用户名: 密码: 验证码:
西昆仑造山带区域成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西昆仑造山带地处青藏高原西北缘,是板块北缘成矿带的重要组成部分,有着丰富的矿产资源。论文以区域动力学背景和区域成矿理论为基础,以成矿作用为核心,采用成矿动力学背景-区域成矿分析与典型矿床研究相结合,在阐明成矿动力学背景、成矿作用、控矿因素的基础上,建立不同矿床的成因类型和成矿模式,总结成矿规律,确定找矿远景区。
     区域成矿动力学背景表明,本区区域构造演化经历了长期而复杂的地壳演化,包括太古代陆核形成、俯冲、碰撞和陆内构造作用。以往研究认为库地蛇绿岩和其曼于特蛇绿岩是裂解洋和弧后洋盆的重要证据,本文研究发现它们是古大洋发育成熟的产物,并且库地蛇绿岩现在的位置并不是西昆北洋碰撞缝合的位置,而是受后期挤压作用的影响仰冲上来的。对中新元古代火山岩地球化学特征分析,认为长城系、蓟县系基性火山岩形成于洋中脊和洋岛环境;阿克塔什、萨洛依热水喷流沉积块状硫化物矿床类型的确定,进一步证明大洋环境的存在。这些证据表明西昆仑-塔里木古元古代并不存在统一大陆裂解形成的裂陷槽,而是一个古大洋。以往多认为本区中新元古代时期从塔里木板块裂解出去的,有着共同的基底,通过对比研究发现,西昆仑地块并不是从塔里木地台裂解出来的微陆块,而是完全独立的太古宙古陆块,具有独立的地质构造演化历史,被南北两侧的古大洋所分隔,本文称之为“西昆北洋”和“西昆南洋”。
     针对西昆仑中间岩浆岩带,分别针对各个时期的花岗岩,尤其是对加里东期和海西期花岗岩进行地球化学、年代学和构造环境研究,认为自510~480Ma(寒武纪)开始,西昆北洋东部洋壳向南、北两侧大陆俯冲,在440~430Ma(早志留世)两个陆块发生碰撞,直到410Ma(早泥盆世)西昆北洋东部南、北两侧大陆完全对接,而这时期的西部仍然为浩瀚的大洋。海西早期东部进入后造山阶段,西昆北洋西部洋壳开始向两侧俯冲,于270Ma(二叠纪)南北两侧大陆对接碰撞,大洋闭合,结束了西昆北洋的历史,是一种自东向西“剪刀式”演化过程。在此基础上,总结出西昆仑造山带地球动力学演化经历了如下4个阶段:①西昆仑古陆的形成②西昆北洋的演化与闭合-内部造山③西昆南洋的演化与闭合-边缘造山④西昆仑造山带的后期演化-隆升。
     研究中以构造-岩浆活动和成矿作用为主线,对西昆仑地区各时代侵入岩进行了年代学研究:采用LA-ICP-MS锆石U-Pb法高精度定年方法对大同布斯拉津铜钼黑云母石英二长岩和花岗细晶岩、塔什库尔干班迪尔闪长玢岩和斯如依迭尔碱性花岗岩进行了系统的年龄测试,它们分别是449Ma和446Ma、239.8Ma、13Ma。446Ma和449Ma年龄代表后造山花岗岩,证明加里东期造山带的存在,这个时期东部已经开始碰撞造山,是一俯冲间歇期伸展环境的产物;239.8Ma年龄代表了印支早期岩浆热事件;13Ma年龄代表了帕米尔构造结作用的结果。另外,首次对布斯拉津铜钼矿床的辉钼矿进行Re-Os法定年,获得了439 Ma辉钼矿Re-Os年龄,指示了西昆仑地区加里东期的成矿事件。
     对研究区内部分金矿床(点)形成的地质背景和成矿因素进行研究,首次提出黄羊岭锑(金)矿、帕西木金矿点、叶尔羌河金矿、木吉金矿等为造山型金矿床的观点,采集矿区样品进行流体包裹体测试分析,通过获得的成矿温度,计算出不同成矿深度,认为区内造山型金矿存在从低温-中温、从浅成(黄羊岭锑(金)矿、帕西木金矿点、叶尔羌河金矿)-中成(木吉金矿)等连续成矿的特点,从而建立起该区造山型金矿的地壳垂直连续成矿模式。
     研究了西昆仑北带的塔木铅锌矿床的地质背景、矿化蚀变特征和岩浆岩特征,并采样测试了成矿物理化学条件,获得流体盐度为3.45wt%NaCl,密度为0.90g/cm3,首次提出了塔木-卡兰古一带的铅锌矿床不是前人认为的密西西比河谷型铅锌矿,而是与基性辉绿岩脉有关的中低温热液脉状铅锌矿床。
     根据热水喷流沉积矿床的特点,我们按照块状硫化物矿床和贫硫化物型喷流矿床进行研究。西昆北带石炭纪海底火山喷流-喷气沉积成矿特点,明确提出阿克塔什、萨洛依铜矿床为热水喷流沉积成因块状硫化物矿床,萨洛依铜矿床为别子型、阿克塔什铜矿床为类黑矿型;契列克其、黑恰铁多金属矿床成矿流体研究表明,二者都是受后期岩浆热液的影响,导致矿化进一步富集,是热水喷流沉积-热液叠加改造型矿床。同时指出矿区含钠长质硅质岩和碳酸盐岩为热水沉积岩,从而为寻找热水喷流成因矿床提供了有力证据。
     通过对大同布斯拉津铜钼矿床的地质特征、成矿流体、成矿年代学的研究,明确认为该矿床为岩浆热液脉型铜钼矿床,成矿作用发生于加里东中期,略晚于成岩年龄;通过对含矿石英脉进行流体包裹体研究,测得成矿均一温度为147~172℃之间,辉钼矿形成于低温条件。
     在成矿动力学演化研究基础上,通过对典型矿床、同位素年代学、成矿地球化学、成矿作用的研究,建立了西昆仑造山带的成矿模式,并总结了成矿规律,在成矿模式、确定找矿标志和大型矿田产出条件的基础上,提出各类矿床的6个找矿方向,为该区下一步找矿勘探工作提供了科学依据。
Western Kunlun orogenic belt is located in the northwest margin of Qinghai-Tibet plateau, and it accompanies with abundant mineral deposits and becomes an important part in the metallogenic belt of the north margin of the plate. Based on regional geodynamic settings, metallogenic theory, metallogenesis, and combing metallogenic geodynamic settings, regional metallogenic analysis with typical deposits analysis, the author studies metallogenic geodynamic settings, metallogenesis and ore-controlling factors, then builds genetic types and metallogenic models for different mineral deposits, finally synthesizes metallogenic laws and delineates prospective areas.
