用户名: 密码: 验证码:
新疆西昆仑造山带内生金属成矿作用及成矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑地区位于青藏高原北部,塔里木盆地南缘,矿产资源丰富,是我国重要的多金属成矿带之一。
     根据西昆仑造山带库地—其曼于特蛇绿岩带、麻扎—苏巴什蛇绿岩带、不同时期侵入岩、火山岩的大地构造环境的判别,论文确立了西昆北洋和西昆中洋两个大洋的存在。西昆北洋位于塔里木地块及西昆中带之间,西昆中洋位于西昆中带和西昆南带之间。西昆北洋的存在时限是中元古代至海西期末。西昆中洋根据苏巴什蛇绿岩的年龄及岩石化学特征,认为其在海西期已经为成熟的大洋,闭合的时间为印支期末。
     根据两个大洋的确立,认为西昆仑造山带经历了内部造山和边缘造山过程,初步探讨了其动力学演化过程:1.古元古代基底形成;2.中元古代地块的裂解;3.加里东、海西期西昆北复合造山带形成;4.印支期西昆中带、西昆南带内部造山阶段;5.燕山、喜山期西昆南带边缘造山阶段。并确定了西昆仑的三条构造带的大地属性:西昆北带为加里东期、海西期复合造山带;西昆中带为基底隆起及加里东、海西、印支花岗岩带;西昆南带为羌塘地块。
     经研究,课题组研究认为西昆仑造山带的主攻矿种是铜、铁、金、铅锌、稀有金属,主攻的矿床类型有热水喷流沉积矿床、中低温热液矿床、矽卡岩型矿床、造山型金矿床等。西昆仑造山带的区域成矿规律可以总结为:时间上,以海西期、印支期为主要成矿时代,海西期主要矿床有阿克塔什块状硫化物铜矿床、萨洛依块状硫化物铜矿床、特格里曼苏生物化学沉积铜矿床等;印支期主要矿床有矽卡岩型班迪尔铜矿床、色尔洪铜铁矿点等;其次是加里东期和元古代,加里东期的主要矿床有热水喷流沉积型切列克其菱铁矿床和黑恰菱铁矿床;元古代为沉积变质型老并铁矿床;而燕山期成矿较弱。空间上,成矿带呈带状分布,可以分为西昆北Cu、Pb、Zn、Au、Fe成矿带、西昆中Cu、Mo、Au、Fe(Co)、W、Sn成矿带、西昆南Fe(Co)、Mn、Au、Sb、Ag、稀有金属成矿带。
     论文在吉林大学地球科学学院地质流体实验室采用Linkam THSM-600型冷热台的进行了大量的流体包裹体测试,确定了各典型矿床(点)成矿流体的均一温度、盐度、密度、压力,并计算了成矿的深度,为西昆仑造山带的研究工作积累了大量的资料。
     热水喷流沉积型菱铁矿床包裹体均一温度为中低温(切列克其191.6-380℃;黑恰168-176℃),成矿流体具有高(中)盐度(切列克其32.93-34.52%(NaCl);黑恰6.72—11.38%(NaCl)),中(低)等密度(切列克其1.09-1.1g/cm~3;黑恰0.93—0.98 g/cm~3)的特点。古海水深度分别为2.19km(切列克其),1.83km(黑恰)。
     西昆仑造山带的造山型金矿化点包裹体均一温度低(帕西木125.1-168.3℃,叶尔羌149-165℃),矿化点流体具有低盐度(帕西木0.87-3.37%(NaCl);叶尔羌1.05-1.22%(NaCl)),低密度(叶尔羌0.92-0.93 g/cm~3;帕西木0.93-0.96 g/cm~3)的特点,成矿深度浅(0.9-1.0km)。
     西昆仑造山带的中低温热液脉型矿床包括卡兰古铅锌矿床和布斯拉津铜钼矿化点的流体包裹体均一温度低(卡兰古160—180℃;布拉斯津148.2—185℃),流体有中低盐度(卡兰古1.39—15.55%(NaCl);布斯拉津6.29-7.30%(NaCl)、低密度(卡兰古0.85—1.03 g/cm~3;布斯拉津0.93-0.97 g/cm~3)的特点,成矿深度浅(1.48km)。西昆仑造山带的矽卡型矿床受印支期花岗闪长岩和中酸性斑岩和石炭系大理岩联合控制。流体包裹体均一温度为200~240℃,矿床的流体盐度从早期至晚期由高变低(0.87~33.04%(NaCl)),流体低密度(0.92~1.0 g/cm~3),成矿深度浅(1.57km)。
     本次研究对三个矿区内的岩体进行了LA-ICP-MS锆石U-Pb年龄的测定,分别确定了色尔洪矿区内花岗闪长岩年龄为240.6±1.4Ma,斯如伊迭尔金铅锌多金属矿化点区内花岗闪长岩年龄12.86±0.88Ma。布斯拉津矿区内细粒花岗岩和闪长岩年龄分别为449±2.3Ma和446±2.1Ma。论文对布斯拉津辉钼矿进行了Re-Os测年,年龄为434.1±4.6Ma—441.4±2.1Ma。
     论文剖析了典型矿床的地质特征,结合本次流体包裹体研究获得的成矿温压等数据,以及部分矿区内测得的岩体及矿石年龄的数据,确定了矿床的不同成因类型。包括热水喷流沉积型矿床—切列克其铁矿床、黑恰铁矿床;矽卡岩型矿床—色尔洪铜铁矿点;生物化学沉积型矿床—特格里曼苏铜矿床;中温热液脉型矿床—卡兰古铅锌矿床、布斯拉津铜钼矿化点;造山型金矿床—叶尔羌金矿点、帕西木金矿化点,并建立了不同类型矿床的成因模式。
     论文对西昆仑造山带全区的15景TM、ETM+遥感图像研究,通过遥感图像的构造解译,划分出三个构造带和造山带各次级线形及环形构造,并运用ENVI及ERDAS等软件对遥感图像提取铁染及羟基等矿化蚀变信息。并分析了构造与找矿、矿化及蚀变信息与找矿之间的关系。
     最后,论文采用遥感矿化、蚀变信息与地质、化探等综合信息,对西昆仑造山带进行了以矿床成因类型为主的成矿远景区的划分,共圈出了13个A级远景区,25个B级远景区,21个C级远景区。矿床成因类型包括热水喷流沉积型矿床、与岩体有关的中低温热液脉型矿床、矽卡岩型矿床,块状硫化物型矿床、沉积变质型矿床等。并指出找矿潜力西昆南带>西昆北带>西昆中带。
Western Kunlun belt, one of most important polymetallic metallogenic belts in China, is located in the north margin of Qinghai-Tibet plateau, south of Tarim basin where there are lots of mineral resources.
