu Liu, and S.T. Mau. Analytical and Experimental Seismic Studies of Transformer Isolated with Friction Pendulum System and Design Aspects[J].Earthquake Spectra,2001,17(4): 569-595.
    [34]国电华北电力设计院有限公司,220kV,500kV等静压棒形支柱绝缘子减震试验报告,2000.
    [35]国电华北电力设计院有限公司,LW11A-126SF6断路器减震试验报告,2000.
    [36]赵西安,钱庾青.高层建筑结构分层模型弹塑性动力分析[J].固体力学学报,1982,4(8).
    [37]O. Aksogan, M. Bikce, E. Emsen, H.M. Arslan. A simplified dynamic analysis of multi-bay stiffened coupled shear walls[J]. ENGINEERING SOFTWEAR. 2007,38(8):552-560.
    [38]周坚.高层建筑结构力学[M].北京:机械工业出版社,2006.
    [39]程志辉,张俊胜.带地下室高层结构的动力计算模型[J].华南理工大学学报(自然科学版),2005,33(6):89-93.
    [40]Q.S LI, J. Q. FANG and A. P. JEARY. CALCULATION OF VERTICAL DYNAMIC CHARACTERISTICS OF TALL BUILDINGS WITH VISCOUS DAMPING [J]. J. Solid Structures,1998,35 (24):316-3176.
    [41]李桂清,徐家云.结构控制与控制结构计算理论和方法[M].北京:地震初版设出版社,1996
    [42]刘文锋,高丽燕,何玉敖.消能减震剪力墙结构体系的最优设计[J].工程力学,2005,22(3):97-101.
    [43]唐意,顾明.某超高层建筑TMD风振控制分析[J].振动与冲击,2006,25(2):16-19.
    [44]黄斌,刘晖.智能TMD对高层建筑风振响应的抑制[J].振动与冲击,2003,22(4):58-61.
    [45]YAO J T P. Concept of structural Control. J of ST[J], ASCE,1972,98(ST7): 1567-1574.
    [46]SUHARDJO J, SPENCER JR B F, SAIN M K. Feedback-feedforward control of structures under seismic excitation[J]. Structural Safety,1990,(8):69-89.
    [47]周锡元,阎维明,杨润林.建筑结构的减震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12.
    [48]李宏男,阎石,林皋.智能结构控制发展综述[J].地震工程与工程振动,1999,19(2):29-36.
    [49]杜永峰.被动与智能减震结构地震响应分析及控制算法[D].大连理工大学博士学位论文,2003.
    [50]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997.
    [51]Kelly J M, Skinner R I and Heine A J. Mechanisms of Energy Absorption in Special Device for Use in Earthquake-Resistant Structures[J]. Bull, N.Z. National Society for Earthquake Engineering,1972
    [52]周福霖.减震消能减震和结构控制技术的发展和应用(上、下)[J].世界地震工程,1989(4),1990(1).
    [53]朱力等.摩擦消能支撑的试验研究[J].哈尔滨建筑工程学院学报,1992(4).
    [54]陈宗明等.新型抗震耗能支撑的试验研究[J].工程抗震,1993(4).
    [55]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [56]Pall A S and Marsh C. Response of Friction Damped Braced Frames[J], J. of Struc. Division, ASCE, Vol., NO. ST,1982,108(6):1313-1323.
    [57]Pall A S, Vezina S Proulx P and Pall R. Friction-Dampers for Seismic Control, J. of Canadian Space Agency Head-quarters[J]. Earthquake Spectra,1993,9(3): 367-375.
    [58]Xia C and Hanson R D. Influence of ADAS Element Parameters on Building Seismic Response. J. of Struc. Engineering[J], ASCE,1992,118(7):1903-1918.
    [59]Proc. of ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control. San Franciso, California, Mar,1993(2):11-12.
    [60]Aiken I D et al. Comparative Study on Four Passive Energy Dissipation Systems[J]. Bull, N. Z Nat, Soc. for Earthquake Eng.1992,25 (3):175-192.
    [61]冼巧铃,周福霖,王伟.橡胶垫隔震框架结构试验研究[J].世界地震工程,1996,16(2):23-28.
    [62]唐家祥,李黎,李英杰等.叠层橡胶基础隔震房屋结构设计与研究[J].建筑结构学报.1996,17(2):37-47.
    [63]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [64]周锡元,韩淼.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报,1999,12(2):157-165.
    [65]周锡元,韩淼,曾德民,马东辉.叠层钢板橡胶垫的稳定性分析与强度验算[J].建筑科学,1997,(6):13-19.