     According to regional metallogenic settings, it was shown that tectonic evolution of the study area underwent long and complex crust evolution, including Archean continental core formation, subduction, collision and intracontinental tectonization. The predecessors considered the Kudi ophiolite and Qimanyute ophiolite are important evidences for breakup ocean and retroarc ocean basin. But the author thought they are product of paleo-ocean that developed to mature. The location of Kudi ophiolite is not the suture line of North Western Kunlun Ocean collision, but rather the obduction place by compressing later. By analysis of geochemical characteristics of Meso-Neo Proterozoic volcanic rocks, Changcheng system and Jixian system basic volcanic rock formed in mid-ocean ridge and ocean island environment. Determination of Aketashi and Saluoyi VMS deposits shows that there formed in mid-ocean ridge environment. It was proved that it was a paleo-ocean rather than a taphrogenic trough between western Kunlun and Tarim blocks in paleoproterozoic. The predecessors thought that the study area breakup began at proterozoic from Tarim plate, with same basement. Comparative study shows western Kunlun block is not a microplate from Tarim plate, but a unique Archean paleocontinent with unique geological structural evolutional history. It was separated by bilateral paleo-ocean, which was so-called“North Western Kunlun Ocean”and“South Western Kunlun Ocean”.
     By researching geochemistry, geochronology and structural environment of granites of every era in the middle magmatic zone in westeren Kunlun belt, especially Caledonian and Hercynian granite, it was thought that east part of oceanic plate of North Western Kunlun Ocean subducted toward south and north continents scince 510-480Ma(Cambrian). These two continents collided during 440-430Ma(Early Silurian)and amalgamated completely until 410Ma(Early Devonian), while there is still an ocean in the west part of western Kunlun belt. The west plate of North Western Kunlun Ocean began to subduct bilaterally in early Hercynian, and bilateral continents collided until 270Ma (Permian)which means the history of North Western Kunlun Ocean is end. The evolution that there is a scissor-style .Based on above conclusion, it was considered that there are four stages for geodynamic evolution of western Kunlun orogenic belt, i.e.①Formation of western Kunlun paleocontinent;②Interior orogenesis----evolution and closure of North Western Kunlun Ocean;③Marginal orogenesis----evolution and closure of South Western Kunlun Ocean;④Uplifting----later evolution of western Kunlun orogenic belt.
     Making structural-magmatic activities and metallogenesis as mainline, the author studies petrology, geochemistry and geochronology for intrusive rocks of each era in western Kunlun belt. By LA-ICP-MS zircon U-Pb dating to biotite quartz monzonite and granite aplite in Busilajin Cu-Mo deposit in Datong town, diorite porphyrite in Bandier in Tashikuergan town, and alkaline granite in Siruuyidieer, and molybdenite Re-Os dating to Busilajin Cu-Mo deposit, the author gets lots of high precision ages, i.e. 449Ma, 446Ma, 239.8Ma, 13Ma. 446Ma and 449Ma represent post orogenic granites of Caledonian orogenic belt. Orogenesis began at east part in this era, which is a product extended environment during diapause of subduction. 239.8Ma represents early Indosinian magmatic thermal activity. 13Ma stands for results of Pamir tectonic knot. 439Ma of molybdenite Re-Os dating means there are metallogenic event in Caledonian in western Kunlun area.