     Based on the study on the distributing of the intrusions of different stages and two ophiolite belts which were Kudi-Qimanyute and Mazha-Subashi ophiolite belt, make sure the presence of the two oceans. They are North Ocean of Western Kunlun between Tarim massif and middle of Western Kunlun belt and Middle Ocean of Western Kunlun between middle of Western Kunlun belt and south of Western Kunlun belt. The existence of the North Ocean of Western Kunlun is from Mesoproterozoic to Hercynian. Based on age and chemical characteristics of rocks of Subashi ophiolite, Middle Ocean of Western Kunlun was considered as a matured ocean during the period of Hercynian, closed in the end of Indosinian.
     According to the establishment of the two oceans, it was considered that Western Kunlun orogenic belt has experienced interior and peripheral orogenic stage, and its dynamic evolution is determined:1.the formation of basement in Paleoproterozoic; 2. plate lysis in Mesoproter-ozoic; 3.formation of North of Western Kunlun belt which is Caledonian and Hercynian complex orogenic belt; 4. stage of interior orogen between middle of Western Kunlun belt and south of Western Kunlun during the periods of Indosinian; 5. stage of peripheral orogen south of Western Kunlun belt during the periods of Yanshan and Himalayan. And identified the three western Kunlun tectonic belt: North of Western Kunlun belt is Caledonian and Hercynian composite orogenic belt; Middle of Western Kunlun belt is basement uplift and the granites of Caledonian, Hercynian, Indosinian; South of Western Kunlun belt is Qiangtang block.
     According to the study, we believe that the main minerals of the Western Kunlun orogenic belt are copper, iron, gold, lead, zinc and precious metals,and the main types of deposits are sedimentary exhalative deposits, medium-low temperature hydrothermal deposits, skarn-type deposits,orogenic gold deposits and so on. The regional metallogenic regularity in Western Kunlun orogenic belt can be summarized that the period of Hercynian and Indosinian were the main ore-forming age. Deposits in Hercynian are mainly Aketasshi massive sulphide copper deposits, Saluoyi massive sulfide copper deposit, Tegelimansu biochemical sedimentary copper deposits, etc. The main deposits in Indosinian are Bandier skarn copper deposit and Seerhong skarn copper iron Mineralization spots. Caledonian and Proterozoic are the second important ore-forming periods.The main deposits in Caledonian are Qieliekeqi and Heiqia siderite deposits which are sedimentary exhalative deposits. In Proterozoic formed Laobing Proterozoic sedimentary Metamorphic iron deposit. The mineralization is weak during the period of Yanshanian. Zonal distribution of ore belt can be divided into Cu, Pb, Zn, Au, Fe metallogenic North of Western Kunlun belt, Cu, Mo, Au, Fe (Co), W, Sn metallogenic Middle of Western Kunlun belt, Fe (Co), Mn, Au, Sb, Ag rare metal metallogenic South of Western Kunlun belt.
     During the period of writing the paper a lot of fluid inclusions tests were made, using Linkam THSM-600-type cold-hot desk in the laboratory of geological fluids of the college of the Earth Sciences, Jilin University. We got a lot of results of ore-forming fluids homogenization temperature, salinity, density and pressure, and we calculated the depth of mineralization of the typical deposits. The results accumulated large amounts of data for the Western Kunlun orogenic research.
     Homogenization temperatures of fluid inclusions in the sedimentary exhalative deposits are medium and low(Qieliekeqi 191.6-380℃; Heiqia just 168-176℃). Ore-forming fluid has a high (or moderate) salinity (Qieliekeqi 32.93-34.52% (NaCl); Heiqia just 6.72-11.38% (NaCl)), moderate (or low) density characteristics (Qieliekeqi 1.09-1.1g/cm~3; Heiqia 0.93-0.98 g/cm~3). Ancient water depth was 2.19km (Qieliekeqi), 1.83km (Heiqia).
     Homogenization temperatures of fluid inclusions in Western Kunlun orogenic gold mineralization plots is low(Paximu 125.1-168.3℃, Yeerqiang 149-165℃), mineralization fluid with low salinity (Paximu 0.87-3.37% (NaCl); Yeerqiang 1.05-1.22 % (NaCl)), low density characteristics (Yeerqiang 0.92-0.93 g/cm~3; Paximu 0.93-0.96 g/cm~3), ore-forming depth is shallow (0.9-1.0km).
