用户名: 密码: 验证码:
硫酸盐还原菌对几种金属材料的腐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料的微生物腐蚀给国民经济造成巨大的经济损失,硫酸盐还原菌(Sulfate reducing bacterial, SRB)是金属腐蚀中最重要的细菌之一。因此研究金属材料的SRB腐蚀的影响因素及防治方法对实际工业生产有着重要的意义。
     本文用稀释试管法及平皿夹层厌氧法分离提取了SRB,采用电化学测试技术和微生物分析等方法系统研究了SRB对低合金钢、双相不锈钢和抗菌不锈钢的腐蚀行为及温度、pH值、流速等因素的影响规律。研究结果表明:
     杆状SRB在低合金钢表面局部富集、附着,它通过阳极去极化作用加速低合金钢的腐蚀;三种低合金钢的耐蚀性降低顺序为:09Cr2AlMoRe、08Cr2AlMo、10CrMoAl。低合金钢在接菌海水中的腐蚀产物中S元素含量为9.23%,腐蚀产物主要为FeS。在SRB的菌液中,随着温度升高低合金钢的腐蚀速率增加,且腐蚀反应遵循Arrhenius关系。灭菌培养基+SRB介质中pH值为5~8范围内,pH=8时的腐蚀速率最大。
     在灭菌海水+乳酸钠介质中加入SRB后,双相不锈钢的钝化膜遭受破坏,钝化膜电阻急剧降低,腐蚀电位发生负移,维钝电流密度增加,SRB加速了双相不锈钢的阳极溶解过程。含铜抗菌不锈钢NSSAM3对SRB的杀菌率为90.67%。SRB在对数生长期迅速繁殖,在NSSAM3表面吸附形成疏松、不均匀的生物膜加速了不锈钢的腐蚀。但随着时间延长,NSSAM3释放的铜离子浓度由2.735μg/mL增至8.590μg/mL,导致SRB菌体失去活性,丧失分裂增殖能力而最终死亡。因而NSSAM3在菌液中的阳极极化电流密度减少,交流阻抗值增加。XPS测试表明,SRB介质中浸泡未经打磨处理的NSSAM3的表面膜主要由FeS、FeS2、FeO、Fe2O3、CrO3和CrO42-组成,与无菌介质相比,由于铬的氧化物发生溶解,导致不锈钢的耐蚀性下降。
     当培养基+SRB介质中硫酸根离子浓度较低时,其浓度的增加会加速10CrMoAl钢的腐蚀。在细菌生长初期加入10mmol/L的钼酸钠可以明显地减小10CrMoAl钢的腐蚀速率。新洁尔灭和戊二醛对7×104个/mL的SRB的最低杀菌浓度分别为300mg/L和60mg/L。相同浓度的新洁尔灭和戊二醛按体积比1:1.5复配,杀菌效率最高。
     用溶胶凝胶法在304不锈钢表面制备的二氧化钛薄膜和在碳钢表面制备的Ni-P-纳米TiO2化学镀复合镀层对SRB腐蚀具有防护作用,在SRB菌液中长期浸泡后,仍可保持良好的耐蚀性能。
Microbiologically Influenced Corrosion caused huge economic losses to the national economy. Sulfate reducing bacterial (SRB) is one of the most important bacterial. It is very important to the actual industrial production to research on the impact factors of SRB corrosion and control methods.
     In this paper, SRB is isolated and purified by culture dish sandwich anaerobic Method. The effect of SRB on corrosion behavior of low alloy steel, duplex stainless steel and antibacterial stainless steel and the effect law of temperature, pH and velocity on SRB corrosion were investigated by electrochemical testing technique and microorganism analysis. The results show that:
     Bacilliform sulfate-reducing bacterial attaches and accumulates on local surface of low alloy steel. SRB accelerated corrosion of low alloy steel by anodic depolarization, the reducing order of corrosion resistance is 09Cr2AlMoRe、08Cr2AlMo、10CrMoAl. In SRB medium, the content of S element in corrosion product is 9.23%, which is mainly FeS. Depolarizing agent sulfides concentration increasing with temperature caused corrosion rate increase. Moreover, corrosion reaction follows Arrhenius relation. The corrosion rate is the highest when pH equals to 8.The corrosion rate increase with rotating speed and velocity.
     Inoculating of SRB into the sterile seawater plus sodium lactate medium, the passive film of duplex stainless steels is damaged; the corrosion potentials turn negative, passive current densities increase. Sterilization rate of antibacterial stainless steel contained copper to SRB is 90.67%. SRB rapidly propagate in logarithmic grow period and form loose biofilm on the surface of NSSAM3, which induces the sensitivity to local corrosion. However, the concentration of Cu2+ in SRB medium increases to 8.590μg/mL from 2.735μg/mL with increasing time, anodic polarization current density of NSSAM3 decreases and polarization resistance increases .XPS indicadesthat the surface film of NSSAM3 with no polshing in SRB is made of FeS、FeS2、FeO、Fe2O3、CrO3 and CrO42-. Compare to sterile medium, the corrosion resistance of NSSAM3 decreases because of chrome oxide being dissolved.