     By studying to geological settings and metallogenic factors of some gold deposits in the study area, the author first proposes Huangyangling Sb(Au), Paximu Au, Yeerqianghe Au and Muji Au deposits belong to orogenic gold deposits. It was considered that mineralization of orogenic gold deposits may consecutively happen from low-mesothermal, epizonal (Huangyangling Sb(Au), Paximu Au, and Yeerqianghe Au deposits) to mesozonal (Muji Au deposit) with analysis of metallogenic temperature and depth from fluid inclusion researches. Then a crustal continuum model of orogenic gold deposit in the study area was proposed by the author.
     It was thought that Tamu and Kalangu Pb Zn deposits belong to not MVT type Pb-Zn deposits but rather low-mesothermal vein-type one related to basic diabase dyke, by studying on geological settings, mineralized and alterated characteristics and magmatic natures for Tamu and Kalangu Pb-Zn deposits in the north of western Kunlun orogenic belt, and analyzing the metallogenic physico-chemical conditions where the salinity of fluid is 3.45wt%NaCl and density is 0.90g/cm3.
     The exhalative sedimentary deposit was divided into VMS ones and poor-sulfide type ones by their characteristics. According to the exhalative sedimentary metallogenic characteristics on the Carboniferous seafloor in the north of western Kunlun belt, the author considers Aketashi and Saluoyi Cu deposits belong to VMS exhalative sedimentary deposit. Saluoyi Cu deposit belongs to Besshi type VMS deposit, and Aketashi Cu deposit may be Koroko-like type. By studying fluid inclusions in Heiqia and Qiliekeqi siderite deposits, it was shown that both two deposits are exhalative sedimentary-hydrothermal fluid reconstructed deposits, and affected by later magmatic hydrothermal fluid which enriched mineralization. While the author considers that sodic-feldspar siliceous rock and carbonate are all exhalative sedimentary rocks, which are evidences for exhalative sedimentary deposits.
     By studying geological characteristics, metallogenic fluid, geochronology of Busilajin Cu-Mo deposit, it was thought that this deposit belongs to low-temperature hydrothermal vein-type Cu-Mo deposit. It formed 435Ma according to molybdenite Re-Os dating first time i.e. middle Caledonian that is posterior to diagenetic age. The molybdenite may form in low-temperature condition because the homogenization temperature is 147~172℃based on fluid inclusion studying in ore-bearing quartz.
     The author builds a metallogenic model of western Kunlun orogenic belt and synthesizes metallogenic laws according to researches of typical deposits, isotopic geochronology, metallogenic geochemistry and metallogenesis based on metallogenic dynamic evolution. And on the basis of metallogenic model, ore prospecting symbols and conditions of large scale ore field, the author proposes 6 prospective areas, which may be scientific evidences for further ore prospecting and exploration in this study area.
引文
[1] A ffaton P, RahamanM A , T rompet te R, et al . TheDahomyide rogen: tectono thermal evolution sand relation ships with the Volta basin . In Dallmeyer R. D. et al . (eds . ) , The West African Orogens . Springer- Verlag, Berlin, 1991,107- 122.
    [2] Ashbindu Singh & Andrew Harrison, Standardized principal components[J], INT. J. REMOTE SENSING, 1985, 6(6):883-896.
    [3] Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 1985(48):43-55
    [4] Boardman J.W.,and Kruse,F.A.,Automated spectral analysis:Ageologic example using AVIRIS data, north Grapevine Mountains, Nevada:in Proceedings, Tenth Thematic Conference on Geologic Remote Sensing[J].Environmental Research Institute of Michigan, Ann Arbor, MI,1994, pp.I-407-I-418.
    [5] Christoph A. Heinrich, Franz Neubauer. Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province[J].Mineralium Deposita 2002(37): 533–540
    [6] Dilek Alka,Umit Atalay.2008.Kinetics of thermal decomposition of Hekimhan-Deveci siderite ore samples. International Journal of Mineral Processing
    [7] F. Matterna, W. Schneider. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun[J].Journal of Asian Earth Sciences ,2000( 18): 637–650
    [8] Groves D,Goldfarb R J,Gebre-Mariam et al.Orogenic gold deposits: aproposed classfication in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews,1998,13:7—27
    [9] Hurai V. Origin of siderite veins in the Western Carpathians I. P–T–X–δ13C–δ18O relations in ore-forming brines of the Rudnˇany deposits. Ore Geology Reviews[J].2002, 21: 67–101
    [10] JB Murphy, RD Nance , Supercontinent model for the contrasting character of Late Proterozoic orogenic belts[J].Geology, 1991,19:469-472
    [11] J.–S. Yang, P. T. Robinson, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics,1996,258: 215-231
    [12] Jiankun He,Jean Chéry,Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling[J]. Earth and Planetary Science Letters, 2008,274:50–58
    [13] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993,219: 177-189
    [14] Luo Zhaohua, Zhanq Wenhui, Deng Jinfu. Implication of the deep-seated xenoliths in Cenozoic basalt in Kangxiwa. W. Kunlun, China [J]. Earth Science Frontiers, 2000,7(Supp): 76-78.
    [15] Maheo G, Guillot J, Blichert Toft. A slab breadkoff model for the Neogene thermal evolution of S. Karakorum and S. Tibet. Earth and Planet Science Letters [J].2002,195:45-58.