    [66]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究[J].建筑结构学报,2003,24(2):14-19.
    [67]朱玉华,吕西林,施卫星等.中日同类铅芯橡胶隔震支座性能对比试验研究[J].建筑结构,2001,31(4):23-24.
    [68]张敏政,孟庆利,裴强.叠层橡胶隔震支座的动态稳定性和力学特性研究[J].地震工程与工程振动,2002,22(5):85-91.
    [69]李慧,邓学晶,杜永峰等.寒区叠层橡胶隔震支座拟静力试验研究[J].低温建筑技术,2003,(4):33-35.
    [70]周福霖,俞公桦,洗巧玲,李向真,王伟.多层和高层建筑结构减震控制新体系[J],工程抗震.1991,(3):10-14.
    [71]付伟庆,刘文光,王建,王焕定.高层隔震结构的等效简化模型研究[J].地震工程与工程振动,2005,25(6):141-144.
    [72]陈海泉,李忠献,李延涛.应用形状记忆合金的高层建筑结构智能隔震[J].天津大学学报,2002,35(6):761-765.
    [73]付伟庆,丁琳,陈菲,张立鑫.高层隔震结构模型双向振动台试验研究[J].世界地震工程2006,22(3):125-130.
    [74]付伟庆,张永山,刘文光,陈菲.磁流变阻尼器被动隔震振动台试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(2):196-198.
    [75]付伟庆,刘文光,魏路顺.大高宽比隔震结构模型水平向振动台试验[J].沈阳建筑大学学报(自然科学版),2005:21(4),320-324.
    [76]刘文光,何文福,霍达,付伟庆.大高宽比隔震结构双向输入振动台试验及数值分析[J].北京工业大学学报,2007,33(6):597-602.
    [77]李宏男,王苏岩,贾俊辉.采用基础摩擦隔震房屋高宽比限值的研究[J].地震工程与工程振动,1997,(3):73-76.
    [78]祁皑,范宏伟.基于结构设计的基础隔震结构高宽比限值的研究[J].土木工程学报,2007,40(4):13-40.
    [79]李爱群.粘滞流体阻尼器在高层建筑减振设计中的应用研究[J].徐州工程学院学报,2005,20(1)7-14.
    [80]程华群,刘伟庆,王曙光.弹性滑移支座在高层隔震建筑中的应用研究[J].工程抗震与加固改造,2007:29(3):48-53.
    [81]王光远.高耸结构风振的控制.石油建筑设计,1981,(2).
    [82]瞿伟廉等.高耸结构的模糊随机风振反应的振型控制分析[J].上海力学,1988,9(11).
    [83]何玉敖,李忠献.电视塔结构地震反应的最优控制[J].建筑结构学报,1990,(1):2-11.
    [84]欧进萍.结构振动控制[M].北京:科学出版社,2003.
    [85]Housner G W, Bergman L A,Caughey T K, et al..StructuralControl:past,present and future[J]. ASCE Journal of Engineering Mechanics,1997,123(9):897-971.
    [86]李立.减震与减震技术[J].中国工程抗震四十年.第二篇,1989.
    [87]Kelly, J.M., Skinner, R.I., and Heine, A.J. Mechanisms of Energy Absorption in Special Devices for Use in Earthquake-Resistant Structure[J]. National Society for Earthquake Engineering,1972,5(3):63-68.
    [88]Aizawa S.Hayamizu Y,HIgashino M,Soga Y and Yamamoto M. Experimental Study of Dual-Axis Active Mass Damper[C]. Proceedings of the US National Workshop on Structural Control Research,1990,68-73.
    [89]李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J]。振动工程学报,2002,15(1):25-30.
    [90]G. Yang, B. F. Spencer Jr, J. D. Carson and M.K. Sain. Large-scale MR fluid dampers:modeling and dynamic performance considerations [J]. Engineering Structures,2002,24(3):309-323.
    [91]李惠,刘敏,欧进萍,关新春.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41.
    [92]Ramallo J C, Johnson E A, Spencer B F. "SMART" BASE ISOLATION SYSTEMS[J]. Journal of Engineering Mechanics,2002,128 (10):1088-1099.
    [93]GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [94]Spencer B F, Sain M K. "Controlling Buildings:A New Frontier in Feedback." [J]. IEEE Control systems Mag.,1997,17(6):19-35.
    [95]Spencer B.F., Nagarajaiah S. State-of the art of structural control. Journal of Structural Engineering[J], ASCE,2003,129(7):845-855.
