用户名: 密码: 验证码:
陆相致密砂岩储层参数研究及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川川中地区上三叠统须家河组须二段为典型的陆相碎屑岩沉积,受沉积成岩作用的影响,储层表现为致密低孔、低渗,含水饱和度高;构造十分平缓,裂缝不发育,导致气水分异差,没有统一的气水界面的特点;长期以来,对于类似低孔、渗致密储层参数的研究和评价一直沿用了常规储层的研究手段和方法,这是导致该区从上世纪六十年代以来的油气勘探成功率不高的重要因素。作者在全面参与了川中须家河组不同层段的储层参数研究和评价的基础上,选择具有典型陆相致密低孔渗砂岩储层特征的潼南地区须二段作为研究对象,深化对川中上三叠统陆相致密砂岩储层的认识,总结出适应致密砂岩储层的评价研究方法和研究手段,为类似储层的研究提供借鉴。
     本文在总结前人剖面和岩心观察、镜下资料以及沉积相分析研究的基础上,以大量的实验室岩心常规和特殊分析资料,研究并总结出陆相致密砂岩储层参数特征及变化规律、有效储层物性下限的研究和确定方法、储层参数的分布规律,指出了潼南地区须二段有利沉积相带和勘探区块。
     潼南地区须家河组为一套内陆河湖交替的陆源碎屑沉积,须二段主要为三角洲前缘沉积体系,水下分流河道砂和河口坝微相是最利于储层发育的沉积微相;须二段为低孔和超低孔、渗致密储层;储集空间主要为残余粒间孔、次生溶蚀孔及杂基、粘土矿物晶间微孔;根据储层岩性、物性、孔隙结构、薄片以及产能资料将须二段划分为易产储层(Ⅰ、Ⅱ类)、措施后可获得工业产能的第Ⅲ类储层和第Ⅳ类非储层。
     采用气藏岩心在全模拟条件下首次测定了潼南地区须二段致密砂岩气藏气水两相系统在极限生产压差下的气相渗透率、根据气相渗透率和气水两相对渗透率曲线确定该气藏产工业气的水饱和度上限为55%。
     应用气水毛管压力、相渗透率、水膜厚度与压汞资料相结合的方法,综合研究了潼南须二段气藏水饱和度随物性的变化规律和相应的数学模型;根据产工业气的水饱和度上限确定须二段孔隙度下限为6%,渗透率下限为0.100md;产能模拟实验表明,须二段孔隙度大于6%、渗透率大于0.07md的储层厚度15米,生产压差为5MPa时,单井可达到或超过产工业产气标准,测试证实其下限值是合理的;储层主要为长石岩屑砂岩、岩屑砂岩为主,储层基质具有低孔、低渗、高含水饱和度的特征。
     在测井曲线校正、岩性识别的基础上,建立了测井储层解释模型并对测井资料进行了储层测井解释。按储层物性下限划分出储层和有效储层,对有效储层分布进行了研究。储层评价预测结果表明:须二段储层发育,纵、横向上变化较大,研究区主要为Ⅱ-Ⅲ类储层。有效储层主要发育在须二1中上部和须二2中下部;最有利的沉积相带是研究区南部-西南部的水下分流河道主河道区。
     潼南须二段为致密低孔、低渗岩性气藏;构造平缓,局部构造隆起幅度低,气水分异很差,气藏普遍含水。钻试数据表明,构造相对高部位则更有利于油气的富集成藏;研究认为高储集系数区与裂缝相对发育叠合区的潼5井-潼南113井-潼南109井区、潼3-潼南110井区为油气富集有利区,也是须二段有利勘探区。
The T3X2 (the second member of Xujiahe Formation of Upper Triassicis) in central Sichuan area is typical terrestrial clastic deposits, with low porosity and permeability and high water saturation controlled by sedimentary diagenesis, characterized by the quite gentle structure and undeveloped fractures which lead to poor gas-water differentiation and no uniform gas/water contact. However, the study methods for conventional reservoir have been used for evaluation of similar reservoir parameters for a long time, which is the major factor that leads to lower exploration successful rate since 1960’s. Based on the full participation into study of different formation reservoir parameters of Xujiahe Formation in central Sichuan, the T3X2 of Tongnan is selected with the typical features of tight, low porosity and permeability. With much deeper understanding, methods for evaluation and related means are summarized to provide reference for the similar reservoirs.