     Homogenization temperature of fluid inclusions in the medium-low temperature hydrothermal deposits which include Kalangu lead-zinc deposit and Busilajin copper-molybdenum mineralization plots is low (Kalangu 160-180℃; Busilajin 148.2-185℃), with moderate to low salinity (Kalangu 1.39-15.55% (NaCl); Bulasijin 6.29-7.30% (NaCl)), and low density characteristics (Kalangu 0.85-1.03 g/cm~3; Busilajin 0.93-0.97 g/cm~3). Ore forming depth is shallow (1.48km).
     In Western Kunlun orogenic belt, skarn-type deposits are controlled by the Indo-granodiorite and intermediate-acid porphyry and Carboniferous marble. Fluid inclusion homogenization temperature is from 200℃to 240℃. From early to late stage, fluid salinity decreased (0.87 ~ 33.04% (NaCl)); fluid shows low density (0.92 ~ 1.0 g/cm~3), and shallow depth (1.57km).
     According to the study of U-Pb zircon by LA-ICP-MS, the age of three rocks was respectively determined.1.The age of granodiorite in Seerhong deposit is 240.6±1.4Ma;2. The age of granodiorite in Siruyidieer lead-zinc mineralization plots is12.86±0.88Ma;3. The age of fine-grained granite and diorite in Bujinlasi deposit is 449±2.3Ma and 446±2.1Ma. According to the result of molybdenite Re-Os dating, the age of Busilajin Molybdenum deposit is 434.1±4.6Ma-441.4±2.1Ma.
     On the basis of the geological studies above, combining with the results of the study of fluid inclusions, and the age of the intrusions and ore in deposits, different genetic types of deposits were determined. Including sedimentary exhalative deposits– Qieliekeqi iron ore deposits and Heiqia iron deposits; skarn-type deposit Seerhong copper iron mineralization plot, biochemical sedimentary deposits– Tegelimansu copper deposit; the hydrothermal vein type deposits - Kalangu zinc-lead deposit and Busilajin copper-molybdenum mineralization plot; orogenic gold deposits -Yeerqiang and Paximu gold mineralization point. In the end, we established the genetic models of different types of deposits.
     15 TM, ETM + remote sensing images of Western Kunlun orogenic belt were studied in the paper. According to the construction interpretation of remote sensing image, three tectonic belts and the secondary line and ring structures of orogenic belt were divided. By using the software of ENVI and ERDAS to remote sensing image, extraction such as iron mineralization and hydroxyl alteration information are made. And analyses the relationship of structure and exploration, of mineralization-alteration information and exploration.
     In the end, according to the remote sensing mineralization, alteration, geology geochemical and other comprehensive information, we devided Western Kunlun orogenic belt metallogenic perspective by origin type of the deposits, including 13 A leve prospect areas, 25 B level prospect areas and 21 C level prospect areas. Genesis types include sedimentary exhalative deposits, medium-low temperature hydrothermal vein-type deposits and skarn-type deposits which are related to intrusions, massive sulfide deposit, sedimentary-metamorphic deposits, and so on. The results are as followings: South of Western Kunlun is the best potential prospecting region; the second is North of Western Kunlun; the least is Middle of Western Kunlun.
引文
[1] Asael D, Matthews A, Bar-Matthews M, et al. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel) [J]. Chemical Geology,2007, 243(3-4):238-254.
    [2] Baker T, Van Achterberg E, Ryan C G, Lang J R. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 2004, 32(2):117-120.
    [3] Barrett T J, Jarvis I, Jarvis K E. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge[J]. Geology, 1990,18:583-586.
    [4] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem. Geol., 1985(48):43-55.
    [5] Bau M.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,1991,93:219-230.
    [6] Bolhar R, M J. Van Kranendonk, Kamber B S. A trace element study of siderite–jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—Formation from hydrothermal fluids and shallow seawater[J]. Precambrian Research, 2005,137(1-2):93-114.
    [7] Brett P R. Heating experiments on natural bornires: Carnegie Inst. Washington Yearbook,1962,61:159-161.
    [8] Brett P R. Experimental data from the system Cu-Fe-S and their bearing on exsolution textures in ores[J]. Economic Geology; 1964; 59;(7):1241-1269.
    [9] Brookins D G. Aqueous geochemistry of rare earth elements[J]. Reviews in Mineralogy and Geochemistry; 1989; 21(1):201-225.
    [10] Brown A C. A process-based approach to estimating the copper derived from red beds in the sediment-hosted stratiform copperdeposit model[J].Economic Geology, 2009,104: 857 - 868.
    [11] Carr J R, Matanawi K. Correspondence analysis for principal components transformation of multispectral and hyperspectral digital images[J]. PE & RS, 1999,65(8): 909-914.
    [12] Crerar D A, Namson J, Chyi M S,et al. Manganiferous cherts of the Franciscan assemblage; I, General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers[J]. Economic Geology, 1982,77( 3): 519-540.
    [13] Crosta A, Moore J. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil : a prospecting case history in Greenstone belt terrain[A]. In: Proceedings of the 7th ERIM Thematic Conference : Remote sensing for exploration geology[C]. 1989, 1173-1187.
    [14] Damyanov Z, Vassileva M. Authigenic phyllosilicates in the middle Triassic kremikovtsi sedimentary exhalative siderite iron foramation, western Balkan, Bulgaria[J]. Clays and Clay Minerals, 2001, 49(6):559-585.
    [15] Degens E T , Epstein S. Oxygen and Carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments[J]. Geochim. Cosmochim. Acta. 1964,28:23-44.
    [16] Dimova M, Panczer G, Gaft M. Spectroscopic study of barite from the Kremikovtsi deposit (Bulgaria)with implication for its origin[J]. Annales Géologioues De La Péninsule Balkanique, 2006,67:101–108.
