用户名: 密码: 验证码:
Helmholtz型无阀自激脉动燃烧器运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉动燃烧作为一种先进的燃烧方式具有燃烧效率高、低污染排放等优点。然而脉动燃烧机理复杂,传统的Helmholtz型机械阀或气动阀脉动燃烧器由于受到其自吸供气方式的限制,其热负荷低、调节范围窄,这也成为该设备大型化的主要瓶颈。本文提出了Helmholtz型无阀自激脉动燃烧器的设计思想,采用连续强制供气方式,直接利用燃烧器的声学结构产生脉动燃烧,具有自主调节平衡压力,运行可靠性强,容积热负荷高,负荷调节范围宽,并可实现大功率化等优点。本文以Helmholtz型无阀自激脉动燃烧器为研究对象,对燃烧器的频率特性、压力特性、传热特性、运行稳定性及调节方法进行了实验研究和理论分析,得到如下研究结果:
     (1)研制了Helmholtz型无阀自激燃气脉动燃烧器实验系统,通过连续供气、供燃料的方式,直接利用燃烧器的Helmholtz型共振声学结构来实现脉动燃烧,可自主调节燃烧器的热负荷。实验运行结果表明本文设计的Helmholtz型无阀自激燃气脉动燃烧器不仅能够产生稳定的脉动燃烧,且脉动的压力幅度明显高于相同条件下的传统Helmholtz型脉动燃烧器。
     (2)对上述Helmholtz型无阀自激脉动燃烧器的频率特性、压力特性、传热特性进行了理论分析和实验研究,得到了燃烧器几何结构、过量空气系数、放热量与频率、压力之间的关系,并通过实验研究单尾管及多尾管条件下的燃烧器运行特性,验证了理论分析的正确性;定量地比较了单尾管及多尾管条件下脉动流与相同雷诺数下稳定流的传热系数,得到脉动流的传热系数是稳定流传热系数的2~5倍;通过实验测量和计算,以及在实验工况条件下对尾管内脉动流动进行数值模拟,阐述了尾管内脉动流动特性,解释了脉动燃烧强化传热的原因。
     (3)建立了Helmholtz型无阀自激脉动燃烧器稳定性数学模型。该模型考虑了反应物的供给方式、燃烧室内的化学反应、燃烧室壁面辐射与对流传热损失以及尾管内流体的密度变化对脉动燃烧稳定运行的影响。在实验条件范围内对实验结果与理论计算结果进行比较,得到了Helmholtz型无阀自激脉动燃烧器能够稳定运行的条件。
     (4)提出了在不改变燃烧器结构的条件下调节脉动燃烧的方法。在脉动燃烧器尾部建立去耦室压力调节系统,实验研究了去耦室压力变化对脉动燃烧器运行特性的影响,并根据声学理论分析了各参数之间的关系,提出了能够增强脉动燃烧强度及增强传热的方法。针对Helmholtz型无阀自激脉动燃烧器运行过程中可能出现的频率跳变现象进行了实验研究,得到了脉动燃烧器的运行频率随热负荷、当量比跳变的规律,并运用瑞利准则分析了产生这一现象的原因,提出了调节脉动燃烧器频率跳变的有效方法。
Pulse combustion as an advanced combustion has many advantages over conventional combustion, such as high combustion efficiency, low pollution emissions. However, pulse combustion mechanism is very complex, the major bottleneck for popularization and application of conventional pulse combustors of the Helmholtz-type with mechanical or aerodynamic valves is the self-priming mode of gas supply, which results in low power operation and low load regulation. In this paper, the idea of a valveless self-excited pulse combustor of the Helmholtz-type, using continuously forced air and fuel supply, which makes use of the combustion chamber acoustic structure directly, was presented. The advantages of this pulse combustor are self-adjusted for the equilibrium pressure, operation reliability, high volumetric heat load, wide range of heat load regulation which may realize in large scale pulse combustors. The main objective of the paper is to experimentally and theoretically study the operational characteristics of the valveless self-excited pulse combustor of the Helmholtz-type, such as frequency, pressure, heat transfer, operation stabilization and adjusting methods. The main results are as follows:
     (1) The experimental system of a valveless self-excited pulse combustor of the Helmholtz-type which can produce pulse combustion with continuously air and fuel supply and directly making use of the Helmholtz resonant acoustic structure of the combustor was developed. Self-adjusted for the heat load of the combustor can be achieved by this method of air and fuel supply. Experimental results show that the pulse combustor designed in this paper can produce stable pulse combustion, and the pressure amplitude of pulse combustion is higher than that of conventional pulse combustor at the same conditions.