     Based on the previous sections, core observation, microscopic identification and sedime- ntary facies analysis, this paper studies and summarizes the tight sandstone reservoir parame- ter characteristics, variations, and determining method for petrophysical property cutoffs by using a large amount of the conventional and special core analysis data, then points out the favorable sedimentary facies and exploration areas of the Second Member of the Xujiahe Formation in Tongnan.
     The Xujiahe Formation in Tongnan area is a set of inland fluviolacustrine alternative terrigenous clastic deposit, and the 2nd member of Xujiahe Formation mainly is delta front sedmentary system, among which the submerged distributary channels and river mouth bars are considered as the most favorable facies belts for reservoir distribution and development. Furthermore T3X2 is the tight reservoir with low and extra-low porosity and permeability, which mainly developed residual intergranular pore, secondary dissolved pore, matrix and intercrystalline micropore of clay mineral. According to reservoir lithology, physical properti- es, pore structure, casting thin sections as well as productivity data, T3X2 can be divided into 4 classes: the first reservoir and the second are easy to produce, the third has the industrial productivity after stimulation treatments, and the fourth is non-reservoir.
     Using the gas reservoir cores of T3X2 tight sandstone in Tongnan area, gas permeabilities of gas/water bi-phase system at permitted limit production pressure difference are tested under whole simulation conditions firstly. According to the method of the gas permeability under permitted limit production pressure difference together with gas/water bi-phase relative permeability curve, upper limit of water saturation reaching industrial productivity is 55%, which is also applied to the reserves caculation.
     Using the data of gas/water capillary pressure, relative permeability, and water film thickness combined with mercury injection data to study the water saturation variation with physical properties and related mathematical model, the lower limit values of porosity and permeability reaching industrial productivity is 6% and 0.1md respectively. The productivity simulation experiment indicates that the reservoir of T3X2 is 15m thickness with the porosity over 6% and permeability over 0.07md, and the production of single well could reach or exceed the commercial production standard under those parameters mentioned above. These lower limits are also proved to be reasonable by tests. On the other hand, the sandstones mainly consist of feldspathic litharenite and litharenite, and reservoir matrix display such characteristics as low porosity and permeability, and high water saturation.
     Based on the well logs correction and lithologic identification, the log interpretation model is set up, and log data is explained by using it. According to the lower limits of physi- cal properties, reservoir could be classified into effective and non-effective. The results of reservoir evaluation and prediction show that T3X2 is developed with bigger changes from both the vertical and horizontal. The studied area is the second reservoir and the third mostly. Effective reservoir is mainly distributed in the upper middle of T3X21 and lower middle of T3X22, and the most favorable sedimentary facies is subaqueous distributary channel and main river channel located in south-southwest of the studied area.
     The Second Member of the Xujiahe Formation in Tongnan is lithologic gas reservoir characterized by low porosity, low permeability and compacted sandstone, where the struct- ure is gentle and regional low-relief, water and gas could not be easily detached, and water- -bearing reservoir is general. Drilling parameters indicate that the relatively higher part of structure is more favorable to hydrocarbon enrichment and accumulation. The research also suggests that wellblock Tong5-Tongnan113-Tongnan109 and Tong3-Tongnan110 located in high reservoir capacity and fracture-developed superimposed zones are the favorable belts for oil and gas accumulation and exploration.
引文
[1]李世伦,郭平,孙雷,等.拓展新思路、提高气田开发水平和效益[J].天然气工业, 2006, 26(2): 1-5.
    [2]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发, 2007, 34(2): 239-245.
    [3]李景明,李剑,谢增亚,等.中国天然气资源研究[J].石油勘探与开发, 2005, 32(2), 15-18.
    [4]李俊良,曾庆高,蒋玉强.潼南地区须二气藏描述局控研究报告[D]. 2007. 12.
    [5]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社, 2003: 3-8.
    [6] A.L.Levorsen. Geology of Petroleum, W.H.Freeman and Company, San Francisco, 1956.
    [7]罗蛰潭.非常规天然气资源的类型及技术开发研究.四川碳酸岩研究中心学术年会讲稿, 1979. 12.