     When sulfate ion concentration in the medium is lower than 1.0%, its concentration increases will accelerate the SRB induced corrosion. By adding 10 mmol/L of sodium molybdate in bacterial growth beginning, the corrosion rate of 10CrMoAl steel can be significantly reduced. We must add appropriate amount of sodium molybdate before forming a biofilm on the metal surface if we want to prevent SRB corrosion. The minimum bactericidal concentration of Glutaraldehyde and Bromogeramine to 7×104 cfu/mL of SRB are 300mg/L and 60mg/L, respectively. The same concentration Bromogeramine and glutaraldehyde mixed at volume ratio of 1:1.5 have the most efficient sterilization.
     Titanium dioxide thin film on the surface of 304 stainless steel prepared by sol-gel method and Ni-P-nano-TiO2 composite coatings of electroless plating on carbon steel have a protective role on SRB corrosion, they may still maintain a good corrosion resistance after they were long-term immersed in the SRB bacteria.
引文
[1]Hadley R F. Microbiological anaerobic corrosion of steel pipeline[J]. Oil and Gas Tour,1939,38(19):92-96.
    [2]Butlin K R, Vemon W H J,Whiskin L C. Investigation on underground corrosion[J]. Water sanitary engineering,1952,2:468-472.
    [3]Kulman F E. Microbiological corrosion of buried steel pipe[J]. Corrosion,1953,9(1): 11-18.
    [4]Iverson W P. Advance in corrosion science and technology [J]. International Biodeterioration,1972,5(2):1-42.
    [5]Minchin L T. Cathodic characteristics of mild steel in suspension of sulfate-reducing bacteria[J]. Coke and Gas,1956,18(12):495-504.
    [6]Puekorius. Recommended practice for biological analysis of water flood injection water[S]. API RP-38.1959,327-329.
    [7]Cormbie D J, Moody G J, Thomas J D R. Corrosion of iron by sulfate-reducing bacteria [J]. Chemical And Industry,1980,21(6):520-524.
    [8]张学元,王凤平,杜元龙,等.石油工业中的细菌腐蚀和防护[J].石油和天然气化工,1999,28(1):53-56.
    [9]俞敦义,彭方明,郑家燊.硫酸盐还原菌对油田套管腐蚀的研究[J].石油学报,1996,17(1):154-158.
    [10]Wagner P, Little B. Impact of Alloying on Microbiologically Influenced Corrosion-A Review[J]. Materials Performance,1993,9:65-68.
    [11]尤里克H H.腐蚀与腐蚀控制—腐蚀科学和腐蚀工程导论[M].北京:石油工业出版社.
    [12]邱学青,肖锦.硫酸盐还原菌的腐蚀性与杀菌处理的缓蚀效果研究[J].油田化学,1991,2(8):149-150.
    [13]阿特拉斯R M.石油微生物学[M].北京:石油工业出版社,1991.
    [14]Hao J. Sulfate-reducing bacteria[J]. Critical Reviews in Environmental Science and Technology.1996,26(2):155-187.
    [15]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1999.
    [16]李文融.硫酸盐还原菌[J].工业水处理,1986,6(1):52.
    [17]Postgate J R. The sulfate reducing Bacteria[M]. Cambridge University Press, UK,1984.
    [18]王爱杰.产酸脱硫反应器中SRB的生态学研究一顶极群落形成与生态因子调控[D].哈尔滨:哈尔滨建筑大学,2000.
    [19]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [20]山丹.大庆油田注水系统硫酸盐还原菌的分布规律及生态因子研究[D].哈尔滨:哈尔滨工业大学,2005.
    [21]陈皓文.海洋硫酸盐还原菌及其活动的经济重要性[J].黄渤海海洋学报,1998,16(4):64-74.
    [22]Widdel F, Bak F. The prokaryotes:a handbook on the biology of bacteria of:ecophysiology, isolation, identification, applications [M]. New York:Springer-Verlag,1992.
    [23]Hardy J A, Hamilton W A. The oxygen tolerance of sulfate reducing bacteria isolated from North Sea waters[J]. Current Microbiology,1996,32 (5):259-262.
    [24]Marshall C, Frenzel P, Cypionka H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria[J]. Archives Microbiology,1993,159:16 8-173.
    [25]Liang C, Liu M Y, Jean L G. Characterization of Electron Transfer Proteins[M]. New York Plenum Press,1995.
    [26]张小里,陈志昕.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224-229.
    [27]Maree J P, Strydom W F. Biological sulphate removal in an upflow packed bed reactor[J]. Water Research,1985, (9):1101-1106.
    [28]刘宏芳,冯绪文.细菌的变异及其腐蚀行为的研究[J].材料保护,2000,33(7):5-6.
    [29]赵海,李安命,万波,等.一株中度嗜盐硫酸盐还原菌的分离及生理特性研究[J].应用与环境生物学报,1995,1(1):61-67.