     (2) The operational characteristics of the valveless self-excited pulse combustor of the Helmholtz-type, such as frequency, pressure and heat transfer were theoretically and experimentally investigated. The relations of the structure of the combustor, excess air coefficient, heat release with pressure and frequency were obtained. The validity of the theoretical analysis was confirmed by experimental investigation on the operational characteristics of the pulse combustor with single tailpipe and multiple tailpipes. The heat transfer coefficient of pulsating flow is about 2-5 times of that of stable flow according to the quantitative comparison of pulsating flow and stable flow in single tailpipe and multiple tailpipes at the same Re number. The pulsating flow characteristics in tailpipe were described and the reason of the enhancement in heat transfer was explained by the simulation results of pulsating flow in tailpipe based on the experimental working condition.
     (3) A mathematical model for the stability of the valveless self-excited pulse combustor of the Helmholtz-type was established. The model considered the influences of the mode of reactants supply, the chemical reaction in the combustion chamber, radiation and convection heat loss of the combustion chamber wall, as well as fluid density changes in the tailpipe on stable operation of pulse combustion. The calculation results of the model within the range of experimental condition were compared with the experimental data and the conditions for stable operation of the valveless self-excited pulse combustor of the Helmholtz-type were obtained
     (4) Adjusting methods for pulse combustion without changing the structure of the combustor were presented. A decoupling chamber pressure adjusting system was set up at the end of the self-excited pulse combustor tailpipe. The effects of the decoupling chamber pressure variation on the operational characteristics of the pulse combustor were experimental studied. The regulations between each parameter were analyzed by acoustic theory. The method for enhancing heat transfer of the pulse combustor was proposed. Frequency hopping phenomena that may occur during the operation in the self-excited pulse combustor was experimentally studied. The regulation of operating frequency with power and equivalence ratio was measured; the mechanism of the phenomenon was explained by Rayleigh criteria. The effective methods for adjusting the pulse frequency hopping were presented.
引文
1秦朝葵,吴念劬,章成骏.燃气节能技术.同济大学出版社,1998:28~40
    2程显辰.脉动燃烧.中国铁道出版社,1994:20~24
    3 J. P. Moeck, M. Oevermann, R. Klein, C. O. Paschereit, H. Schmidt. A Two-Way Coupling for Modeling Thermoacoustic Instabilities in a Flat Flame Rijke Tube. Proceedings of the Combustion Institute. 2009, 32(1):1199~1207