    [8]郭正吾,等.四川盆地形成与演化[M].北京:地质出版社, 1996.
    [9]沈守文,彭大钧.试论隐蔽油气藏的分类及勘探思路[J].石油学报, 2000, 21(1): 16-22.
    [10]潘元林.中国隐蔽油气藏[M].北京:地质出版社, 1998.
    [11]胡见义.非构造油气藏[M].北京:石油工业出版社, 1986.
    [12]童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社, 1992.
    [13] Vail P R, Mitchum R M. Seismic stratigraphy and global changes in sea-level, Part 1: overview [A] Payton C E. Seismic stratigraphy application to hydrocarbon exploration[C] 1 America Association of Petroleum Geologist, Memoir. 1977, 26: 51-2121.
    [14]陈荣书.关于“隐蔽圈闭(油气藏)”的早期概念[J].石油与天然气地质, 1984, 5(3): 68-691.
    [15] A.I.Levorsen. Obscure and subtle traps[J]. AAPG, 1966.
    [16] M. T. Halbont,等.寻找隐蔽油气藏[J]. AAPG, 1980.
    [17]欧阳健.石油测井解释与储层描述[M].东营:石油大学出版社, 1994.
    [18] Halbouty.刘民中译.寻找隐蔽油藏[M].北京:石油工业出版社, 1988, 3-18.
    [19] Kevin T. Biddle.蔡希源等译.含油气系统-从源岩到圈闭[M].北京:石油工业出版社, 1999.
    [20]贾承造,赵文智,等.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发, 2004, 31(3): 3-9.
    [21]贾承造,赵文智.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发, 2007, 34(3): 257-272.
    [22]贾承造,池英柳.中国岩性地层油气藏资源潜力与勘探技术[J], Petroleum Science, 2004, 1(2): 1-12.
    [23]康毅力,张浩,游利军等.致密砂岩微观孔隙结构参数对有效应力变化的影响[J].天然气工业, 2007, 27(3): 46-48.
    [24]张金亮,常象春,等.四川盆地上三叠统深盆气藏研究[J].石油学报, 2002, 23(3): 27-33.
    [25]龙学,宋艾玲.川西致密砂岩气藏储层改造技术方法选择及效果分析[J]. 2001, 24(5): 38-40.
    [26]康毅力,罗平亚.储层保护系统工程:实践与认识.钻井液与完井液[J]. 2007, 24(1): 1-7.
    [27]邬云龙.川西须家河组二段气藏气井开采对策[J].天然气工业, 2004, 24(1): 72-74.
    [28]邹才能,贾承造,赵文智,等.松辽盆地南部岩性地层油气藏成藏动力和分布规律[J].石油勘探与开发, 2005, 32(4): 125-130.
    [29]宋岩,赵孟军,柳少波,等.中国三类前陆盆地油气成藏特征[J].石油勘探与开发, 2005, 32(3): 1-6.
    [30]邹才能,陶士振,薛叔浩.“相控论”的内涵及其勘探意义[J].石油勘探与开发, 2005, 32(6): 6-7.
    [31]邓宏文,王红亮,王居峰,等.层序地层构成与层序控砂、控藏的自相似性特征-以三角洲-浊积扇为例[J].石油与天然气地质, 2004, 25(5): 491-495.
    [32]陈冬霞,庞雄奇,翁庆萍,等.岩性油藏三元成因模式及初步应用[J].石油与天然气地质, 2003, 24(3): 228-231.
    [33]李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑-地球科学, 2004, 34(增刊): 143-151.
    [34] Dalrymple R W, Zaitlin B A. High resolution sequence stratigraphy of a complex, incised valley Succession, cobequid bay-salmon River Estuary, Bay of Fundy, Canada[J]. Sediment- ology, 1995, 41(6): 1069-1091.
    [35]李丕龙,陈冬霞,庞雄奇.岩性油气藏成因机理研究现状及展望[J].油气地质与采收率, 2002, 9(5): 1-3.
    [36] Ulicny D, Spicakova L. Response to high frequency sea-level change in a fluvial to estuarine succession: Cenomanian Palaeovalley Fill, Bohemian Cretaceous[A]. Howell J A, Aitken J F. High resolution sequence stratigraphy: innovations and applications[C]. Geological Sociesty Special Publication, 1996, 104: 247-268.