    [16] Maya Dimova, Gerard Panczer & Michael Gaft,Spectroscopic study of barite from the Kremikovtsi deposit (Bulgaria)with implication for its origin[J]. ANNALES GéOLOGIQUES DE LA PéNINSULE BALKANIQUE, 2006,67:101–108
    [17] Martin Radvanec.Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and arevised genetic model.ore geology reviews, 2004,24:267~297
    [18] Pan Yusheng. Geological Evolution of the Karakorum and Kunlun Mountains [M]. Beijing: Seismological Press, China. 1996,51~91.
    [19] Paul Tapponnier,Xu Zhiqin,Francoise Roger,et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. SCIENCE,2001,294: 1671~1677
    [20] Sabina Strmi? Palinka? & Jorge E. Spangenberg, Organic and inorganic geochemistry of Ljubija siderite deposits, NW Bosnia and Herzegovina. Miner Deposita [J].2009, 44:893~913
    [21] Sibila L A et al.,Origin of siderite mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides[J].Miner Petrol 2009,97:111~128
    [22] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J].Econ. Geol., 1972, 67 (2): 184-197
    [23] Turekian K K,Wedepohl K H.Distribution of the elements in some major units of the Earths crust[J]·Bulletin of the Geological Society of America,1961,72:175-192
    [24] Turner S, Arnaud N, Liu J. Post-collision, shoshonitic volcanism on the Tibetan Plateau[J].J Petrology, 1996,37(1):45-71
    [25] Wang Zhihong. Tectonic evolution of the western Kunlun orogenic belt,western China[J]. Journal of Asian Earth Sciences ,2004(24):153~161
    [26] Xiao Xuchang, Liu X, Gao R, et al. Collision tectonics between the Tarim block (Basin) and the northwestem Tibet plateau: new observations from a multidisciplinary geoscientific investigation in the westermKunlun Moutains[J].Acta Geologica Sinica[J].2001,75(2):126~132
    [27] Zhelyazko Damyanov and Margarita Vassileva,Authigenic phyllosilicates in the middle Triassic kremikovtsi sedimentary exhalative siderite iron foramation, western Balkan, Bulgaria,Clays and Clay Minerals[J]. 2001. 49,(6): 559–585
    [28]艾霞,王书来,余大良.新疆西南部金、铜成矿构造环境及找矿前景[J].有色金属矿产与勘查,1997,6(增刊):19-24
    [29]毕华,王中刚,王元龙,等.西昆仑造山带构造岩浆演化史[J].中国科学(D辑),1999,29(5):389~406
    [30]毕华.西昆仑造山带构造演化与岩浆活动[M].长沙:中南工业大学出版社,2000
    [31]边千韬,赵大升,叶正仁等.初论昆祁秦缝合系[J].地球学报,2002,23(6):501~508
    [32]蔡分良,姚铁,梁国祥.西昆仑叶尔羌河上游地区区域化探异常查证方法及找矿效果[J].陕西地质,2004,22(1):55-62
    [33]崔建堂,王炬川,边小卫,等.西昆仑康西瓦北侧蒙古包-普守一带早古生代花岗岩锆石SHRIMP U-Pb测年[J].地质通报, 2007,26(6) :710-719.
    [34]禇少雄.西昆仑及其邻区成矿地质背景和成矿规律探讨.中国地质大学(北京),2008
    [35]邓万明.喀喇昆仑山-西昆仑地区基性—超基性岩初步考察[J].自然资源学报,1989,(3):1~11
    [36]邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义[J].岩石学报,1995,11(增刊):98~111
    [37]邓万明.青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究[J].岩石学报,1993,9(4):379~387
    [38]邓万明.西昆仑蛇绿岩研究的新进展.见:中国西部特提斯构造演化及成矿作用[M].北京:电子科技出版社,1991
    [39]丁道桂,刘伟新,王道轩等.喀喇昆仑地区早二叠世弧后盆地[J].中国区域地质,1998,17(1):74~93
    [40]丁道桂,王道轩,刘伟新,等。西昆仑造山带与盆地[M].北京:地质出版社,1996
    [41]董永观,郭坤一,廖圣兵,等.新疆西昆仑科库西里克铅锌矿床地质及元素地球化学特征[J].地质学报,2006,80(11):1730-1738
    [42]董永观,郭坤一,肖惠良,等.西昆仑地区成矿远景[J].中国地质,2003,30(2):173-178
    [43]董永观,肖惠良,郭坤一,等.西昆仑地区成矿带特征[J].矿床地质,2002,21(增刊):113-116
    [44]范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社, 2005. 69-76.
    [45]方爱民,李继亮,侯泉林,李红生,郝杰.新疆西昆仑“依莎克群”中放射虫组合及其形成时代探讨[J].地质科学, 2000,35 (2) : 212~218.