    [96]Reinhorn A M, Riley M. "Control of Bridge Vibration with Hybrid Devices". Proc. First World Conf. Struct. Control, Los Angeles, CA, TA2,50-59
    [97]hinozuka M., and Fuji S. Friction controllable sliding isolation system[J]. Engineering Mechanics. ASCE,1993,119(9):1845-1864.
    [98]Nagarajaiah S. Fuzzy contrlller for structures with hybrid isolation system. Proc. First World Conf. Structural Control, Los Angeles, CA, TA2,1994:67-75.
    [99]Patten W., Sun J.,Li G., and Song G. Field test of an intelligent stiffener for bridges[J]. Earthquake Engineering and Structural Dynamics,1998,27(11): 1267-1275.
    [100]Makris N. Rigidity-plasticity-viscosity:Can electrorheological dampers protect base-isolated structures from near-source Ground Motions Earthquake Engineering and Structural Dynamics,1997,26:571-591.
    [101]J.C.Ramllo, E.A.Johnon, B.F.Spencer. "Smart" base isolation systems [J]. ASCE Journal of Engineering Mechanics,2002,128 (10):1088-1099.
    [102]H.Yoshioka, J.C.Ramallo, B.F.Spencer. "Smart" Base Isolation Strategies Employing Magnetorheological Dampers[J].2002,128(5):540-551.
    [103]Yoshida K., Yoshida S. and Takeda Y. Semi-Active Control of Base Isolation Using Feedforward Information of Disturbance. Proc of the Second World Conference on Structural Control, Kyoto, Japan,1999,1:377-385.
    [104]杨广强,Spencer Jr. B.F., Carlson J.D. and Sain M.K.尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23.
    [105]欧进萍,关新春.磁流变阻尼器性能的试验研究[J].地震工程与工程振动.1999.19(4):76-81.
    [106]杨飓,关新春,欧进萍.可调滞回模型的磁流变阻尼器性能及其试验[J].地震工程与工程振动.2002,2(2):115-120.
    [107]瞿伟廉,明云,学安.屋盖MR智能减震系统对升船结构顶部厂房地震鞭稍效应的模糊控制[J].地震工程与工程振动.2002,22(3):129-137.
    [108]瞿伟廉,陈波.智能基础减震结构的剪扭耦联地震反应分析[J].武汉理工大学学报,2003,25(8):39-42.
    [109]瞿伟廉,周强,苏经宇等.多层建筑结构水平剪扭-竖向地震反应的智能复合减震控制[J].地震工程与工程振动,23(5):187-195.
    [110]张提波,唐家祥.主动基础减震结构随机最优控制系统和电流变体阻尼器设计[J].工程抗震,1999,(1):30-32.
    [111]李江,何玉敖.减震和半主动控制组成的结构振动混合控制体系分析.第十届全国结构工程会议论文集,2001,3:13-17.
    [112]杜永峰,王佳佳,李慧,党育,刘彦辉.基于智能隔震结构Benchmark模型的序列最优控制算法研究[J].兰理工大学学报,2006,32(6):118-122.
    [113]杜永峰,王佳佳,李慧.基于智能隔震结构Benchmark模型控制算法研究[J].世界地震工程,2007.
    [114]Du Y.F. and Li H. Random Response of Smart Isolated Structures Implemented with Semi-Active Controller. Proc. of 6th World Conference on Computational Mechanics in conjunction with Asia-Pacific. Beijing:Tsinghua University Press& Springer-Verlag,2004:308-315.
    [115]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-8.
    [116]KAMADA T, FUJ ITA T, HATAYAMA T. Active vibration control of frame structures with smart structures using piezoelectric actuators (Vibration control by control of bending moments of columns) [J]. Smart Material and Structure, 1997,6(4):448-456.
    [117]KAMADA T, FUJITA T, HATAYAMA T, ARIKABE T. Active vibration control of flexural shear type frame structures with smart structures using piezoelectric actuators [J]. Smart Material and Structures,1998,7(4):479 488.
    [118]SONG Gangbing. Active vibration control of a space truss using PZT stack actuator[J]. American Society of Mechanical Engineers, Aerospace Division, 1999,59(2):263-268.
    [119]阎绍泽,吴德隆,叶青,郑凯等.用于自适应可展结构的压电式智能主动杆[J].清华大学学报,2002,42(6):762-765.
    [120]FUJITA T. Active microvibration control of precision manufacturing factories with smart structure using piezoelectric actuators. Proceedings of the International Society for Optimal Engineering. Newport Beach, CA, USA,200, 4330:449-459.