    [17] El Desouky H A, Muchez P, Tyler R. The sandstone-hosted stratiform copper mineralization at Mwitapile and its relation to the mineralization at Lufukwe, Lufilian foreland, Democratic Republic of Congo[J]. Ore Geology Reviews,2008, 34(4):561-579.
    [18] Fleet A J . Hydrothermal and hydrogeneous ferromanganes deposits[A]. In : Rona P A , et al. eds. Hydrothermal processes at seafloor spreading centers [C]. New York : Plenum Press, 1983. 537-570.
    [19] Goldfarb R J, Groves D I,Gardoll S.Orogenic gold and geologic time: a global synthesis[J].Ore Geology Reviews, 2001, 18:1-75.
    [20] Groves D, Goldfarb R J, Gebre-Mariam, et al.Orogenic gold deposits: aproposed classfication in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews, 1998, 13:7-27.
    [21] Groves. D. I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita,1993,28(6):366-374.
    [22] Hall D L., Sterner S. M , Bodnar R J.,Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology, 1988,83: 197 - 202.
    [23] Hangari K M, Ahmad S N, Perry E C, et al. Carbon and oxygen isotope ratios in diagenetic siderite and magnetite from Upper Devonian ironstone, Wadi Shatti District, Libya[J]. Economic Geology ,1980,75(4): 538-545.
    [24] Hart C,Qiu Y,Goldfarb R J, et al. Gold deposits of the northern margin of the North China craton:multiple late Paleozoic-Mesozoic mineralizing events[J].Miner Deposita, 2002, 37(3-4):326-351.
    [25] He J, Chéry J. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling[J]. Earth and Planetary Science Letters, 2008, 274:50-58.
    [26] Heinrich C A, Neubauer F. Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province[J].Mineralium Deposita, 2002,(37): 533–540.
    [27] Hunt G R, Salisbury J W. Visibal & Near-infrared Spectra of Rocks and Minerals[J].Modern Geology, 1974, 5(1).
    [28] Hurai V, HarcováE, HuraiováM, et al. Origin of siderite veins in the Western Carpathians I. P–T–X–δ13C–δ18O relations in ore-forming brines of the Rudňany deposits[J]. Ore Geology Reviews, 2002, 21: 67-101.
    [29] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993,219: 177-189.
    [30] Keith M L, Weber J N. Isotopic composition and environmental classification of selected limestones and fossils[J]. Geochim. Cosmochim. Acta.1964,28:1787-1816.
    [31] Klinkhammer G P, et al . Rare earth elements in seawater near hydrothermal vents [J]. Nature, 1983, 305: 185-188.
    [32] Kolb J, Hellmann A, Rogers A, et al. The Role of a Transcrustal Shear Zone in Orogenic Gold Mineralization at the Ajjanahalli Mine, Dharwar Craton, South India[J].Economic Geology, 2004,99(4) :743-759.
    [33] Kudrin A V. The solubility of tugarinovite MoO2 in aqueous solutions at elevated temperatures [J].Geochemistry Internat., 1986, 23:126-138.
    [34] Kusky T M, Ramdadan T M. Structural controls on Neoprotero zoic mineralization in the South Eastern Desert, Egypt:an integrated field, Landsat TM, and SIR-C/X SAR approach[J].Journal of African Earth Sciences, 2002 , (35):107-121.
    [35] Love D A,Clark A H,Glover J K. The lithologic, stratigraphic, and structural setting of the giant Antamina copper-zinc skarn deposit, Ancash, Peru[J].Econ.Geol., .2004.99:887-916.
    [36] Luo Zhaohua, Zhang Wenhui, Deng Jinfu, et al. Implication of the deep-seated xenoliths in Cenozoic basalt in Kangxiwa. W. Kunlun, China [J]. Earth Science Frontiers, 2000, 7(Supp): 76-78.
    [37] Maheo G, Guillot S, Blichert-Toft J, et al. A slab break off model for the Neogene thermal evolution of S. Karakorum and S. Tibet[J]. Earth and Planet Science Letters, 2002, 195:45-58.
    [38] Maya Dimova, Gerard Panczer, Michael Gaft. Spectroscopic study of barite from the Kremikovtsi deposit(Bulgaria)with implication for its origin[J]. Annales Géologioues De La Péninsule Balkanique, 2006,67:101–108.
    [39] Megaw P K M, Ruiz J, Titley S R. High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of Northern Mexico[J] .Econ Geol., 1988.83:1856-1885.
    [40] Miller L D,Goldfarb R J,Nie F, et al. North China gold-a product of multiple orogens[J].Soc Econ Geol Newslett, 1998. 33:1-12.
    [41] Murphy J B, Nance R D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts[J]. Geology, 1991, 19: 469-472.
    [42] Palinka? S S , Spangenberg J E, Palinka? L A. Organic and inorganic geochemistry of Ljubija siderite deposits, NW Bosnia and Herzegovina[J].Miner Deposita, 2009, 44:893–913.
    [43] Pan Yusheng. Geological Evolution of the Karakorum and Kunlun Mountains [M]. Beijing: Seismological Press, China. 1996,51-91.
    [44] Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 1984, 25:956-983.
    [45] Perisov A V. Remote Sensing from Research to Operation Proceedings of the 18th Annual Conference of RS Society[J]. University of Dundee, 1992, 129-146.
    [46] Phillips G N, Powell R. Formation of gold deposits: Review and evaluation of the continuum model: [J].Earth-Science Reviews, 2009,94:1–21.
    [47] Rokos D, Argialas D, Mavrantza R, et al. Structural Analysis for Gold mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment:Island of Lesvos, Hellas[J]. Natural Resources Research, 2000, 9(4): 277-293.
    [48] Sabins F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews ,1999, 14(3-4) :157-183.