    [46]方爱民,侯泉林,李继亮,等.西昆仑库地混杂岩带中深海浊积岩的浊积相划分及其特征[J].地质科学,38(1):1~12
    [47]方爱民,李继亮,侯泉林.新疆西昆仑库地复理石源区性质及构造背景分析[J].岩石学报,2003,18(1):153-166
    [48]方爱民,李继亮,刘小汉,等.新疆西昆仑库地混杂带中基性火山岩构造环境分析[J].岩石学报,2003,19(3):409-417
    [49]冯永玖.新疆西昆仑特格里曼苏铜矿地质特征及矿化富集规律研究[D].吉林:吉林大学,2008
    [50]高鹏,张东生.西昆仑阿克塔什一带逆冲-推覆构造特征[J].新疆地质,1994,12(2):115~123
    [51]高锐,黄东定,卢德源等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面[J].科学通报,2000,45(17):1874~1879
    [52]高锐,肖序常,高弘,等.西昆仑-塔里木-天山岩石圈深地震探测综述[J].地质通报,2002,21(1):11-20
    [53]高锐,肖序常,刘训,等.新疆地学断面深地震反射剖面揭示的西昆仑-塔里木结合带岩石圈细结构[J].地球学报,2001,22(6):547~570
    [54]关剑宇,赵祖应.新疆西昆仑地区契列克其─卓木吉勒尕富铁富铜矿床地质特征及成因类型探讨[J].新疆有色金属, 2002,(2):1~4
    [55]管烨,高弘,高锐,等.新疆塔里木西昆仑宽频地震观测实验研究[J].地球学报,2001,21(6):559-562
    [56]郭坤一,张传林,赵宇,等.西昆仑造山带东段中新元古代洋内弧火山岩地球化学特征[J].中国地质,2002,29(2):161~166
    [57]郭坤一.西昆仑造山带东段地质组成与构造演化[D].吉林:吉林大学,2004
    [58]河南省地质调查院.25万区域地质调查报告叶城县幅.2004
    [59]河南省地质调查院.25万区域地质调查报告克克吐鲁克幅、塔什库尔干塔吉克自治县幅.2004
    [60]韩芳林,崔建堂,计文化,等.西昆仑其曼于特蛇绿混杂岩带的发现及地质意义[J].地质通报,2002,21(8-9):573-578
    [61]侯增谦,等.现代与古代海底热水成矿作用[M].北京:地质出版社,2002
    [62]韩发,孙海田. Sedex型矿床成矿系统[J].地学前缘,1999,6(1):139~153
    [63]胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质,2001,19(1):12~19
    [64]胡建卫,张维洲,杨万志.新疆西昆仑尼雅河地区锑矿地球化学特征及找矿前景[J].资源调查与环境,2004,25(1):64~71
    [65]计文化,韩芳林,王炬川.西昆仑于田县南苏巴什蛇绿混杂岩带的组成,地球化学特征及其地质意义[J].地质通报,2003,23(12):1196~1201
    [66]计文化,蔺新望,王炬川,等.西昆仑苏巴什蛇绿混杂岩带组成、特征及其地质意义[J].陕西地质,2001,19(2):40-47,66
    [67]贾群子,李文明,于浦生,等.西昆仑块状硫化物矿床成矿条件和成矿预测[M].北京:地质出版社,1999
    [68]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000
    [69]姜春发,杨经绥,冯秉贵等.昆仑开合构造[M].北京:地质出版社,1992
    [70]姜春发.中央造山带金矿远景评估及找矿设想[J].黄金地质科技,1994,02:61-62
    [71]姜耀辉,芮行健,郭坤一,等.西昆仑造山带花岗岩形成的构造环境[J].地球学报,2000,21(1):23~25
    [72]匡文龙,高珍权,印建平,等.西昆仑地区塔木MVT型铅锌矿床成矿作用和成矿物质来源探讨[J].矿物岩石地球化学通报,2002,21(4):253-257
    [73]匡文龙,古德生,刘继顺,等.西昆仑地区密西西比河谷型矿床的流体包裹例特征研究[J].有色矿业,2005,21(2):1-5
    [74]匡文龙,刘继顺,朱自强,等.西昆仑地区卡兰古MVT型铅锌矿床成矿作用和成矿物质来源探讨[J].大地构造与成矿学,2002,24(4):423-438
    [75]匡文龙,刘继顺,朱自强,等.新疆西昆仑地区库斯拉甫金矿成矿作用新认识[J].黄金,2002b,23(11):1-5
    [76]匡文龙,刘石华,刘继顺,等.西昆仑地区卡兰古密西西比河谷型铅锌矿床成矿地质特征和成矿作用探讨[J].世界地质,2002,21(4):340-346
    [77]匡文龙,刘新伟.西昆仑地区密西西比河谷型铅锌矿成矿地质条件分析与成矿预测远景[M].地质出版社,2006
    [78]匡文龙.西昆仑地区成矿地质条件与密西西比河谷型铅锌矿床成矿模式研究[D].湖南:中南大学,2003
    [79]黎彤,化学元素的地球丰度[J].地球化学,1976,(3):167-174
    [80]李宝强,杨万志,赵树铭,等.西昆仑成矿带成矿特征及勘查远景[J].西北地质,2006,39(2):128-142
    [81]李德威.成矿动力学刍议.地球科学,1993,18(4)
    [82]陆松年,李怀坤,陈志宏,等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘,2004,11(2):515-523
    [83]李博秦,姚建新,王炬川,等.西昆仑柳什塔格峰西侧火山岩的特征、时代及地质意义[J].岩石学报,2007, 23(11):2801-2810
    [84]李纯杰,孙海田,李锦蓉,等.西昆仑昆盖山北坡发现“二位一体”火山岩型块状含铜黄铁矿矿床[J].矿床地质,1997,01:60
    [85]李华芹,陈富文.中国新疆区域成矿作用年代学[M].北京:地质出版社,2004
    [86]李继亮,孙枢,郝杰,等.论碰撞造山带的类型[J].地质科学,1999,34(2):129-138
    [87]李继亮.增生造山带基本特征[J].地质通报,2004,23(9~10):947-951
    [88]李建华,张家声,单新建.西昆仑一西南天山地区断裂活动性研究[J].地质学报,2002,76(3):347-355
    [89]李静.遥感技术发展的新趋势分析—实现遥感地物定量化识别的高级工具ENVI[M].2001.