    [37] Brian J W. Permeability structure of a compound valley fill in t he cretaceous fall river formation of south Dakota[J]. AAPG Bulletin, 1998, 82(9): 206-227.
    [38] Juan P M. Sequence stratigraphy in alluvial settings: a flume based model with application to outcrop and seismic data[J]. AAPG Bulletin, 1998, 82(9): 1736-1753.
    [39]王黎.低渗透储层测井解释方法研究[D].中国师勘探开发研究院硕士论文, 2003.
    [40]袁宏状. 2004年国内外测井技术新进展[J].测井技术信息, 2005(12): 41-64.
    [41]欧阳健,曾文冲.测井地层分析与油气评价(上)[M].北京:石油工业出版社, 1987.
    [42]宋子齐,程国建,杨立雷,等.利用测井资料精细评价特低渗透储层的方法[J].石油实验地质, 2006, 28(6): 595-599.
    [43]王觉民.“低渗透”储层的概念及其评价指标[J].西安石油学院学报, 1991, 5(1): 1-6.
    [44]田波,陈方鸿,胡宗全.岩性控制下的测井储集层参数评价与预测-以鄂尔多斯盆地南部上古生界碎屑岩储集层为例[J].石油勘探与开发, 2003, 30(6): 75-77.
    [45] D.Tiab, E.C.Donaldson,著.沈平平、秦积舜,等译.油层物理[M].石油工业出版社, 2007.
    [46] M.M.库沙柯夫,等.束缚水膜厚度[D].第四届国际石油会议报告论文集,第四卷, 1957.
    [47]曹寅.石油地质样品分析测试技术及应用[M].北京:石油工业出版社, 2006.
    [48]戴志坚,李晓东,李秉志.我国油气田开发实验仪器的历史、现状与展望[J].石油仪器, 2006, 20(1): 1-4.
    [49]费怀义,陈心胜.确定气井临界水饱和度的方法[J].天然气工业, 1997, 17(6): 31-33.
    [50]郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发, 2004, 31(5): 140-144.
    [51]黄秉光.实用相对渗透率概念的曲线特征研究[J].天然气工业, 1992, 12(2): 51-57.
    [52]黄大志,向丹.川中充西地区香四段气藏产能研究[J].天然气工业, 2004, 24(9): 33-35.
    [53]康晓东,李相方,程时清.油藏有效厚度统计参数的特征与应用[J].石油钻采工艺, 2004, 26(6): 45-47.
    [54]李洪娟,徐宏.砂砾岩储层有效厚度研究[J].大庆石油地质与开发, 1998, 17(4): 9-10.
    [55]刘成川.应用产能模拟技术确定储层基质孔、渗下限[J].天然气工业, 2005, 25(10): 27-29.
    [56]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社, 1986.
    [57]秦同洛.关于划分储层有效厚度的意见[J].石油勘探与开发, 1988, 15(2): 38-40.
    [58]裘怿楠.油藏描述[M].北京:石油工业出版社, 1999.
    [59]石油天然气储量计算规范(DZ/T0217-2005).中华人民共和国国土资源部, 2005.4.
    [60]宋子齐,程国建,王静,等.特低渗透油层有效厚确定方法研究[J].石油学报, 2006, 27(6):103-106.
    [61]万玲,孙岩,魏国齐.确定储集层物性参数下限的一种新方法及其应用[J].沉积学报, 1999, 17(3): 454-457.
    [62]王寿庆.低渗透油层物性下限研究[J].新疆石油地质, 1991, 12(2): 160-172.
    [63]王允诚,孔金祥,李海平.气藏地质[M].北京:石油工业出版社, 2006.
    [64]王允诚,吕运能,曹伟.气藏精细描述[M].四川科学技术出版社、新疆科技卫生出版社, 2002.
    [65]王允诚.油气储层评价[M].北京:石油工业出版社, 1999.
    [66]魏小薇,谢继容,等.低孔渗砂岩储层基质物性下限确定方法研究[J].天然气工业, 2005, 25(5): 28-31.
    [67]向阳.油气储集层岩石特殊物理研究方法[M].成都:四川科学技术出版社, 1994.