    [49] Sibson R H, Robert F, Poulsen K H..High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J].Geology,1988,16(6):551-555.
    [50] Sibson R H. Crustal stress, faulting and fluid flow[J].Geological Society, London, Special Publications,1994,78: 69-84.
    [51] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J].Econ. Geol., 1972, 67 (2): 184-197.
    [52] Sillitoe R H, Thompson J F H. Intrusion-related vein gold deposits: types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits[J]. Resour. Geol. 1998, 48, 237–250.
    [53] Singh A, Harrison A. Standardized principal components[J]. INT. J. Remote Sensing, 1985, 6(6):883-896.
    [54] ?o?tari? B S, Palinka? L A, Palinka? S S, et al. Origin of siderite mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides[J].Miner Petrol, 2009,97:111–128.
    [55] Sverjensky D A.Europium redox equilibria in aqueous solution[J].Earth and Planet Science Letter,1984,67:70-78.
    [56] Tapponnier P,Xu Zhiqin,Roger F,et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
    [57] Turekian K K ,Wedepohl K H. Distribution of the elements in some major units of the Earths crust[J].Bulletin of the Geological Society of America,1961,72:175-192.
    [58] Turner S, Arnaud N, Liu J. Post-collision, shoshonitic volcanism on the Tibetan Plateau[J].J Petrology, 1996,37(1):45-71.
    [59] Ulrich T, Mavrogenes J. An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500°C to 800°C, and 150 to 300 MPa[J].Geochim. Cosmochim. Acta., 2008,72( 9) : 2316-2330.
    [60] Veizer J, Hoefs J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks[J]. Geochim.Cosmochim. Acta.1976,40:1387-1395.
    [61] Wood S A, Crerar D A, Borcsik M P. Solubility of the assemblage pyrite-pyrrhotite- magnetite- sphalerite- galena- gold- stibnite-bismuthinite- argen- tite-molybdenite in H 2 O-NaCl-CO 2 solutions from 200°C to 350°C [J]. Economic Geology,1987,82(7):1864-1887.
    [62] Xiao Xuchang, Liu X, Gao R, et al. Collision tectonics between the Tarim block (Basin) and the northwestem Tibet plateau: new observations from a multidisciplinary geoscientific investigation in the westermKunlun Moutains[J].Acta Geologica Sinica, 2001, 75(2):126-132.
    [63] Yamamoto K. Geochemical characteristics and depositional environments of chert and associated rocks in the Francism and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52: 65-108.
    [64] Yang J S, Robinson P T, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 1996, 258: 215-231.
    [65] Yund R A, Kullerud G. The Cu-Fe-S system: Carnegie Inst. Washington,Year Book 1960, 59:111-114.
    [66] Zhuang Hanping, Ran Chongying, He Mingqin,et al. Interactions of Copper, Evaporite, and Organic Matter and Genesis of Sandstone–Hosted Copper Deposits in the Chuxiong Basin, Yunnan Province[J].Acta Geologica Sinica,1996,9(4):407-419.
    [67]毕华.西昆仑造山带构造演化与岩浆活动[M].长沙:中南工业大学出版社,2000.
    [68]边千韬,赵大升,叶正仁,等.初论昆祁秦缝合系[J].地球学报,2002,23(6):501~508.
    [69]蔡分良,姚铁,梁国祥.西昆仑叶尔羌河上游地区区域化探异常查证方法及找矿效果[J].陕西地质,2004,22(1):55-62.
    [70]陈利燕.最优密度分割法在西昆仑遥感蚀变提取中的应用[J].安徽农业科学, 2009, 37(25): 12144-12145.
    [71]陈衍景,富士谷,豫西金矿成矿规律[M].北京:地震出版社,1992,234.
    [72]褚少雄.西昆仑及其邻区成矿地质背景及成矿规律探讨[D].北京:中国地质大学,2008.
    [73]崔建堂,王炬川,边小卫,等.西昆仑康西瓦北侧蒙古包-普守一带早古生代花岗岩锆石SHRIMP U-Pb测年[J].地质通报, 2007,26(6) :710-719.
    [74]代军治.燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景[D].北京:中国地质科学院,2008.
    [75]代军治,王可勇,程新民.吉林夹皮沟金矿带成矿流体地球化学特征[J].岩石学报,2007,(9):2198-2206.
    [76]邓万明.喀喇昆仑山-西昆仑地区基性—超基性岩初步考察[J].自然资源学报,1989,(3):1-11.
    [77]邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义[J].岩石学报,1995,11(增刊):98-111.
    [78]邓万明.西昆仑蛇绿岩研究的新进展.见:中国西部特提斯构造演化及成矿作用[M].北京:电子科技出版社,1991..
    [79]丁道桂,王道轩,刘伟新,等.西昆仑造山带与盆地[M].北京:地质出版社,1996.
    [80]丁悌平,万德芳,李金城,等.硅同位素测量方法及其地质应用[J].矿床地质,1988,7(4):90-96.
    [81]丁振举,刘丛强,姚书振,周宗桂.海底热液沉积物稀土元素组成及其意义[J].地质科技情报,2000,19(1):27-35.
    [82]范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社, 2005. 69-76.
    [83]方爱民,李继亮,侯泉林,李红生,郝杰.新疆西昆仑“依莎克群”中放射虫组合及其形成时代探讨[J].地质科学, 2000,35 (2) : 212-218.
    [84]方爱民,李继亮,侯泉林.新疆西昆仑库地复理石源区性质及构造背景分析[J].岩石学报,2003,18(1):153-166.
    [85]方维萱,芦继英.陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因[J].沉积学报,2000,(3).431-438.