    [90]李茂玮.帕米尔-西昆仑地震带强震活动的规律性特征[J].内陆地震,1994,8(2):134~140
    [91]李嵩龄,张志德,杨德朴.西昆仑山—阿尔金山地区晚元古代超基性岩岩石化学特征与成岩地质环境[J].西安地质学院学报, 1985. 7(3) : 58~70.
    [92]李喜臣,王永,丁孝忠.西昆仑山前晚新生代磨拉石时代及意义.地质力学学报,2003,11(2):181~186
    [93]李向东,王克卓.西昆仑山北缘盆山构造转换解析[J].新疆地质,2001,20(增刊):19~25
    [94]李宝强.西昆仑成矿带成矿特征及勘查远景.西北地质2006.39(2)
    [95]李兴振,尹福光.东昆仑与西昆仑地质构造对比研究之刍议[J].地质通报,2002,21(11):777~783
    [96]李永安,曹运动,孙东江.昆仑山西段中国-巴基斯坦公路沿线构造地质[J].新疆地质,1997,15(2):116~133
    [97]李友枝,莫宣学.西昆仑深源岩浆活动及金刚石成矿地质条件评价[J].现代地质--中国地质大学研究生院学报,2000,01:44
    [98]刘斌,朱思林,沈昆.流体包裹体热力学计算软件及算例[M].北京,地质出版社,2000.
    [99]刘强,杨坤光,张传林,等.西昆仑康西瓦断裂显微构造特怔及其地质意义[J].矿物岩石,2003,23(3):26~30
    [100]刘庆生.内蒙哈达门沟金矿区山前钾化带遥感信息提取[J].遥感技术与应用,1999,(3).
    [101]刘石华,匡文龙,刘继顺,等.西昆仑北带蛇绿岩的地球化学特征及其大地构造意义[J].世界地质,2002,21(4):332~339
    [102]刘训.天山-西昆仑地区沉积-构造演化史--新疆地学断面走廊域及邻区不同地体的沉积-构造演化[J].古地理学报,2001,3(3):21~31
    [103]卢焕章,范宏瑞.流体包裹体.北京,科学出版社,2004
    [104]方维萱,芦继英.陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因.沉积学报. 2000.18(3)
    [105]潘桂棠,陈智梁,李兴振,等.东特提斯组成与地质演化[M].北京:地质出版社,2000
    [106]潘裕生,王毅,Matte Ph,等.青藏高原叶城-狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295~307
    [107]潘裕生,文世宣,孙东立,等.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社,2000
    [108]潘裕生,周伟明,许荣华.昆仑山早古生代地质特征与演化.中国科学(D辑),1996,26(4):302~307
    [109]潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196-203
    [110]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,(3):224-232
    [111] P.S.Mozley,P.Wersin.作为沉积环境指示剂的菱铁矿的同位素组成组成. Geology, 1992.V.20, 817~820
    [112]曲国胜,陈杰,陈新安,等.西昆仑-帕米尔造山带及其北缘前陆盆地板内变形构造[J].地质论评,1998,44(4):419~429
    [113]曲国胜,王宗起,赵民.造山带弧形构造-西昆仑-帕米尔弧及其预测[J].地质科学,1996,31(4):313-326
    [114]任留东,高岩,等.西昆仑南带斜长角闪岩中方柱石的形成与流体挥发分的作用[J].岩石矿物学杂志,2002,21(4):398-406
    [115]山西省地质调查院. 1:25万区域地质调查报告叶亦克幅[R].2003
    [116]陕西省地质调查院. 1:25万区域地质调查报告阿克萨依湖幅[R].2006
    [117]陕西省地质调查院. 1:25万区域地质调查报告康西瓦幅[R].2006
    [118]陕西省地质调查院. 1:25万区域地质调查报告于田幅[R].2003
    [119]陕西省地质调查院.1:.25万区域地质调查报告伯力克幅[R].2002
    [120]陕西省地质调查院.1:.25万区域地质调查报告岔路口幅[R].2006
    [121]陕西省地质调查院.1:.25万区域地质调查报告恰哈幅[R].2006
    [122]陕西省地质调查院.1:.25万区域地质调查报告塔吐鲁沟幅(东北角)、斯卡杜幅(东北角)[R].2004
    [123]陕西省地质调查院.1:25万区域地质调查报告麻扎幅、神仙湾幅[R].2004
    [124]邵洁连.金矿找矿矿物学[M].北京,中国地质大学出版社,1988.