    [30]Bratcova S, Groudev S, Georgiev P. The effect of some essential environmental factors on the microbial dissimilatory sulphate reduction [A]. Annual of the university of mining and geology 'St.Ivan Rilski' part Ⅱ, mining and mineral processing [C]. Sofia:University St. Kliment Ohridski,2002,44/45:123-127.
    [31]Marchal R, Chaussepied B, Warzywoda M. Effect of ferrous ion availability on growth of a corroding sulfate-reducing bacterium [J]. Int. Biodeterior. Biodegradation, 2001,47 (3):125-131.
    [32]康勇,孔琦,冯颖,等.COD与FeO对硫酸盐还原菌还原作用的影响[J].天津大学学报,2006,39(4):396-399.
    [33]刘晓华,万海清.亚硫酸盐还原酶的分离纯化和酶学性质的研究[J].酿酒科技,2006,(6):28-31.
    [34]赵阳国,任南琪,王爱杰,等.铁元素对硫酸盐还原过程的影响及微生物群落响应[J].中国环境科学 2007,27(2):199-203.
    [35]俞敦义,彭芳明,刘小武,等.环境对硫酸盐还原菌生长的影响[J].材料保护1996,29(2):1-2.
    [36]Von Wolzogen Kuhr, Van der Vlugt. De Graphiteering Van Gieti jzer Ais Electrobiochemish Process in Anaerobe Gronden[J]. Water,1934,18(6):147.
    [37]Booth G H, Tiller A K. Cathodic characteristics of mild steel in suspensions of sulfate-reducing bacteria[J]. Corrosion Science,1968(8):583-600.
    [38]Costello J A. Cathodic depolarization of sulfate-reducing bacteria[J]. Corrosion Science,1974,70:202-204.
    [39]Iversion W P. Direct evidence for the cathodic depolarization theory of bacterial corrosion[J]. corrosion Science,1966,1(51):986-988.
    [40]Angel L P, Luo J S, White D C. Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater[J]. Corrosion Science,1995,37(7):1085-1096
    [41]Rainha V L, Fonseca T E. Kinetic studies on the SRB influenced corrosion of steel: a first approach[J]. Corrosion Science,1997,39(4):807-813.
    [42]俞敦义,金永成,刘小武,等.硫酸盐还原菌的去极化作用[J].材料保护,1998,31(7):4-5.
    [43]King R A.Study on mechanism of microbiology corrosion[J]. Nature.1971,233(5):491.
    [44]Miller J, King R A. In microbial aspects of deterioration of materials[M]. London, Academic press,1971.
    [45]King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulfides[J]. British Corrosion Journal,1973,8:137-141.
    [46]Salvarezza R C, Videla H A. Passivity breakdown of mild steel in seawater in the presence of sulfate reducing bacterial[J]. Corrosion,1980,36(10):550-554.
    [47]Romero, Duque Z, Rincon O T. Microbiological corrosion: hydrogen permeation and Sulfate-Reducing Bacteria[J]. Corrosion,2002,58(5):129-435.
    [48]Romero M, Duque Z, Rodriguez L. A study of microbiologically induced corrosion by Sulfate -Reducing Bacteria on carbon steel using hydrogen permeation[J]. Corrosion, 2005,61(1):68-75.
    [49]Iverson, Warren P. Research on the mechanisms of anaerobic corrosion[J]. International Biodeterioration &Biodegration,2001,47:63-70.
    [50]Starkey R L. The general physiology of the Sulfate-Reducing Bacteria in relation to corrosion[J]. Producers Monthly,1958,22(2):12-16.
    [51]Pourbaix A, Aguiar L E. Local corrosion process in the presence of Sulfate Reducing Bacteria[J]. Corrosion Science,1993,35(1-4):693-698.
    [52]Schaschl E. Elemental Sulphur as a Corrodent in deaerated neutral aqueous solutions [J]. Material Performance,1980,19:7.
    [53]Newman R C, Wong W P, Garner A. A mechanism of microbial pitting in stainless steel [J]. Corrosion,1986,42:489-491.
    [54]Cristofaro N B, Acosta C A, Salvarezza R C, et al. The effect of sulfides on the electrochemical behavior of AISI 304 stainless steel in neutral buffered solutions [J]. Corrosion,1984,42:240-242.
    [55]lee W, Characklis W G. Corrosion of mild steel under anaerobic biofilm corrosion[J] 1993,49(3):186-199.
    [56]刘宏芳,刘烈炜,许立铭.生物膜对碳钢腐蚀的影响[J].中国腐蚀与防护学报,1999,19(5):291-295.
    [57]Hardy J A, Brown J L. The Corrosion of mild steel by biogenic sulfide films exposed to air[J]. Corrosion,1984,12(40):650-654.
    [58]Brennenstuhl A M, Gendron T S, Cleland R. Mechanisms of underdeposit corrosion in freshwater cooled austenitic alloy heat exchangers[J]. Corrosion science,1993,35 (1-4):699-711.