    [86]丰成友,张德全,王富春,佘宏全,李大新,王彦.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,2004,(4):415-422.
    [87]冯光英,刘燊,彭建堂,等.新疆塔木—卡兰古铅锌矿带流体包裹体特征[J].吉林大学学报(地球科学版),2009,39(3):406-414.
    [88]冯永玖.新疆西昆仑特格里曼苏铜矿地质特征及矿化富集规律研究[D].吉林:吉林大学,2008.
    [89]高锐,黄东定,卢德源,等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面[J].科学通报,2000,45(17):1874-1879.
    [90]葛朝华,韩发.广东大宝山矿床喷气-沉积成因地质地球化学[M].北京:北京科学技术出版社, 1987. 26-29.
    [91]关剑宇,赵祖应.新疆西昆仑地区契列克其─卓木吉勒尕富铁富铜矿床地质特征及成因类型探讨[J].新疆有色金属, 2002,(2):1-4.
    [92]郭坤一,张传林,沈家林,等.西昆仑山中元古代长城系火山岩地球化学[J].地质通报, 2004,23(2):130-135.
    [93]郭坤一,张传林,赵宇,等.西昆仑造山带东段中新元古代洋内弧火山岩地球化学特征[J].中国地质,2002,29(2):161-166.
    [94]郭坤一.西昆仑造山带东段地质组成与构造演化[D].吉林:吉林大学,2004.
    [95]郭全.新疆滴水砂岩型铜矿成矿特征与富集规律[J].新疆有色金属,2007,(S2):12-15.
    [96]韩芳林,崔建堂,计文化,等.西昆仑其曼于特蛇绿混杂岩带的发现及地质意义[J].地质通报,2002,21(8-9):573-578.
    [97]河南省地质调查院. 1:25万区域地质调查报告叶城县幅[R].2004.
    [98]河南省地质调查院.1: 25万区域地质调查报告克克吐鲁克幅、塔什库尔干塔吉克自治县幅[R].2004.
    [99]河南省地质调查院.1: 25万区域地质调查报告库尔干幅、艾提开尔丁萨依幅、英吉沙县幅[R].2005.
    [100]胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质,2001,19(1):12-19.
    [101]胡庆雯,刘宏林,朱红英.塔木-卡兰古铅锌铜(银钴)矿成矿背景探讨[J].有色金属,2008,60(4):11-16.
    [102]胡受奚,林潜龙,助泽铭,等.华北与华南占板块拼合带地质与成矿[M].南京:南京大学出版社, 1998.558.
    [103]黄崇轲,中国铜矿床[A].北京:地质出版社,2001,1-371.
    [104]吉林大学地质调查研究院.新疆西昆仑地区成矿条件2008年工作方案.2008,内部资料
    [105]吉林大学地质调查研究院.新疆西昆仑地区成矿条件研究设计书.2007,内部资料
    [106]计文化,蔺新望,王炬川,等.西昆仑苏巴什蛇绿混杂岩带组成、特征及其地质意义[J].陕西地质,2001,19(2):40-47,66.
    [107]贾群子,李文明,于浦生,等.西昆仑块状硫化物矿床成矿条件和成矿预测[M].北京:地质出版社,1999.
    [108]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000.
    [109]姜春发,杨经绥,冯秉贵等.昆仑开合构造[M].北京:地质出版社,1992.
    [110]蒋少涌,J. Woodhead,于际民,潘家永,廖启林,吴南平.云南金满热液脉状铜矿床Cu同位素组成的初步测定[J].科学通报,2001,(17):1468-1471.
    [111]匡文龙,古德生,刘继顺,等.西昆仑地区密西西比河谷型矿床的流体包裹例特征研究[J].有色矿业,2005,21(2):1-5.
    [112]匡文龙,刘继顺,朱自强,等.西昆仑地区卡兰古MVT型铅锌矿床成矿作用和成矿物质来源探讨[J].大地构造与成矿学,2002,24(4):423-438.
    [113]匡文龙,刘继顺,朱自强,等.新疆西昆仑地区库斯拉甫金矿成矿作用新认识[J].黄金,2002,23(11):1-5
    [114]匡文龙,刘石华,刘继顺,等.西昆仑地区卡兰古密西西比河谷型铅锌矿床成矿地质特征和成矿作用探讨[J].世界地质,2002,21(4):340-346.
    [115]黎彤,化学元素的地球丰度[J].地球化学,1976,(3):167-174.
    [116]李碧乐,陈广俊,宋宗维.论吉林夹皮沟金矿成矿时代[J].世界地质,2004,(4):354-359.
    [117]李博秦,姚建新,王炬川,等.西昆仑柳什塔格峰西侧火山岩的特征、时代及地质意义[J].岩石学报,2007, 23(11):2801-2810.
    [118]李定龙.皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J].地学前缘,2000,(2):353-365.
    [119]李金虎.新疆且日克其菱铁矿床地质地球化学特征研究[D].河南:河南理工大学,2009.
    [120]李嵩龄,张志德,杨德朴.西昆仑山—阿尔金山地区晚元古代超基性岩岩石化学特征与成岩地质环境[J].西安地质学院学报, 1985. 7(3) : 58-70.
    [121]李兴振,尹福光.东昆仑与西昆仑地质构造对比研究之刍议[J].地质通报,2002,21(11):777-783.
    [122]李雪梅.辽东-吉南硼矿带硼矿成矿作用及成矿远景评价[D].吉林:吉林大学,2009.
    [123]李永安,曹运动,孙东江.昆仑山西段中国-巴基斯坦公路沿线构造地质[J].新疆地质,1997,15(2):116-133.
    [124]刘本立,陈成业.我国某些菱铁矿矿床的氧和碳同位素组成[J].北京大学学报,1981,(4):88-99.