    [125]孙丰月,金巍,李碧乐.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [126]孙丰月.西昆仑造山带成矿条件研究[M].长春,吉林大学,2007
    [127]孙丰月.西昆仑造山带成矿条件研究[M].长春,吉林大学,2008
    [128]孙海田,李纯杰,李锦荣,等.西昆仑布伦口地区发现铁铜共生矿床成矿带[J].地球学报,1996,17(3):154
    [129]孙海田,李纯杰,李锦荣,等.新疆西昆仑盖山地区铜矿资源找矿地质条件[J].地质科技,1997,11:29-31
    [130]孙海田,李纯杰,吴海,等.西昆仑金属成矿省概论[M].北京:地质出版社,2003
    [131]孙世群,王道轩.西昆仑造山带北西向拉伸线理特征及其地质意义[J].安徽地质,1998,8(3):26-29
    [132]邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社,1990.
    [133]涂光炽,陈先沛.与热水沉积作用有关的矿床地球化学[M].北京:科学出版社,1987:131-168.
    [134]田毓龙,秦德先,林幼斌,沈振兴.喷流热水沉积矿床研究的现状与进展[J].
    [135]滕吉文,张中杰,杨顶辉,等.青藏高原地体划分的地球物理标志研究[J].地球物理学报,1996,39(5):629~641
    [136]汪玉珍,方锡廉.西昆仑、喀喇昆仑山花岗岩类时空分布规律的初步探讨[J].新疆地质,1987,5(1):10~24.
    [137]汪玉珍.西昆仑依沙克群的时代及其构造意义[J].新疆地质,1983.1 (1):1-8
    [138]王东安,陈瑞君.新疆库地西北一些克沟深海蛇绿质沉积岩岩石学特征及沉积环境[J].自然资源学报. 1989,4 (3) : 212~221
    [139]王书来,汪东波,祝新友,等.新疆塔木—卡兰古铅锌矿床成矿流体地球化学特征[J].地质地球化学,2002,30(4):34-39
    [140]王书来,汪东波,祝新友.西昆仑中间隆起带花岗岩及与铜金矿化关系[J].矿产与地质,2000,14(1),5~10
    [141]王书来,汪东波,祝新友.新疆西昆仑金(铜)矿找矿前景分析[J].地质找矿论丛,2000,15(3):224-229
    [142]王书来,祝新友,汪东波,等.新疆布仑口铜矿带地质特征及找矿方向[J].有色金属矿产与勘查,1999,8(4):198-202
    [143]王登红.块状硫化物矿床的地球化学找矿标志[J].地质科技情报,1994,13(2):81-86
    [144]王义.新疆阿克陶县切列克其铁矿地质特征及成因探讨[J].新疆有色金属,2005,增刊:2-4
    [145]王元龙,李向东,毕华,等.西昆仑库地北构造带两侧地质特征对比及其大地构造意义[J].地质地球化学,1997,2(2):53~59
    [146]王元龙,李向东,毕华,等.西昆仑库地蛇绿岩的地质特征及其形成环境[J].长春地质学院学报,1997,27(3),305~309
    [147]王元龙,李向东,黄智龙.新疆西昆仑康西瓦构造带地质特征及演化[J].地质地球化学,1996,02:48-54
    [148]王元龙,王中刚,李向东,等.西昆仑加里东期花岗岩带的地质特征[J].矿物学报,1995,15(4):437~441
    [149]王战华,赵祖应等.土根曼苏砂岩铜矿新认识[J].新疆有色金属. 2003,增刊:12-15
    [150]王志洪,李继亮,侯泉林,等.西昆仑库地蛇绿岩地质、地球化学及其成因研究[J].地质科学,2000,35(2):151~160
    [151]吴益平,张照伟,张小梅,李艳阳,李永寿.新疆昆仑山北缘一带含金硅铁建造中金矿床特征及找矿标志[J].西北地质,2007,(4).17-25
    [152]肖克炎,朱裕生,张晓华,等.矿产资源评价中成矿信息提取与综合技术[J].矿床地质,1999,18(4):379-384.