    [59]Ismail K M, Jayaraman A, Wood T K, et al. The influence of bacteria on the passive film stability of 304 stainless steel [J]. Electrochimica Acta 1999,44:4685-4692.
    [60]Pitonzo B J, Castro P. Microbiogically influenced corrosion capability of bacterial isolated from Yucca mountain[J]. Corrosion,1984,12(40):650-654.
    [61]胥聪敏,张耀亨,程光旭,等.316L不锈钢在硫酸盐还原菌和铁氧化菌共同作用下的腐蚀行为[J].2006,27(5):65-69.
    [62]皮振邦,樊友军,华萍,等.混合菌种对碳钢腐蚀行为的电化学研究[J].腐蚀科学与防护技术,2002,14(3):166-171.
    [63]Lee W, Characklis W G. Corrosion of mild steel under anaerobic biofilm[J]. Corrosion, 1993,49(3):186-197.
    [64]Booth G H, Tiller A K. Cathodic characteristic of mild Steel in suspensions of sulfate reducing bacteria[J]. Corrosion science,1993,8:583-600.
    [65]Starkey R L. Proceedings of International Conference on Biologically Induced Corrosion[C]. Houston, TX:NACE,1985.
    [66]许立铭,董泽华,罗逸,等.硫酸盐还原菌对碳钢腐蚀的影响研究[J].华中理工大学学报,1996,24(4):78-81.
    [67]Mcneil M B. Mackinawite formation during microbial corrosion[J]. Corrosion, 1990,46(7):599-601.
    [68]刘宏芳,许立铭,郑家燊.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):41-46.
    [69]朱绒霞,那静彦,郭生武,等.硫酸盐还原菌的腐蚀机理[J].空军工程大学学报,2000,1(3):10-12.
    [70]Hector A. Videla. Corrosion products and biofilm interaction in the SRB influenced corrosion of steel[J]. NACE,2002, Paper No.02557.
    [71]Beech I. B. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion [J]. Microbiology Today,2003,30:115-117.
    [72]Torres-Sanchez R, GarcoAa-Vargas J, et al. Corrosion of AISI 304 stainless steel induced by thermophilic sulfate reducing bacteria (SRB) from a geothermal power unit[J]. Materials and Corrosion 2001,52,614-618
    [73]刘宏芳,覃启华,许立铭,等.不同种群硫酸盐还原菌腐蚀行为研究[J].石油与天然气化工,2000:30-31.
    [74]Javaherdashti R. A Review of some characteristics of MIC caused by Sulfate-Reducing Bacteria:past, present and future [J]. Anti-Corrosion Methods and Materials,1999, 46(3):173-180.
    [75]Li S Y, Kim Y G, Jeon K S. Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil[J]. Corrosion,2001,57(9):815-828.
    [76]Dowling N J E, Guezennec J. Analysis of carbon steels affected by bacterial using electrochemical impedance and direct current techniques[J]. Corrosion,1988,44(12): 869-874.
    [77]Starosvertsky D, Khaselev O. Effect of iron exposure in SRB media on pitting initiation [J]. Corrosion Science,2000,42:345-359.
    [78]Ringas C, Robinson F P A. Corrosion of stainless steel by sulfate-reducing bacterial electrochemical techniques[J]. Corrosion,1987,44(6):386-396.
    [79]Ringas C, Robinson F P A. Corrosion of stainless steel by sulfate-reducing bacterial total immersion test results[J]. Corrosion,1988,44(9):671-673.
    [80]Moreno D A, de Mele M F L. Effect of inorganic and biogenic sulfide on localized corrosion of heat-treated type 304 stainless steel[J]. Corrosion,1991,47(1):24-30.
    [81]Borenstein S W. Microbiologically influenced corrosion of austenitic stainless steel weldments[J]. Materials performance,1991,47(1):52-54.
    [82]Borenstein S W, White D C. Influence of welding variables on microbiologically influenced corrosion of austenitic stainless steel weldments[J]. Corrosion NACE, Huston,1989,Paper NO.183.
    [83]Abedi S Sh, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline[J]. Engineering Failure Analysis,2007,14 (1):250-261.
    [84]Enos D G, Taylor S R. Influence of sulfate-reducing bacterial on alloy 625 and austentic stainless steel weldments[J]. Corrosion,1996,52(11):831-842.
    [85]Werner S E, Johnson C A. Pitting of type 304stainlees steel in the presence of a biolfilm containing sulfate reducing bacteria[J]. Corrosion Science,1998,40(2-3):465-480.
    [86]Brennenstuhl A M, Gendront T S, Cleland R. Mechanism of underdeposit corrosion in freshwater cooled austenitic alloy hest exchangers[J]. Corrosion Science,1993, 35(1-4):699-711.
    [87]Gouda V K, Shalaby H M, Banat I M. The effect of sulfate reducing bacteria on the electrochemical behaviour of corrosion resistant alloys in seawater[J]. Corrosion Science,1993,35(1-4):683-691.
    [88]Angell P, Urbanic K. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys [J]. Corrosion Science,2000,42:897-912.