    [121]李书进,瞿伟廉,王军武.压电材料智能控制器对框架结构地震反应的主动控制[J].地震工程与工程振动,2000,20(1),100-104.
    [122]瞿伟廉,陈波,李学安,徐幼麟.压电材料智能力矩控制器对具有不确定参数升船结构顶部厂房地震反应的鲁棒控制[J].地震工程与工程振动,2001,21(2):145-51.
    [123]HAN Sangjun. Active/passive seismic control of structures. The Catholic University of America,2002,10(4).509-526
    [124]KITAGAWA Y. Characteristics of piezoelectric damper in smart structural system. Proceedings of the International Society for Optimal Engineering. San Diego, CA, USA,2003,5057:197-206.
    [125]SONG T T, Dargush G F. Passive energy dissipation systems in structural engineering [M]. Chichester:Wiley,1997.
    [126]欧进萍,关新春,吴斌,隋丽丽.智能型压电摩擦耗能器[J].地震工程与工程振动,2000,20(1):81-86.
    [127]欧进萍.压电-T型变摩擦阻尼器及其性能实验分析[J].地震工程与工程振 动,2003,23(4):171-177.
    [128]瞿伟廉,陈朝军,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制[J].地震工程与工程振动,2000,20(1):94-99.
    [129]XU YL et al. Control of wind-excited truss tower using semi-active friction damper [J]. Journal of Structure Engineering,2001,127(8):861-868.
    [130]CHEN G. Preliminary design of piezoelectric friction dampers for reducing the seismic response of structures. Proceedings of the 14th ASCE Engineering Mechanics Division Specialty Conference. Austin,2000:21-24.
    [131]CHEN G. Behavior of piezoelectric friction dampers under dynamic loading. Proceedings of the International Society for Optimal Engineering. Newport Beach, CA, USA,2000,3988:54-63.
    [132]CHEN C, CHEN G. Semi-active control of a steel frame with piezoelectric friction dampers. Proceedings of the International Society for Optimal Engineering. San Diego, CA, USA,2003,5057:207-217.
    [133]CHEN Chaoqiang, CHEN Ganda. Nonlinear control of a 20-story steel building with active piezoelectric friction dampers[J]. Structural Engineering and Mechanics,2002,14(1):21-38.
    [134]GARRETTL G T. Experimental characterization of piezoelectric friction dampers. Proceeding of the International Society for Optimal Engineering. Newport Beach, CA, USA,2001,4330:405-415.
    [135]李立州,胡卫兵.新型压电阻尼器本构模型分析[J].西安建筑科技大学学报,2003,35(2):123-126.
    [136]DURMAZ O. Experimental and analytical studies of a novel semi-active piezoelectric coulomb damper. Proceeding of the International Society for Optimal Engineering. San Diego, CA, USA,2002,4797:258-273.
    [137]Yang J N. Application of Optical Control Theory to Civil Engineering Structural [J]. Journal of Engineering Mechanics Division, ASCE,1975, 101(EM6):819-838.
    [138]Yang J N, Li Z and Liu, SC. Stable controllers for instantaneous optimal control. Journal of Engineering Mechanics [J], ASCE, Journal of Engineering Mechanics.1992,118(8):1612-1630.
    [139]Yoshida H. Ramallo J C and Spencer B F. "Smart" base isolation strategies employing magnetorheological damper[J]. Journal of Engineering Mechanics, 2002,128(5):540-551.
    [140]Yang J.N., Wu J.C., Reinborn A.M. and Riley M. Control of Sliding-Isolated Buildings Using Sliding-Mode Control[J]. Journal of Structural Engineering, 1996,122(2):179-185.
    [141]Spencer Jr. B.F., Suhardjo J. and Sain M.K. Frequency domain optimal control strategies or aseismic protection [J]. J. Engineering Mechanics. ASCE,1994, 120(1):135-158.
    [142]Abdel-Rohman M., and Leiphoiz H.H.E. Structural control by pole assignment method[J] Journal of Engineering Mechanics Div, ASCE,1978,104:1157-1175.
    [143]Hrovat D., Barak P., and Rabins M. Semi-active versus passive or active tuned mass dampers for structural control [J]. J. Engineering Mechanics, ASCE, 1983,109(3):691-705.
    [144]Kobori T, et al. Seismic Response Controlled Structure whit Active Variable Stiffness System [J]. Earthquake Engineering and Structural Dynamics,1993, 22(11):925-941
    [145]Ribakov Y., Gluck J. Selective controlled based isolation system with magnetorheological dampers [J]. Earthquake Engineering and Structural Dynamics,2002,31 (6):1301-1324.