    [153]肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑),2000,30(增刊):22~28
    [154]肖序常,李廷栋.青藏高原的构造演化与隆升机制[M].广东:广东科技出版社,2005
    [155]肖序常,刘训,高锐,等.西昆仑及邻区岩石圈结构构造演化--塔里木南-西昆仑多学科地学断面简要报道[J].地质通报,2002,21(2):63~68
    [156]肖序常,王军,苏犁,等.再论西昆仑库地蛇绿岩及其构造意义[J].地质通报,2003,22(10):745-750
    [157]肖序常,王军.西昆仑-喀喇昆仑及邻区岩石圈结构、演化中几个问题的讨论[J].地质论评,2004,50(3):285-294
    [158]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993
    [159]许荣华,张玉泉,谢应雯,等.西昆仑山北部早古生代构造-岩浆带的发现[J].地质科学,1994,29(4):313~328
    [160]许志琴,戚学样,刘福来,等.西昆仑康西瓦加里东期孔兹岩系及地质意义[J].地质学报,2004,28(6):733~743
    [161]许志琴,杨经绥,李海兵,等.青藏高原研究聚焦——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质,2006,33(2):221-238
    [162]许志琴,李海兵.造山的高原-青藏高原巨型造山拼贴体和造山类型.地学前缘,2006,13(4):1-17
    [163]姚凤良,孙丰月.矿床学教程[M].北京,地质出版社,2006.
    [164]薛春纪,祁思敬,马国良等.秦岭泥盆纪海底热液沉积岩的岩石学和地球化学.北京:地质出版社,1993.
    [165]杨克明.论西昆仑大陆边缘构造演化及塔里木西南盆地类型[J].地质论评,1994,40(1):9~18
    [166]杨坤光,刘强,张传林,等.西昆仑康西瓦断裂带新发现的麻粒岩[J].地质科技情报,2003,100~104
    [167]杨树锋,陈汉林,董传万.西昆仑库地蛇绿岩的特征及其构造意义[J].地质科学. 1999,.34 (4) : 281~288.
    [168]印建平,田培仁,戚学祥,等.西昆仑塔木-卡兰古铅锌铜矿带含矿岩系的地质地球化学特征[J].现代地质,2003,17(2):143-150
    [169]印建平,王旭东,李明,等.西昆仑卡拉塔什矿区含铜砂岩中发现钴矿[J].地质通报,2003b,22(9):736-739
    [170]袁波.新疆西昆仑卡兰古、塔木铅锌矿地质特征和矿化富集规律研究[D].吉林:吉林大学,2005
    [171]袁超,孙敏,李继亮,等.西昆仑库地蛇绿岩的构造背景来自玻安岩系岩石的新证据[J].地球化学,2002,31(1):43~48
    [172]袁超,孙敏,李继亮.西昆仑中带两个花岗岩体的年龄和可能的源区[J].科学通论,1999,44(5):534~538
    [173]袁超,孙敏,肖文交,周辉,候泉林,李继亮,原特提斯的消减极性:西昆仑128公里岩体的启示[J].岩石学报,2003,19(3):399-408
    [174]袁超,周辉,孙敏,等.西昆仑山库地北岩体的地球化学特征及构造意义[J].地球化学,2000,29(2):101~107
    [175]叶海敏,王爱国,郭坤一,等.西昆仑库地基性脉岩地球化学及构造意义[J].资源调查与环境,2003,24(3):185-191
    [176]张传林,杨淳,沈加林,等.西昆仑北缘新元古代片麻状花岗岩锆石SHRIMP年龄及其意义[J].地质论评,2003,49(3):239~244
    [177]张传林,于海锋,沈家林,等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004,50(6) :639—643.
    [178]张贵宾,高锐,肖序常.横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟[J].地球学报,2001,22(6):541~546
    [179]张招崇,肖序常,王军,等.西昆仑山普鲁新生代火山岩中包体的发现及其地质意义[J].地球科学--中国地质大学学报,2002,27(4):386~390
    [180]张招崇,肖序常,王军,等.西昆仑新生代钾质火山岩的地球化学及其对源区的约束[J].地质学报(英文版),2004,78(4):576
    [181]张志德,李青龄,杨德补.康西瓦断层的地质特征及形成和演化[J].新疆地质,1987,5(3): 50--56.
    [182]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [183]赵宇,张传林,郭坤一,等.西昆仑山东段石炭纪火山岩岩石地球化学特征及其形成的构造背景.火山地质与矿产,2001,22(3):186~192
    [184]周辉,储著银,李继亮,等.西昆仑库地韧性剪切带的40Ar-39Ar年龄[J].地质科学, 2000,35(2) :233—239.
    [185]周辉,李继亮,侯泉林,等.西昆仑库地大型韧性剪切带的厘定[J].科学通报,1999,44(16):1774~1777
    [186]周辉,李继亮,侯泉林,等.西昆仑库地蛇绿混杂带中早古生代放射虫的发现及其意义[J].科学通报,1998,43(22):2448~2451
    [187]周志坚,曾志钢,陈世平.新疆西昆仑塔木-卡兰古铅-锌矿区成矿特征及找矿方向[J].矿产与地质,2004,18(102):128-133
    [188]周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床.地质地球化学,1997,6(1):65~75.
    [189]祝皆水.新疆金矿主要成因类型,新疆地质,1989,7(4):60-67
    [190]祝新友汪东波王书来.新疆阿克陶县塔木—卡兰古铅锌矿带矿床地质和硫同位素特征[J].矿床地质,1998,17(3):204-214
    [191]祝新友,汪东波,王书来.新疆塔木-卡兰古MVT型铅锌矿带地质特征[J].有色金属矿产与勘查,1997,(4):202~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700