    [89]Gomez S G, de Saravia, de Mele M F L. Interaction of biofilms and inorganic passive layers in the corrosion of Cu/Ni alloys in chloride environments[J]. Corrosion, 1990,46(4):302-305.
    [90]Huang G T, Cahn K Y, Herbert H P.Microbiologically induced corrosion of 70Ci-Ni alloy in anaerobic seawater[J]. Journal of the Electrochemical Society,2004,151(7):434-439.
    [91]Shalaby H M, Hasan A A, Al-Sabti F. Effect of inorganic sulfide and bacterial microfouling on corrosion of 70/30 copper nickel alloy in seawater. Corrosion NACE, 1998, Paper NO.285.
    [92]Romero, Duque Z. de Rincon 0 T. Online monitoring systems of microbiologically influenced corrosion on Cu-10%Ni alloy in chlorinated, brackish water[J]. Corrosion, 2000,56 (8):869-876.
    [93]刘光洲,钱建华,马焱,等.B10合金的硫酸盐还原菌腐蚀研究.电化学,2002,8(2):191-194.
    [94]郑强.硫酸盐还原菌对铜合金腐蚀电化学行为的影响[D].北京:北京交通大学,2006.
    [95]马振瀛.航空器材及燃料系统的微生物腐蚀[J].工业微生物,1997,27(2):37-40.
    [96]李松梅,孙杰,刘建华,等.海水体系中铝合金微生物腐蚀的研究[J].新技术新工艺,2000,12.31-32.
    [97]陈兴尧,刘建华.一九九六年中国材料研讨会论文集[C].北京:化学工业出版社,1997,514-518.
    [98]Wagner P, Little B. Impact of alloying on microbiologically influenced corrosion-a review[J]. Materials Performace,1993,9(5):65-79.
    [99]Shutz R. W. A case for titanium resistance to microbiologically influenced corrosion[J]. Materials Performance,1991,30(1):58-67.
    [100]Meneil M. B, Odom A. L. Prediction of sulphiding corrosion of alloys induced by consortia containing sulfate reducing bacteria[J]. Corrosion Testing,1992,6:58-74.
    [101]Beck D D, Siegel R W. Dissociative adsorption of hydrogen sulfide over nanophase titanium dioxide[J]. Journal of Materials Research,1992,7(10):2840-2845.
    [102]Rao T S, Aruna Jyothi Kora, B. Anupkumar S. V. Narasimhan, R. Feser. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris) [J]. Corrosion Science 2005,47:1071-1084.
    [103]Dubiel M, Hsu C H, Chien C C, et al. Microbial Iron Respiration Can Protect Steel from Corrosion [J]. Applied and Environmental Microbiology,2002,68 (3):1440-1445.
    [104]Hamilton W. A. Microbially influenced corrosion as a model system for the study of metal microbe interactions:a unifying electron transfer hypothesis [J]. Biofouling, 2003,19 (1):65-76.
    [105]Mansfeld F, Little B. The application of electrochemical techniques for the study of MIC- a critical review[J]. NACE 1990, Paper No.108.
    [106]Mansfeld F, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion [J]. Corrosion Science,1991,32(3) 247-272.
    [107]武素茹,段继周,赵晓栋,等.碳钢在富集硫酸盐还原菌海水中的腐蚀行为研究[J].腐蚀科学与防护技术,2007,19(4):247-250.
    [108]Santana Rodriguez J J, Santana Hernandez F J, Gonzalez Gonzalez J E. Comparative study of the behaviour of AISI 304 SS in a natural seawater hopper, in sterile media and with SRB using electrochemical techniques and SEM[J]. Corrosion Science,2006, 48(5):1265-1278.
    [109]Mansfeld F, Hsu C H, Sun Z, et al. Technical note:ennoblement-A common phenomenon [J]. Corrosion,2002,58 (3):187-191.
    [110]Omek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media[J]. Corrosion science,2002,44:2291-2302.
    [111]Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition(MICI) with EIS and ENA[J]. Electrochimica Acta,2002,47 (13):2319-2333.
    [112]Mora-Mendoza J L, Padilla-Viveros A A. Electrochemical kinetics of Sulfate Reducing Bacteria isolated from a gas pipeline. NACE 2003, Paper No.03548.
    [113]Ricardo Galvan-Martinex.Graciela Garcia-Caloca. Comparison of electrochemical techniques during the corrosion of X52 pipeline steel in the presence of sulfide reducing bacteria. NACE 2003, Huston, Paper No.03545.
    [114]Campaignolle X, Crolet J L. Method studying stabization of localized corrosion on Sulfate-Reducing Bacteria[J]. Corrosion,1997,53(6):440-447.
    [115]Li X Y, Kim Y G, Kho Y T. Corrosion behavior of carbon steel influenced by Sulfate-Reducing Bacteria. Corrosion NACE, Huston,2003, Paper NO.03549.
    [116]Mansfeld F B, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion[J]. Corrosion science,1991,32(3):247-272.