    4邵东伟,王俊发,刘远军,姜东华.脉动燃烧技术的研究及应用现状.现代化农业. 2009, (7):38~40
    5沙风生,孟军政,李佳新.燃气型脉动燃烧器.油气田地面工程. 2009,28(8):92~93
    6 A. Kilicarslan, A. Arisoy. Acoustic Analysis of a Liquefied Petroleum Gas-Fired Pulse Combustor. Applied Acoustics. 2008, 69(9):770~777
    7程良梅. Rijke管型自激式脉动流化床燃烧、脱硫和干燥特性实验研究.浙江大学硕士论文. 2007:10~20
    8谢丽芳.脉动流化干燥过程研究.浙江工业大学硕士论文. 2007:5~10
    9 W. Liewkongsataporn. Characteristics of Pulsating Flows in a Pulse Combustor. Georgia Institute of Technology, Master, 2006:1~15
    10郑海啸. Rijke管型自激式脉动流化床流化、脉动和传热特性实验研究.浙江大学硕士论文. 2006:6~14
    11 T. Kudra. Pulse-Combustion Drying: Status and Potentials. Drying Technology. 2008, 26(12):1409~1420
    12王斌.燃气脉动燃烧过程NOx生成规律的研究.中国石油大学硕士论文. 2008:2~10
    13 A. A. Putnam, F. E. Belles, J. A. C. Kentfield. Pulse Combustion. Progress in Energy and Combustion Science. 1986, 12(1):43~79
    14徐璋,钟英杰,任建莉,张雪梅.受控脉动燃烧技术的研究及应用.能源工程. 2007, (6):92~93
    15李华,张雪梅,邓凯,钟英杰.自激励脉动燃烧式锅炉设计方法.热能动力工程. 2007, 22(5):525~528
    16季俊杰,罗永浩,胡元.燃烧振荡的驱动机理.燃气轮机技术. 2006,(3):1463~1468
    17 J. W. S. Rayleigh. Theory of Sound. Dover, 1945:153~179
    18 A. W. Mazlan, U. M. Haffis, M. S. Mohsin. Impulse Measurement of Pulse Combustion Tube Using Accelerometer. Proceedings of the Ninth Asia-PacificInternational Symposium on Combustion and Energy Utilization. 2008: 211~216
    19 P. K. Barr, J. O. Keller, T. T. Bramlette, C. K. Westbrook, J. E. Dec. Pulse Combustor Modeling Demonstration of the Importance of Characteristic Times. Combustion and Flame. 1990, 82(3-4):252~269
    20 Y. Neumeier, B. T. Zinn, J. I. Jagoda. Frequency-Domain Analysis of the Performance of a Valved Helmholtz Pulse Combustor. Combustion Science and Technology. 1993, 94(1-6):295~316
    21 G. A. Richards, G. J. Morris, D. W. Shaw, S. A. Keeley, M. J. Welter. Thermal Pulse Combustion. Combustion Science and Technology. 1993, 94(1-6):57~85
    22 J. A. Carvalho, M. Q. Mcquay, P. R. Gotac. The Interaction of Liquid Reacting Droplets with the Pulsating Flow in a Rijke-Tube Combustor. Combustion and Flame. 1997, 108(1-2):87~103
    23 C. Strumillo, I. Zbicinski, I. Smucerowicz, C. Crowe. An Analysis of a Pulse Combustion Drying System. Chemical Engineering and Processing. 1999, 38(4-6):593~600
    24 P. S. Kuts, P. V. Akulich, N. N. Grinchik, C. Strumillo, I. Zbicinski, E. F. Nogotov. Modeling of Gas Dynamics in a Pulse Combustion Chamber to Predict Initial Drying Process Parameters. Noordwijkerhout, Netherlands, 2000. Elsevier Science Sa, 200025~31
    25 T. Schuller, D. Durox, S. Candel. Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized On Annular Burners. Combustion and Flame. 2003, 135(4):525~537
    26 J. P. Tamagno, S. A. Elaskar, G. A. Ríos. Numerical Simulation of Time-Dependent Reacting Flows in Pulse Facilities. Applied Numerical Mathematics. 2003, 47:515~530