    [125]刘斌,朱思林,沈昆.流体包裹体热力学计算软件及算例[M].北京,地质出版社,2000.
    [126]刘刚,张瑞江,赵福岳.遥感技术在喀喇昆仑区域地层对比中的应用[J].国土资源遥感,2004,(1):47-50.
    [127]刘嘉麒,买买提依明.西昆仑第四纪火山的分布与K-Ar年龄[J].中国科学(B辑),1990,2 : 180-186.
    [128]刘建明,刘家军,郑明华,顾雪祥.微细浸染型金矿床的稳定同位素特征与成因探讨[J].地球化学,1998,(6): 585-591.
    [129]骆辉,陈志宏,沈保丰.五台山区太古宙铁建造型金矿的成矿年龄[J].前寒武纪研究进展,1999,22(2):11-17.
    [130]毛景文.西秦岭地区造山型与卡林型金矿床[J].矿物岩石地球化学通报,2001,(1):11-13.
    [131]莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘,2006,(6): 43-51.
    [132]潘桂棠,陈智梁,李兴振,等.东特提斯组成与地质演化[M].北京:地质出版社,2000.
    [133]潘裕生,王毅,Matte Ph,等.青藏高原叶城-狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295-307.
    [134]潘裕生,文世宣,孙东立,等.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000.
    [135]潘裕生,周伟明,许荣华.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,26(4):302-307.
    [136]潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196-203.
    [137]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,(3):224-232.
    [138]曲军峰,张立飞,艾永亮,等.西昆仑塔什库尔干高压麻粒岩PT轨迹、SHRIMP锆石定年及其大地构造意义[J].中国科学(D辑:地球科学),2007,(4): 429-441.
    [139]山西省地质调查院. 1:25万区域地质调查报告叶亦克幅[R].2003.
    [140]陕西省地质调查院. 1:25万区域地质调查报告阿克萨依湖幅[R].2006.
    [141]陕西省地质调查院. 1:25万区域地质调查报告康西瓦幅[R].2006.
    [142]陕西省地质调查院. 1:25万区域地质调查报告于田幅[R].2003.
    [143]陕西省地质调查院.1:.25万区域地质调查报告伯力克幅[R].2002.
    [144]陕西省地质调查院.1:.25万区域地质调查报告岔路口幅[R].2006.
    [145]陕西省地质调查院.1:.25万区域地质调查报告恰哈幅[R].2006.
    [146]陕西省地质调查院.1:.25万区域地质调查报告塔吐鲁沟幅(东北角)、斯卡杜幅(东北角)[R].2004.
    [147]陕西省地质调查院.1:25万区域地质调查报告麻扎幅、神仙湾幅[R].2004.
    [148]邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社,1988.
    [149]佘宏全,丰成友,张德全,等.西藏冈底斯中东段矽卡岩铜_铅_锌多金属矿床特征及成矿远景分析[J].矿床地质,2005,24(5):508-520.
    [150]宋国学,秦克章,李光明.长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究[J].岩石学报,2010,26(9):2768-2782.
    [151]孙丰月.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30:76-79.
    [152]孙丰月,于晓飞,冯占山,李延军.山东招远灵山沟金矿床金矿化空间定位机制[J].吉林大学学报(地球科学版),2008,(6):920-925.
    [153]孙海田,李纯杰,吴海,等.西昆仑金属成矿省概论[M].北京:地质出版社,2003.
    [154]汪雄武,王晓地.花岗岩成矿的几个判别标志[J].岩石矿物学杂志,2002,(2): 119-130.
    [155]汪玉珍,方锡廉.西昆仑、喀喇昆仑山花岗岩类时空分布规律的初步探讨[J].新疆地质,1987,5(1):10-24.
    [156]汪玉珍.西昆仑依沙克群的时代及其构造意义[J].新疆地质,1983.1 (1):1-8.
    [157]王东安,陈瑞君.新疆库地西北一些克沟深海蛇绿质沉积岩岩石学特征及沉积环境[J].自然资源学报. 1989,4 (3) : 212-221.
    [158]王关玉,陈成业.层控菱铁矿的氧、碳同位素组成及其成因意义[J].沉积学报,1986,4(2):27-38.
    [159]王建平.西昆仑塔什库尔干混杂岩的地质特征及其大地构造意义[J].地质通报,2008,(12):2057-2066.
    [160]王书来,汪东波,祝新友,等.新疆塔木—卡兰古铅锌矿床成矿流体地球化学特征[J].地质地球化学,2002,30(4):34-39.
    [161]王书来,汪东波,祝新友.西昆仑中间隆起带花岗岩及与铜金矿化关系[J].矿产与地质,2000,14(1),5-10.
    [162]王晓鹏,谢志清,伍跃中.西昆仑塔什库尔干地区遥感找矿异常提取方法研究[J].地质找矿论丛,2002,17(2):136-139.
    [163]王义.新疆阿克陶县切列克其铁矿地质特征及成因探讨[J].新疆有色金属,2005,增刊:2-4.
    [164]王元龙,王中刚,李向东,等.西昆仑加里东期花岗岩带的地质特征[J].矿物学报,1995,15(4):437-441.
    [165]王战华,赵祖应等.土根曼苏砂岩铜矿新认识[J].新疆有色金属. 2003,增刊:12-15.
    [166]王志洪,侯泉林,李继亮,等.西昆仑库地蛇绿岩铂族元素初步研究[J].科学通报,1999,44(15):1676-1680.
    [167]王志洪,李继亮,侯泉林,等.西昆仑库地蛇绿岩地质、地球化学及其成因研究[J].地质科学,2000,35(2):151-160.