    [117]Chen G, Clayton C R. Influence of Sulfate-reducing bacteria on the Passivity of Type 304 Austenitic Stainless Steel[J]. J. Electrochem. Soc.1997,144(9):3140-3146.
    [118]Dufre ne. Application of atomic force microscopy to microbial surfaces:from reconstituted cell surface layers to living cells[J]. Micron,2001,32:153-165.
    [119]杜一立,李进,葛小鹏,等.用原子力显微镜研究铜合金微生物的腐蚀行为[J].中国腐蚀与防护学报,2008,28(6):321-324.
    [120]Bruno C. van der Aa, Yves F. Dufre ne.In situ characterization of bacterial extracellular polymericsubstances by AFM[J]. Colloids and Surfaces B:Biointerfaces 2002,23:173-182.
    [121]Chen Z Y, Guo X P, Huang J Y, et al. AFM study of the effect of metronidazole on surface structures of sulfate-reducing bacteria[J]. Anaerobe,2006,12:106-109.
    [122]王伟,王佳,徐海波,等.微生物腐蚀研究方法中的表面分析技术[J].中国腐蚀与防护学报,2007,27(1):60-64.
    [123]Walsh D. Environmentally acceptable methods control pipeline corrosion at lower cost[J]. Materials Performance,1997,36(2):71-76.
    [124]Henry V R, Wolgang S. Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms[J]. Journal of Microbiological Methods,1998,33(6):227-235.
    [125]Jim A, Billman. Antibiofoulants:A practical methodology for control of corrosion caused by Sulfate-Reducing Bacteria[J]. Materials Performance,1997,36(9):43-48.
    [126]黄廷林,张钢.采油废水中硫酸盐还原菌的二氧化氯杀灭实验研究[J].环境工程,2000,18(6):22-24.
    [127]刘宏芳,董泽华,范汉香,等.硫酸盐还原菌耐药性研究[J].微生物学通报.1997,24(6):334-336.
    [128]AnneD M,M cinemey A L, Su bleteK L. Microbial control of the production of hydrogen sulf ide by sulfate-reducing bacteria[J]. Biotechnology and Bioengineering,1990,35 (5):533-539.
    [129]黄金营.含咪唑杂环的长链烷基双季铵盐的合成及其特性研究[D].武汉:华中科技大学,2005.
    [130]李松梅,刘建华,武海燕,等.一种控制腐蚀微生物的新方法-电化学杀菌[J].腐蚀与防护,2004,25(6):256-259.
    [131]Guezennec J. Influence of cathodic protection of mild steel on the growth of sulfate-reducing bacteria at 35℃ in marine sediments[J]. Biofouling 1991,3 (4):339-348.
    [132]Li S, Kim Y, Jeon Y, et al. Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil[J]. Corrosion,2001,57(9):45-49.
    [133]Kajiyama F, Okamura K. Evaluating cathodic protection reliability on steel pipe in microbially active soils [J]. Corrosion,1999,55(1):74-80.
    [134]孙成.土壤中硫酸盐还原菌对钢铁的腐蚀影响研究[D].沈阳,中国科学院金属研究所,2004.
    [135]苑海涛,弓爱君,李晓刚,等.脱氮硫杆菌生长特性及其对碳钢SRB腐蚀的防护作用研究[J].化学与生物工程,2009,26(5):50-54.
    [136]Sandbeck K A, Hitzman D O. Proceeding of the Fifth International Conference on MERO and Related Biotechnology for Solving Environmental Problems[C]. Bryant:US Dept of Energy,1995,311-322.
    [137]Gevertz D, Jenneman G E, Zimmerman S. Field demonstration of sulfide removal in reservoir brine by bacteria indigenous to a Cana-dian reservoir[C]. Proceeding of the Fifth International Conference on MEOR and Related Biotechnology for Solving Environmental Problems. Bryand:US Dept. of Energy,1995,295-307.
    [138]汪梅芳,刘宏芳,许立铭.细菌竞争生长在微生物腐蚀防治中的应用研究[J].中国腐蚀与防护学报,2004,24(3):259-262.
    [139]Nemati M, Jenneman G E, Voordouw G. Mechanistic Study of Microbial Control of Hydrogen Sulfide Production in Oil Reservoirs[J]. Biotechnology and Bioengineering,2001, 74(5),424-434.
    [140]Voordouw G, Nemati M. Use of Nitrate-reducing, Sulfide-Oxidizing Bacterial to reduce souring in oil field interaction with SRB and effects on corrosion. NACE 2002, paper02034.
    [141]Jayaraman A, Hallock P J. Inhibiting Sulfate-Reducing Bacteria in biofilms on steel with antimicrobial peptides generated in Situ[J] Applied Microbiology and Biotechnology,1999,52 (2):267-275.
    [142]孙红尧,李震,陈水根.耐微生物腐蚀涂料的研制[J].水利水运工程学报,2002,2:16-20.
    [143]吕人豪.工业循环冷却水中微生物腐蚀及其控制.1979年腐蚀与防护学术报告论文集(海水、工业水、微生物部分)[C].北京:科学出版社,1982.358-359.