    [146]Dyke S.J., Spencer Jr B.F., Sain M.K. and Carlson J.D. An experimental study of MR dampers for seismic protection [J]. Smart Materials and Structures, 1998,7(5):693-703.
    [147]Masri S.F., Bekey G.A., and Caughey T.K. Optimal pulse control of flexible structures [J]. Journal of Applied Mechanics, ASME.1981,48:619-626,
    [148]Reinhorn A.M., Manolis G.D., and Wen C.Y. Active control of inelastic structures [J]. Journal of Engineering Mechanics, ASCE.1987,113(3):315-333.
    [149]Yang JN, Long F.X., and Wong D. Optimal control of nonlinear structures [J]. Journal of Applied Mechanics, ASME.1988,55:931-945.
    [150]何玉敖,何亚东.基于Lyapunov稳定性原理和遗传算法的结构半主动控制[J].土木工程学报,2000,33(6):88-93.
    [151]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取[J].建筑结构学报,1998,21(2):130-135.
    [152]陈静,瞿伟廉.基于泛布尔代数的MR阻尼器半主动控制方法[J].武汉理工大学学报,2002,(3):37-39.
    [153]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报,2001,34(5):10-14.
    [154]张提波,唐家祥.主动基础隔震结构随机最优控制系统和电流变体阻尼器设计[J].工程抗震,1999,(4).2-5.
    [155]瞿伟廉,陈波.智能基础隔震结构的剪扭耦联地震反应分析.武汉理工大学学报[J],2003,25(8):39-42.
    [156]瞿伟廉,周强,苏经宇等.多层建筑结构水平剪扭-竖向地震反应的智能复合隔震控制[J].地震工程与工程振动.2003,23(5):17-195.
    [157]杜永峰,李慧,赵国藩.地震作用下结构振动最优控制的一种一般算法[J].大连理工大学学报,2004,44(6):860-865.
    [158]杜永峰.一种严密的结构最优控制极值条件及算法实现[J].工程力学,2006(11):248~250.
    [159]杜永峰.滞变智能隔震结构的序列最优控制算法[J].计算力学学报,2007(1):57-63.
    [160]杜永峰,李慧.地震下结构振动最优控制算法模型的比较和改进[J].世界地震工程,2005,21(3)57-63.
    [161]R.W.克拉夫,J.彭津.结构动力学(王光远等译)[M].科学出版社,1981.
    [162]周坚.高层建筑结构力学[M].北京:机械工业出版社,2006.
    [163]李国强,李杰,苏小卒.建筑抗震设计[M].北京:中国建筑工业出版社,2005.
    [164]BANI-HANI K.,GHOBOUSSI J., Nonlinear structural control using neural networks [J], Eng. Mech.,1998,124(3):319-327.
    [165]GHABOUSSI J., BANI-HANI K., Neural network based nonlinear structural control methods[A],2nd International Workshop of Structural Control,Hong Kong:1996,198-220.
    [166]NIKZAD K., GHABOUSSI J., PAUL S. L. Actuator synamics and delay compensation using neutro controllers [J], Eng. Mech.,1995,121(10):966-975.
    [167]AMNI F., CHEN H. M. Neural networks of for identification and control of structures [A], Proceedings of First Worls Conference of Structure Control, Los Angeles,1994,43-51.
    [168]何玉敖,吴建军.应用自递归神经网络(SRNN)预测结构的响应[J],土木工程学报,1998,2:46-51.
    [169]OU J P, WU B, SOON G T T. Recent advances in research on and application of passive energy dissipation systems[J],Earthquake Engineering and Structural Dynamics,1996,16(3):72-98.
    [170]CHEN G D, CHEN C Q. Behavior of piezoelectric friction dampers under dynamic loading[C].Smart Structures and Materials 2000:Smart System s for Bridges and Highways, Proceedings of SPIE.2000,3998:54-63.
    [171]姜玉宪.控制系统仿真[M].北京:北京航空航天大学出版社,1998.
    [172]王沫然.Simulink4建模与动态仿真[M].北京:电子工业出版社,2002.
    [173]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [174]姚俊,马松辉.Simulink建模与仿真[M].西安电子科技大学出版社,2002.
    [175]范影乐,杨胜天等.MATLAB仿真应用详解[M].北京:人民邮电出版社,2001.
    [176]张治涌等.精通Matlab[M].北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700