    27 S. Thyageswaran. Numerical Modeling of Pulse Combustor Tail Pipe Heat Transfer. International Journal of Heat and Mass Transfer. 2004, 47(12-13): 2637~2651
    28犬飼哲,高橋貢,菱田誠,田中学.脈動流による熱輸送特性.日本機械学会論文集(B編). 2005, 71(710):2515~2522
    29 V. Akkerman, V. Bychkov, A. Petchenko, L. Eriksson. Flame Oscillations in Tubes with Nonslip at the Walls. Combustion and Flame. 2006, 145(4): 675~687
    30 W. Zhonghua, A. S. Mujumdar. Pulse Combustion Characteristics of Various Gaseous Fuels. Energy & Fuels. 2008, 22(2):915~924
    31 S. Datta, S. Mondal, A. Mukhopadhyay, D. Sanyal, S. Sen. An Investigation ofNonlinear Dynamics of a Thermal Pulse Combustor. Combustion Theory and Modelling. 2009, 13(1):17~38
    32 A. Mukhopadhyay, S. Datta, D. Sanyal. Effects of Tailpipe Friction On the Nonlinear Dynamics of a Thermal Pulse Combustor. Journal of Engineering for Gas Turbines and Power. 2008, 130(1):11507~11509
    33 F. Bloom, T. Patterson. The Effect of Tailpipe Friction On Pressure and Velocity Oscillations in a Nonlinear, Lumped Parameter, Pulse Combustor Model. Nonlinear Analysis-Real World Applications. 2009, 10(5):3002~3017
    34 F. Bloom, F. Ahrens, T. Patterson. The Nonlinear Dynamical System Generated by the Akt Pulse Combustor Model. Nonlinear Analysis-Theory Methods & Applications. 2005, 63(5-7):891~901
    35 K. Saito, K. Eguchi, M. Gomi, T. Saito. Fundamental Operating Mechanism for a Twin Valveless Pulse Combustor. 1993, 94(1-6):11~24
    36 I. Hongo, K. Saito. Development of Small Twin-Valveless Pulse Combustors - Effect of Injection System. Combustion Science and Technology. 1993, 94(1-6): 43~55
    37 Y. M. Tang, G. Waldherr, J. I. Jagoda, B. T. Zinn. Heat Release Timing in a Nonpremixed Helmholtz Pulse Combustor. Combustion and Flame. 1995, 100(1-2):251~261
    38石野洋二郎,鈴木学,阿部友昭,大岩紀生,山口譽起.管内脈動流の流動および伝熱特性.日本機械学会論文集(B編). 1996, 62(597):1928~1936
    39 R. K. Dubey, D. L. Black, M. Q. Mcquay, J. A. Carvalho. The Effect of Acoustics On an Ethanol Spray Flame in a Propane-Fired Pulse Combustor. Combustion and Flame. 1997, 110(1-2):25~38
    40 P. A. Erickson, M. Q. Mcquay, R. K. Dubey, S. D. Sommerfeldt. An Active Control Mechanism to Enhance and Parametrically Study a Multi-Fuel, Rijke-Type, Pulse Combustor. Noise Control Engineering Journal. 1997, 45(4): 147~156
    41 M. Q. Mcquay, R. K. Dubey, J. A. Carvalho. The Effect of Acoustic Mode On Time-Resolved Temperature Measurements in a Rijke-Tube Pulse Combustor. Fuel. 2000, 79(13):1645~1655
    42 A. Scotti, U. Piomelli. Numerical Simulation of Pulsating Turbulent Channel Flow. Physics of Fluids. 2001, 13(5):1367~1384
    43 A. Scotti, U. Piomelli. Turbulence Models in Pulsating Flows. Aiaa Journal. 2002, 40(3):537~544