    [144]Industry Circulating Cooling Water-Sulfate Reducing Bacterial-MPN test[S]. Criterion of Peoples Republic of CHINA:GB14643-93.
    [145]穆军,张肇铭.一种分离纯化厌氧细菌的新方法-平皿夹层厌氧法[J].山西大学学报(自然科学版),1998,21(4):363-367.
    [146]卞玉峰.08Cr2AlMo钢管在胜利炼油厂热交换器上的应用[J].齐鲁石油化工,2002,30(3):245-247.
    [147]刘红禹,王艳云,余滨江.抗H2S腐蚀的08Cr2AlMo材料应用[J].管道技术与设备,2006,4:41-42.
    [148]郑文龙,吴晓白,林荣珑,等.抗H2S应力腐蚀开裂08Cr2AlMo热交换器专用钢管[J].石油化工腐蚀与防护,2000,17(2):27-33.
    [149]束润涛,朱启鹏.耐H2S腐蚀的稀土合金钢(09Cr2AlMoRE) [J].石油化工腐蚀与防护,2001,18(4):21-25.
    [150]于福州.金属材料的耐蚀性[M].北京:科学出版社,1992.
    [151]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [152]Maree J P, Strydom W F. Biological sulphate removal in an upflow packed bed reactor [J]. Water Res.,1985, (9):1101-1106.
    [153]胥聪敏,张耀亨,程光旭,等.炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J].中国腐蚀与防护学报,2007,27(1):48-52.
    [154]刘宏芳,许立铭,郑家燊.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):42-48.
    [155]张忠国.Fe2+/Fe0强化硫酸盐还原菌还原过程的研究[D].天津,天津大学,2003.
    [156]陈野.硫酸盐还原菌腐蚀的影响因素及其防治方法[D].大连,大连理工大学,2004.
    [157]黄建中,左禹.防腐蚀材料特性和腐蚀数据[M].北京:化学工业出版社,2002:165-167.
    [158]屈金山,王元良.双相不锈钢焊接接头的耐腐蚀性能[J].中国有色金属学报,2001,11(1):194-198.
    [159]付燕,林昌健.微电化学技术研究双相不锈钢优选腐蚀行为[J].金属学报,2005,41(3):302-306.
    [160] Marcus P, Surface science approach of corrosion phenomena[J]. Electrochimica Acta, 1998, 43,1-2:109.
    [161] Matilde F. de Romero, Sandra Urdaneta. Correlation between desulfovlbrio sessile growth and ocp, hydrogen permeation, corrosion products and morphological attack on iron. NACE 04576.
    [162] McNeil M B, Jones J M, Little B J. Mineralogical fingerprints for corrosion processes induced by sulfate reducing bacterial . Corrosion /91, paper No. 580.
    [163] Hector A V, Monica F L. Comparative study of the corrosion product films formed in biotic and abiotic media. Corrosion /99, paper No. 163.
    [164] Chen G, Clayton C R. The influence of sulfate reducing bacterial on the passivity of type 317L austenitic stainless steel [J]. J Electrochem Soc, 1988 145 (6): 1914-1922.
    [165] Chen G, Clayton C R. X-ray Photoelectron Spectroscopy Analysis of Mo Metal Surface Exposed to Sulfate-reducing Bacteria[J]. Surface and Interface Analysis. 1999, 27:230-235 .
    [166] #12
    [167] #12
    [168] #12
    [169] #12
    [170]王静.抗菌陶瓷抗菌性能检测方法研究[J].江苏陶瓷,2001,34,4:11-12.
    [171]内田真志.银沸石[J].J.antibact.Antifung.Agents,1996,24(11):735-742.
    [172] Herbert H P, Li-Chong Xu, Kwong-Yu Chan. Effects of toxic metals and chemicals on biofilm and biocorrosion[J]. Water Research, 2002, 36: 4709-4716.
    [173] Llhan-Sungur E, Cansever N, Cotuk A. Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp. )[J]. Corrosion Science , 2007, 49: 1097 - 1109.
    [174]孙成.土壤中硫酸盐还原菌对钢铁腐蚀的影响研究[D].沈阳:中国科学院金属研究所,2004.
    [175] Maurice V , Yang W P , Marcus. X-Ray photoelectronspectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces[J]. Journal of Electrochemical Science, 1998 ,145 (3):909-920.
    [176]程学群,李晓刚,杜翠薇.316L和2205不锈钢在醋酸溶液中钝化膜的生长及其半导体属性的研究.第六届海峡两岸材料腐蚀与防护研讨会论文集[C].2008.
    [177]刘世宏.X射线光电子能谱分析[M].北京:科学出版社,1988.
    [178]黄金营,郑家燊.长链烷基甲硝唑季铵盐的缓蚀杀菌机理研究[J].江汉石油学院学报,2004,26(4):158-160.
    [179]潘碌亭,肖锦.天然高分子改性异奎啉季铵盐对SRB杀菌性能及机理的研究[J].工业用水与废水,2001,32(2):20-22.