    [168]武广.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D].吉林:吉林大学,2005.
    [169]吴益平,张照伟,张小梅,李艳阳,李永寿.新疆昆仑山北缘一带含金硅铁建造中金矿床特征及找矿标志[J].西北地质,2007,(4).17-25.
    [170]肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑),2000,30(增刊):22-28.
    [171]肖荣阁,张汉城,陈卉泉,等.热水沉积岩及矿物岩石标志[J].2001,8(4):379-385.
    [172]肖序常,王军,苏犁,等.再论西昆仑库地蛇绿岩及其构造意义[J].地质通报,2003,22(10):745-750.
    [173]肖序常,王军.西昆仑-喀喇昆仑及邻区岩石圈结构、演化中几个问题的讨论[J].地质论评,2004,50(3):285-294.
    [174]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993.
    [175]徐一仁,张素华.论砂岩铜矿的成因机制及其在找矿中的指导作用[J].有色金属矿产与勘查1993,2(l),6-13.
    [176]许荣华,张玉泉,谢应雯,等.西昆仑山北部早古生代构造-岩浆带的发现[J].地质科学,1994,29(4):313-328.
    [177]许志琴,戚学样,刘福来,等.西昆仑康西瓦加里东期孔兹岩系及地质意义[J].地质学报,2004,28(6):733-743.
    [178]杨长保,姜琦刚,辽东地区矿化蚀变遥感信息提取的研究和应用[J].遥感信息,2007,(4),20-24.
    [179]杨长保,姜琦刚,面向对象的遥感图像分类法在蚀变信息提取中的应用[A].国土资源遥感技术发展文集,2006.
    [180]杨克明.论西昆仑大陆边缘构造演化及塔里木西南盆地类型[J].地质论评,1994,40(1):9-18.
    [181]杨坤光,刘强,张传林,等.西昆仑康西瓦断裂带新发现的麻粒岩[J].地质科技情报,2003,100-104.
    [182]杨树锋,陈汉林,董传万.西昆仑库地蛇绿岩的特征及其构造意义[J].地质科学. 1999,.34 (4) : 281- 288.
    [183]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006:268.
    [184]伊海生,林金辉,赵西西,等.西藏高原沱沱河盆地渐新世—中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探[J].沉积学报,2008,26(1):1-10.
    [185]印建平,田培仁,戚学祥,等.西昆仑塔木-卡兰古铅锌铜矿带含矿岩系的地质地球化学特征[J].现代地质,2003,17(2):143-150.
    [186]袁波.新疆西昆仑卡兰古、塔木铅锌矿地质特征和矿化富集规律研究[D].吉林:吉林大学,2005.
    [187]袁超,孙敏,李继亮,等.西昆仑库地蛇绿岩的构造背景来自玻安岩系岩石的新证据[J].地球化学,2002,31(1):43-48.
    [188]袁超,孙敏,肖文交,周辉,候泉林,李继亮.原特提斯的消减极性:西昆仑128公里岩体的启示[J].岩石学报,2003,19(3):399-408.
    [189]张传林,杨淳,沈加林,等.西昆仑北缘新元古代片麻状花岗岩锆石SHRIMP年龄及其意义[J].地质论评,2003,49(3):239-244.
    [190]张传林,于海锋,沈家林,等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004,50(6) :639—643.
    [191]张传林,陆松年,于海锋,等.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学D辑:地球科学, 2007, 37(2) 145-154.
    [192]张道红.云南砂岩铜矿伴生银的富集规律[J].云南地质,1997,(1):68-75.
    [193]张招崇,肖序常,王军,等.西昆仑新生代钾质火山岩的地球化学及其对源区的约束[J].地质学报(英文版),2004,78(4):576.
    [194]张志德,李青龄,杨德补.康西瓦断层的地质特征及形成和演化[J].新疆地质,1987,5(3): 50-56.
    [195]赵俊伟.青海东昆仑造山带造山型金矿床成矿系列研究[D].吉林:吉林大学,2008.
    [196]赵玲,王核,刘建平,等.西昆仑地区恰尔隆、大同一带ETM遥感影像构造解译[J].大地构造与成矿学,2008,32(4):470-747.
    [197]赵宇,张传林,郭坤一,等.西昆仑山东段石炭纪火山岩岩石地球化学特征及其形成的构造背景.火山地质与矿产,2001,22(3):186-192.
    [198]赵祖应,关剑宇,李先军,牛海霞.土根曼苏砂岩铜矿地质特征及找矿前景[J].地质找矿论丛,2002,17(2).:103-106.
    [199]中国地质科学院情报所.菱铁矿矿床[M].北京:中国科学院情报所,1978.
    [200]钟建华,罗书安,王竞成.湖南麻阳、车江砂岩铜矿的最高成矿温度[J].矿产与地质,1995,(3).191-194.
    [201]周辉,储著银,李继亮,等.西昆仑库地韧性剪切带的40Ar-39Ar年龄[J].地质科学, 2000,35(2) :233—239.
    [202]周辉,李继亮,侯泉林,等.西昆仑库地大型韧性剪切带的厘定[J].科学通报,1999,44(16):1774-1777.
    [203]周辉,李继亮,侯泉林,等.西昆仑库地蛇绿混杂带中早古生代放射虫的发现及其意义[J].科学通报,1998,43(22):2448-2451.
    [204]祝新友,汪东波,王书来.新疆阿克陶县塔木—卡兰古铅锌矿带矿床地质和硫同位素特征[J].矿床地质,1998,17(3):204-214.
    [205]祝新友,汪东波,王书来.新疆塔木-卡兰古MVT型铅锌矿带地质特征[J].有色金属矿产与勘查,1997,(4):202-207..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700