    44 J. R. Dawson, V. M. Rodriguez-Martinez, A. J. Beale, T. O'Doherty. Pressure-Heat Release Measurements During Start-Up Conditions in a Pulse Combustor.Proceedings of the Combustion Institute. 2005, 30:1815~1822
    45望月貞成,村田章,斎藤博史.リブ付き管内往復振動流による管軸方向熱輸送機構.日本機械学会論文集(B編). 2007, 73(725):276~282
    46 T. Geng, F. Zheng, A. P. Kiker, A. Kuznetsov, W. L. Roberts. Experimental and Numerical Investigation of an 8-Cm Valveless Pulsejet. Experimental Thermal and Fluid Science. 2007, 31(7):641~647
    47 T. Geng, M. A. Schoen, A. V. Kuznetsov, W. L. Roberts. Combined Numerical and Experimental Investigation of a 15-Cm Valveless Pulsejet. Flow Turbulence and Combustion. 2007, 78(1):17~33
    48 J. O. Keller, T. T. Bramlette, J. E. Dec, C. K. Westbrook. Pulse Combustion: The Importance of Characteristic Times. Combustion and Flame. 1989, 75(1): 33~44
    49 J. O. Keller, T. T. Bramlette, C. K. Westbrook, J. E. Dec. Pulse Combustion: The Quantification of Characteristic Times. Combustion and Flame. 1990, 79(2):151~161
    50 C. R. Stewart, P. M. Lemieux, B. T. Zinn. Application of Pulse Combustion to Solid and Hazardous-Waste Incineration. Combustion Science and Technology. 1993, 94(1-6):427~446
    51 O. Charon, D. Jouvaud, B. Genis. Pulsated O2/Fuel Flame as a New Technique for Low Nox Emission. Combust Science and Technology. 1993, 93(1-6): 211~222
    52梁泳準,赤松史光,香月正司.自励振動燃焼の特性と混合気の強制脈動供給を利用した燃焼制御.日本機械学会論文集B編. 2004, 70(694): 1563~1570
    53 S. R. Choi, K. W. Nam, S. K. Jeong. Investigation On the Pressure Drop Characteristics of Cryocooler Regenerators Under Oscillating Flow and Pulsating Pressure Conditions. Cryogenics. 2004, 44(3):203~210
    54 A. Kilicarslan. Frequency Evaluation of a Gas-Fired Pulse Combustor. International Journal of Energy Research. 2005, 29(5):439~454
    55章成骏,王国璟.脉冲燃烧热水器的热负荷、过剩空气系数和空气阀间距的最优化关系.城市燃气. 1994, (12):23~28
    56秦朝葵.脉冲燃烧的机理和稳定性研究.同济大学博士论文. 1994:58~78
    57秦朝葵,张同,吴念劬,姜正侯.脉冲燃烧控制和稳定性的研究.煤气与热力. 1995, 15(6):28~32
    58秦朝葵,姜正侯.脉冲燃烧的稳定机理.同济大学学报(自然科学版). 1995, 23(6):615~620
    59于国峰,张敏华,姜正侯.常压热水锅炉脉冲燃烧空气瓣阀的设计.煤气与热力. 1994, 14(5):27~28
    60于国峰,章成骏.脉冲燃烧着火过程分析.煤气与热力. 1996, 16(1):28~32
    61张同,潘利民,丁晓敏.人工煤气脉冲燃烧器结构特性的实验研究.煤气与热力. 1997, 17(1):34~36
    62周伟国,秦朝葵.燃气脉冲燃烧器低NOx生成的机理.煤气与热力. 1997, 17(4):27~28
    63程显辰.脉动燃烧器的设计与研究.北京航空航天大学学报. 1998, 24(2):241~244
    64钟英杰,陈福连,吴心平.里克-ZT型脉动燃烧器频率特性研究.燃烧科学与技术. 1998, 4(4):1114~1117
    65钟英杰,邓龙强,涂建华,严红.里克型脉动燃烧技术工程化应用实验研究.热能动力工程. 1998, 13(6):603~605
    66钟英杰,陈福连,吴心平.热声转换和脉动燃烧技术研究现状及其应用.浙江工业大学学报. 1998, 26(1):34~39
    67钟英杰,陈福连,史祖龄,严红,王勤勇.方形里克和里克-ZT型脉动燃烧器研究.热能动力工程. 1998, 13(5):334~335
    68钟英杰,陈福连.改进型里克脉动燃烧器频率的矩阵估算法.浙江工业大学学报. 1997, 25(4):293~297
    69臧述升.空气-旋转阀脉冲燃烧器的性能试验研究.热能动力工程. 2000, 15(6):652~654
    70臧述升,张志华,孙聿峰,郑洪涛.空气-旋转阀脉冲燃烧器的性能模拟.哈尔滨工程大学学报. 1999, 20(2):15~20
    71李保国.脉动燃烧及脉动燃烧干燥的理论分析与试验研究.中国农业大学博士论文. 1999:47~70
    72严红,陈福连,吴心平.脉动燃烧器内流场的数值模拟.燃烧科学与技术. 2001, 7(2):603~605