    [68]谢冰,刘兴刚,徐丽媛.公山庙沙一段低孔渗砂岩储层参数研究[J].天然气勘探与开发, 2003, 26(3): 23-29.
    [69]徐守余.油藏描述方法原理[M].北京:石油工业出版社, 2005.
    [70]王成善,李祥辉,主编.沉积盆地分析原理及其应用[M].北京:高教出版社, 2003.
    [71]王成善(主译).地体构造学山脉形成和大陆生长[M].成都:四川科技出版社, 1991.
    [72]陈毓川,张之一,等主编. 90年代地球科学的动向[M].北京:地质出版社, 1997: 65-66.
    [73]李勇,王成善,曾允孚.造山作用与沉积响应[J].矿物岩石, 2000, 20(2): 49-56.
    [74]李祥辉,王成善,陈洪德,田景春.中国南方二叠纪层序地层时空格架及充填特征[J].沉积学报, 1999, 17(4): 522-528.
    [75]王成善,李亚林,李永铁.青藏高原油气资源远景评价问题[J].石油学报, 2006, 27(4): 1-4.
    [76]杨小平.精确计算相对渗透率的方法[J].石油勘探与开发, 1998, 25(6): 63-66.
    [77]杨英珍.低渗透砂岩油藏物性下限研究[J].内江科技, 2006, 27(3): 134.
    [78]曾伟,强平,黄继祥.川东嘉二孔隙层下限及分类与评价[J].矿物岩石, 1997, 17(2): 42-48.
    [79]张大奎,周克明.封闭气与储层下限的实验研究[J].天然气工业, 1990, 10(1): 30-35.
    [80]赵松林.应用孔喉体积-渗透率贡献分布曲线确定流动孔喉半径下限值[J].西南石油学院学报, 1993, 15(3): 36-42.
    [81]赵文智,毕海滨,浅析中国与西方在储量计算中确定有效厚度之差异[J].石油勘与开发, 2005, 32(3): 125-129.
    [82]郑金安,王颖惠,王军.相渗透率资料在油水层含油饱和度下限研究中的应用[J].油气采收率技术, 1999, 6(3): 75-77.
    [83]中国科学院南土壤所.土壤物理性质测定方法[M].北京:科学出版社, 1978.
    [84]周德志,樊军,蒲蓉蓉,等.川东石炭系气藏不同类型岩石孔隙度下限及其对储量的影响[J].钻采工艺, 2005, 28(4): 76-78.
    [85]曾青高.潼南-合川地区须家河组储层特征及分布规律研究[D].中石油川中油气矿研究所, 2007.4.
    [86]李俊良,曾青高,蒋裕强.潼南地区须二气藏描述[D].中石油西川中油气矿研究所, 2007.12.
    [87]杨家静,唐大海,等.川中-川南过渡带上三叠统含油气性研究[D].西南油气田油分公司, 2004.7.
    [88]向丹,黄大志,等.四川合川-潼南-安岳地区须家河组须二段有效储层物性下限研究[D].成都理工大学, 2008.6.
    [89]向阳,向丹,黄大志,等.龙岗地区长兴组与飞仙关组储层物性下限研究[D].成都理工大学, 2007.5.
    [90]向阳,黄大志,向丹,等.川中须家河组气藏岩心产能模拟实验分析研究[D].成都理工大学,2008.9.
    [91]向丹,黄大志,等.四川川中须家河组须二气藏储层岩心特殊分析试验研究[D].成都理工大学, 2008.9.
    [92]向阳,向丹,黄大志,等.四川川中广安气田须四段储层物性下限研究[D].成都理工大学, 2007.6.
    [93]向阳,向丹,黄大志,等.四川川中地区香溪群储层物性下限研究[D].成都理工大学, 2005.12.
    [94]向阳,向丹,黄大志,等.四川川中广安地区上三叠统须家河组须四、须六段有效储层物性下限研究[D].成都理工大学, 2005.10.
    [95] Chernitskiy A V, Kuznetsov V V, Vayerman B P. Grounds for Lower Limits of Porosity and Permeability in Carbonate Reservoirs[J]. Geologiya Nefti i Gaza, 1996, 12: 14-18.
    [96] Chilingar G V, Mannon R W, RiekeⅢH H. Oil and Gas Production from Carbonate Rocks[M]. New York: American Elsevier Publishing Company, 1972.