    [180]张昌军,宋卫红,孙霞,等.新型季磷盐的合成及其杀菌性能研究[J].山东科技大学学报(自然科学版),2006,25(3):71-73.
    [181]刘宏芳,黄玲,刘涛,等.新型季鳞盐抗菌剂的合成及其抗菌性能研究[J].腐蚀科学与防护技术,2009,21(3):316-319.
    [182]高冰贤,赵艳谨,魏文林,等.新型双季铵盐缓蚀杀菌剂的合成及其性能研究[J].化学与生物工程2009,26(3):24-27.
    [183]王慧龙,刘靖,郑家燊,等.HCl介质中双季铵盐对碳钢的缓蚀作用[J].腐蚀科学与防护技术,2002,14(2):100-102.
    [184]史志琴,王冀生,王绍嵩,等.双季铵型杀菌剂的合成及其性能研究[J].工业水处理,2003,23(10):47-49.
    [185]殷飞.环境友好型双季铵盐的合成及性能研究[D].西安:陕西师范大学,2008.
    [186]Chen G, Clayton C R. X-ray photoelectron spectroscopy analysis of Mo metal surface exposed to Sulfate-reducing Bacteria[J]. Surface and Interface Analysis,1999,27: 230-235.
    [187]Hasnain I M, Anderson G K. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion[J]. Process Biochemistry,2005,40:2079-2089.
    [188]Chen G, Ford T E, Clayton C R. Interaction of Sulfate-Reducing Bacteria with molybdenum dissolved from sputter-deposited molybdenum thin films and pure molybdenum powder [J]. Journal of Colloid and Interface Science.1998,204,237-246.
    [189]聂绍发,朱桂宝,林天晖,等.新洁尔灭与戊二醛协同杀菌作用的实验研究[J].同济医科大学学报,2001,30(1):50-52.
    [190]马晓航,华尧熙,叶雪明.硫酸盐还原法处理含锌废水[J].环境科学,1995,16(4):19-21.
    [191]张小里,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报,1999,29(5):397-401.
    [192]Reis M A M, Almeida J S, Lemos P C. Effect of hydrogen sulfide on growth of Sulfate Reducing Bacteria[J]. Biotechnology and Bioengineering,1992,40(5):593-600.
    [193]Parkin G F, Sneve Loos. Anaerobic filter treatment of sulfate containing wastewater[J]. Water Science Technology,1991,23:1283-1285.
    [194]Postgate J R. Sulphate-Reducing Bacteria[M]. Cambridge University Press, Cambridge, 1984.
    [195]Hilton M G, Archer D B. Anaerobic digestion of sulphate rich molasses waste water: inhibition of hydrogen sulphide production[J]. Biotechnology and Bioengineering 1988,31,885-888.
    [196]Karhadkar P P, Audit J M, Faup G M, et al. Sulphide and sulphate inhibition of methanogenesis[J]. Water Research,1987.21.1061-1066.
    [197]邓慧华,陆阻宏.半导体光催化杀菌的机理和应用[J].东南大学学报,1996,26(6):1-6.
    [198]东稔节治,田谷正仁.活性碳光触媒担载TiO2粒子的抗菌效应[J].化学工业,1997,11:57-59.
    [199]鹿院卫,马重芳,王伟.纳米光催化杀菌技术及空气净化技术研究[J].工程热物理学报,2004,25(2):311-313.
    [200]余家国,赵修建.多孔TiO2光催化纳米薄膜的制备和微观结构研究[J].无机材料学报,2000,15(2):347-355.
    [201]刘守新,曲振平,韩秀文,等.Ag担载对TiO2光催化活性的影响[J].催化学报,2004,25(2):133-137.
    [202]刘守新,曲振平.Ag改性提高TiO2对Cr(Ⅵ)光催化活性还原机理[J].物理化学学报,2004,20(4):355-359.
    [203]金立国,赵晓旭,郭英奎.掺银纳米TiO2薄膜的制备与光催化性能研究[J].哈尔滨理工大学学报.2004,9(6):55-60.
    [204]宋来洲,李健,王福君.化学镀Ni—P合金/TiO2复合膜的耐蚀性研究[J].材料科学与工艺,2002,10(2):148-151.
    [205]车承焕.复合镀技术的发展和应用[J].材料保护,1991,9:4-7.
    [206]郭鹤桐,张三元.复合镀层[M].天津:天津大学出版社,1991.
    [207]Balaraju J N, Seshadri S K. Preparation and characterization of electroless Ni-P and Ni-P-Si3N4 composite Coating[J]. Trans IMF,1999,77 (2):8.
    [208]Sridhar N, Kolts J. Effects of nitrogen on the selective dissolution of a duplex stainless steel[J]. Corrosion,1987,43 (11):646.
    [209]Zhang D Q, Gao L X, Zhou G D. Inhibition of copper corrosion by bis-(1-benzotriazoly-methylene)-(2,5-thiadiazoly)-disulfide in chloride media[J]. Applied Surface Science,2004,225:287-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700