    73杨卫卫,何雅玲,徐超,陶文铨.平直通道中层流脉动流动的数值模拟.西安交通大学学报. 2004, 38(9):835~841
    74何雅玲,杨卫卫,赵春凤,陶文铨.脉动流动强化换热的数值研究.工程热物理学报. 2005, 26(3):495~497
    75杨卫卫,何雅玲,陶文铨,赵春凤.凹槽通道中脉动流动强化传质的数值研究.西安交通大学学报. 2004, 38(11):1119~1121
    76杨立军,王永涛,廖圣洁.热声耦合脉动燃烧油田加热炉的研究设计.石油机械. 2006, 34(8):43~45
    77周宗宝,景深,李国放,杨立军,程显辰,卢保春.脉动燃烧技术在油田加热炉上的应用研究.油气田地面工程. 2003, 22(1):61~62
    78 A. Kushari, L. J. Rosen, J. I. Jagoda, B. T. Zinn. The Effect of Heat Content and Composition of Fuel On Pulse Combustor Performance. Twenty-Sixth Symposium (International) on Combustion. 1996, 1-2:3363~3368
    79秦朝葵,隋元春,张同,姜正候.脉冲燃烧的数学模型.煤气与热力. 1993, 13(04):27~28
    80李保国,曹崇文,刘相东.脉动燃烧器稳定运行的理论分析.中国农业大学学报. 1998,(S3):158~162
    81党锡淇,陈守五.活塞式压缩机的气流脉动与管路振动.西安交通大学出版社, 1984:57~80
    82 F. W. Ahrens, C. Kim, S. Tam. An Analysis of the Pulse Combustion Burner. ASHRAE Transactions. 1978, 84(4):488~507
    83 S. He, J. D. Jackson. An Experimental Study of Pulsating Turbulent Flow in a Pipe. European Journal of Mechanics B-Fluids. 2009, 28(2):309~320
    84 A. Olczyk. Problems of Unsteady Temperature Measurements in a Pulsating Flow of Gas. Measurement Science & Technology. 2008, 19(5):1~11
    85 E. A. M. Elshafei, M. S. Mohamed, H. Mansour, M. Sakr. Experimental Study of Heat Transfer in Pulsating Turbulent Flow in a Pipe. International Journal of Heat and Fluid Flow. 2008, 29(4):1029~1038
    86 R. Tuzi, P. Blondeaux. Intermittent Turbulence in a Pulsating Pipe Flow. Journal of Fluid Mechanics. 2008, 599:51~79
    87 N. I. Mikheev, I. A. Davletshin, R. E. Faskhutdinov, O. A. Dushina. Separation Region Downstream of an Orifice in a Pulsating Flow. Heat Transfer Research. 2008, 39(2):175~182
    88 V. I. Hanby. Simulated Combustion and Heat-Transfer in Gas-Fired and Oil-Fired Commercial Boilers. Journal of the Institute of Energy. 1998, 71(487): 64~70
    89 B. M. Galitseyskiy, Y. A. Ryzhov. Heat Transfer in Turbulent Gas Flows in the Case of High-Frequency Pressure Fluctuations. Heat Transfer - Soviet Research. 1977, 9(4):178~183
    90 J. O. Keller, P. A. Eibeck, T. T. Bramlette, P. K. Barr. Pulse Combustion - Tailpipe Exit Jet Characteristics. Combustion Science and Technology. 1993, 94(1-6):167~192
    91 P. A. Elbeck, J. O. Keller, T. T. Bramlette, D. J. Sailor. Pulse Combustion - Impinging Jet Heat-Transfer Enhancement. Combustion Science andTechnology. 1993, 94(1-6):147~165
    92 J. E. Dec, J. O. Keller, V. S. Arpaci. Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe. International Journal of Heat and Mass Transfer. 1992, 35(9):2311~2325
    93 J. E. Dec, J. O. Keller, I. Hongo. Time-Resolved Velocities and Turbulence in the Oscillating Flow of a Pulse Combustor Tail Pipe. Combustion and Flame. 1991, 83(3-4):271~292
    94 J. E. Dec, J. O. Keller. Pulse Combustor Tail-Pipe Heat-Transfer Dependence On Frequency, Amplitude, and Mean Flow Rate. Combustion and Flame. 1989, 77(3-4):359~374