    [97] Core Laboratonies. Special Core Analysis[M]. 1982.
    [98] Dabbous M K, Rezenik A A. Gas-Water Capillary Pressure in Coal at Various Overburden Pressures[J]. SPE, 1976, 16(5): 262-268.
    [99] Bourbie T, Walls J. Pulse Decay Permeability: Analytical Solution and Experimental Test[J]. Soc Pet Eng J, 1982, 22(5): 719-721.
    [100] Burdine N T, Relative Permeability Calculations from Pore Size Distribution Data[J]. AIME, 1953, 198: 71-78.
    [101] De Glyer. MacNauGhton. Methodology on SEC Reserves Standards and Evaluation Approach for Reporting Proved Reserves and Standardized Measrue of Discounted Future Net Cash Flows for Petrochina Company Limited[C]. DALLAS TEXAS, 2002.
    [102] Dullien F A L, Dhawn G K. Characterzation of Pore Structure by a Combination of Quantitative Photomicrography and Mercury Porosimetry[J]. J. of Colloid and Interface Science, 1974, 47(2): 337.
    [103] Fatt I, Dykstra H. Relative Permeability Strdies[J]. AIME, 1951, 192: 249.
    [104] Gobran B D, Brigham W E, et al. Absolute Permeability as a Function of Confining Pressrue, Pore Pressure and Temperature [C]. SPE Formation Evaluation, 1987: 77-84.
    [105] Gorelov A A, Medvedeva N I. Determination of Limiting Values and Lower Limits of Permeability, Porosity and Alpha (sub sp) [J]. Geologiya Nefti i Gaza, 1975, 2: 24-29.
    [106] Honarpour M, Mahmod S M. Relative-Permeability Measurements an Overview[C]. SPE Technology Series, Jour, Pet. Tech. 1998: 963-966.
    [107] John Wilkinson. Reserve and Resource Definition: dealing with uncertainty[A]. In: Doreand A G, Sinding-Larsen R. Quantification and Prediction of Hydrocarbon Resouces[C]. Norway: Norwegian Petroleum Society(NPF), 1996: 71-76.
    [108] Jones F O, Owens W W. A Laboratory Study of Low-Permeability Gas Sands[J]. JPT, 1980, 32(9): 1631-1640.
    [109] Leverett M C. Capillary Behavoir in Porous Solids[J]. AIME, 1941, 142: 152-169.
    [110] M.И.马克西莫夫,油田开发地质基础[M].北京:石油工业出版社, 1980.
    [111] Mattax C C, Mckinley R M.岩心分析论文集[C].杨普华,倪方天(译).北京:石油工业出版社, 1998.
    [112] Morrow N R, Cather M E, Buckley J S. Effects of Drying on Absolute and Relative Permeabilities of Low-Permeability Gas Sands[A]. SPE21880[C]. Denver, Colorado: Rocky Mountain Regional Meeting and Low-Permeability Reservoirs Symposium, 1991: 15-17.
    [113] Pickell J J, Swanson B F, Hickman W B. Application of the Air-Mercury and Oil-Air Capillary Pressure Data in the Study of Pore Structrue and Fluid Distribution[J]. SPE, 1966, 186: 55-61.
    [114] Rockwood S H, Lair G H, Langford B J. Reservoir Volumetric Parameters Defined by Capillary Pressue Strdies[J]. AIME, 1957, 210: 252-259.
    [115] Society of Petroleum Engineers. Guidelines for the Evaluation of Petroleum Reserves and Resources[A]. America Society of Petrolum Engineers Inc., 2001.
    [116] Wardlaw N C, Tayler R P. Mercury Capillary Pressure Curves and the Interpretation of Pore Structure and Fluid Distribution[J]. Can. Petrol. Geol, 1976, 24(2): 225.
    [117] Warollaw N C, Taylor R P. Mercruy Capillary Pressure Curves and the Inter Pretation of-Pore Stracture and Capilary Behavior in Reservoir Rocks[J]. CPG Bull, 1976, 24(2).
    [118] Zasadnyy R N, Lakhnyuk U M. Lower Limits of Reservoir Properties of the Menilitov Sediments of the Cis-Carpathians[J]. Petroleum Geology, 1978, 11: 478-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700