    95 D. O. Barnett, R. I. Vachon. An Analysis of Convective Heat Transfer for Pulsating Flow in a Tube. Proceedings of the Fourth International Conference, Paris-Versailles, 1970:1~11
    96 J. H. Lee, B. Dhar, W. Soedel. A Mathematical Model of Low Amplitude Pulse Combustion Systems Using a Helmholtz Resonator-Type Approach. Journal of Sound and Vibration. 1985, 98(3):379~401
    97 B. G. Li, B. Q. Deng, Z. Z. Hua, C. W. Cao, X. D. Liu. Study On Working Performance of Pulse Combustor. Energy Conversion and Application. 2001, 1-2:108~111
    98 E. Lundgren, U. Marksten, S. I. Moller. The Enhancement of Heat Transfer in the Tail Pipe of a Pulse Combustor. Twenty-Seventh Symposium (International) on Combustion. 1998, 1-2:3215~3220
    99 S. Marsano, P. J. Bowen, T. O'Doherty. Cyclic Modulation Characteristics of Pulse Combustors. A. R. D. F. Burgess. Boulder, Co, 1998. Combustion Institute, 1998:3155~3162
    100 P. K. Barr, J. O. Keller. Premixed Combustion in a Periodic-Flow Field .2. The Importance of Flame Extinction by Fluid Dynamic Strain. Combustion and Flame. 1994, 99(1):43~52
    101 S. Parneix, P. A. Durbin, M. Behnia. Computation of 3-D Turbulent Boundary Layers Using the V2F Model. Flow Turbulence and Combustion. 1998, 60(1): 19~46
    102 J. O. Keller, P. A. Eibeck, T. T. Bramlette, P. K. Barr. Pulse Combustion - Tailpipe Exit Jet Characteristics. Combustion Science and Technology. 1993, 94(1-6):167~192
    103 J. O. Keller, P. K. Barr, R. S. Gemmen. Premixed Combustion in a Periodic-Flow Field .1. Experimental Investigation. Combustion and Flame. 1994, 99(1): 29~42
    104路慧霞,马晓建,赵凌.脉动流动强化传热的研究进展.节能技术. 2008,26(2):168~171
    105谢丽芳,张长勇,程榕,郑燕萍.脉动流化干燥过程的实验研究.干燥技术与设备. 2007, 5(1):2586~2590
    106 S. Liu, J. T. Li, X. Y. Dong, H. Z. Chen. Experimental Study of Flow Patterns and Improved Configurations for Pulsating Heat Pipes. Journal of Thermal Science. 2007, 16(1):56~62
    107 H. Li, Y. J. Zhong, X. M. Zhang, K. Deng, H. H. Lin, L. Y. Cai. Experimental Study of Convective Heat Transfer in Pulsating Air Flow Inside Circular Pipe. Challenges of Power Engineering and Environment. 2007, 1&2:880~885
    108 H. Z. Xian, D. Y. Liu, Y. P. Yang, F. M. Shang, X. Z. Du. Study On the Heat Transfer Enhancement of Oscillating-Flow Heat Pipe by Pulse Heating. Journal of Enhanced Heat Transfer. 2007, 14(1):53~64
    109 R. S. Gemmen, J. O. Keller, V. S. Arpaci. Heat/Mass Transfer From a Cylinder in the Strongly Oscillating Flow of a Pulse Combustor Tailpipe. Combustion Science and Technology. 1993, 94(1-6):103~130
    110 V. S. Arpaci, J. E. Dec, J. O. Keller. Heat-Transfer in Pulse Combustor Tailpipes. Combustion Science and Technology. 1993, 94(1-6):131~146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700