用户名: 密码: 验证码:
AZ31镁合金表面新型复合化学镀工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对镁合金耐蚀性低这一限制镁合金广泛应用的重要问题,采用新型化学镀方法,显著提高镁合金的腐蚀抗力。在对直接化学镀镍工艺详细分析的基础上,开发了新型化学镀镍方法;突破了直接化学镀的传统工艺,采用先涂敷后化学镀的复合镀新工艺路线,成功获得了表面致密均匀的银、铜、镍镀层,使镁合金的耐蚀性大幅度提高。
     本文首先系统分析了传统镁合金直接工艺镀镍工艺存在的问题。酸洗对样品的侵蚀比较严重,表面呈疏松多孔,这种疏松层易脱落,污染镀液,降低镀液使用寿命。更重要的是酸洗液中含有六价铬等对环境污染较严重的物质。化学镀时,镍在裸露的基体处沉积长大,快速连接形成镀层,过早地封闭了试样表面的疏松层,从而使基体与镀层之间存在大量孔洞。
     针对传统化学镀镍工艺中存在的不足,开发了一种新的直接化学镀镍工艺。设计了新的镀液体系,采用正交实验确定了新化学镀最佳工艺配方为:14g/L柠檬酸钠,10g/L氟化氢氨,10g/L氟化钾,pH=6,并分析了各个实验因素对沉积速度和耐蚀性的影响。与传统工艺相比,新工艺避免了使用氢氟酸和六价铬等对环境污染较严重的物质,简化了预处理步骤。新工艺镀层的自腐蚀电流比传统工艺的要低一个数量级。
     化学镀镍层对镁合金来说属于阴极性镀层,易与基体形成腐蚀电偶对,针对直接化学镀镍层的这一缺点,开发了一种新型复合化学镀工艺,即用先涂膜然后再化学镀的新方法对镁合金表面进行复合保护。经比较,涂膜材料选用了有机硅耐热漆。为了提高镀层与涂层的结合力,涂膜经过了粗化处理。为了使有机涂膜表面具备催化活性,进行了活化处理,以保证后续的化学镀能够顺利进行。
     本文首先对镁合金进行了新型复合化学镀银。确定了复合镀银的最佳条件,观察表明样品表面化学镀银的沉积过程属于岛状生长模式。极化曲线测试结果表明,镀后样品的自腐蚀电位比基体合金提高了约300mV。
     随后,对镁合金进行了新型复合保护化学镀铜处理,经过反复实验确定了化学镀铜的最佳反应条件:8~10g/L硫酸铜,30-35g/L次亚磷酸钠,10-20g/L柠檬酸钠,1g/L硫酸镍,pH=9,30-40g/L硼酸,温度70℃。化学镀60min后,镀层厚度可达7-8μm。镀覆后试样的自腐蚀电位比基体合金高约200mV。
     最后,本文对镁合金进行了新型复合保护化学镀镍处理,化学镀前要对试样进行胶体钯活化处理。化学镀后,样品表面沉积了了致密的镀镍层,它在3.5% NaCl溶液中腐蚀电流密度比基体合金低了约两个数量。将具有相同厚度镀层的直接化学镀镍工艺处理过的试样与新型复合化学镀工艺处理过的试样进行比较,浸泡腐蚀实验结果表明后者具有更好的耐蚀性。其主要原因是涂膜的存在将基体与镀层完全隔开,避免了基体-镀层形成腐蚀电偶对。
     新开发的复合化学镀工艺除了可以对镁及其合金进行化学镀以外,还适用于其它活性较高的材料,如钛及其合金,铝及其合金,锌及其合金等。
This paper developed some new methods to improve corrosion resistance of magnesium alloy and solve its poor corrosion resistance the problem in application. After analysing the mechanisms of pretreatment and deposited process of electroless Ni plating, a new electroless Ni plating process was developed. After the tranditional electroless plating method was broken, a new idea-clad electroless plating process was proposed by using organic coating and electroless plating, the surfaces of magnesium alloys were deposited respectively compact Ag, Cu and Ni films so that the corrosion resistacne of the substrates increased greatly.
     The process of traditional electroless Ni plating on magnesium alloy was investigated first. The Chromic acid etching could remove metal oxides and rusts. However it resulted in the surface corrosed severely, which needed careful control of the etching time. After aicd eching, the surface was losse and porous, which would pollute the plating bath and decrease the using period. When the sample was immerged in the solution, Nickel was firstly deposited on the bare substrate, and then the nickel coating rapidly covered the whole surface, which resulted in closing early the loose layer on the surface and there were lots of holes between the coating and substrate.
     In order to avoiding these disavantages, this paper provided a new electroless plating Ni process. The optimum bath of the new electroless Ni plating was proposed by the orthogonal experiment,14g/L C6H8O7·H2O, 10g/L NH4HF2, 10g/L KF, pH=6. And the effects of the bath components on deposition rate and corrosion resisitance were discussed. Compared with traditional process, new process uses no poisonous materials, such as hydrofluoric and chromic acid and the process of pretreatment was simplifies. Moreover, the current density of coated sample decreased one order of magnitude than that of AZ31 magnesium alloy.
     However, the potentiometry of plating coating is higher than that of magnesium alloy, thus the coating and magnesium form easily corrosive couple. To avoid this disadvantage, new process-clad electroless plating was developed by electroless plating after organic coating (organicsilicon heat-resisting varnish), in which organic coating acts as interlayer between the substrate and coating. Compared with epoxide resin, the organic-sillicon varnish coated magnesium alloy more perfectly. The result of the cross-cut test indicated that the adhesion between the substrate and the interlayer reached level 2. In order to increase the adhesion between the interlayer and coating, the surface of interlayer was roughed, and then was activated for subsequent plating.
     Firstly, Ag was coated on the AZ31 magnesium alloy by clad electroless plating. X-ray diffraction and SEM analysis showed that growth of the silver film was like "island"model. The potentiodynamic polarization showed that, the potential of the sample clad electroless plating increased by 300mV compared with AZ31 magnesium alloy.
     Secondly, Cu was coated on AZ31 magnesium alloy by clad electroless plating. After plating, a compact Cu film was deposited the surface of the substrate. The tests showed that the optimum bath contains 8~10g/L CuSO4·5H2O,30~35g/L NaH2PO2,10~20g/LNa3C6H5O7, lg/L NiSO4·6H2O,30~40g/L H3BO3, pH=9, T=70℃The polarization curves showed that the sample clad electroless plating increased by 200mV.
     Lastly, Ni was coated on AZ31 magnesium alloy by clad electroless plating. A Ni-P film with fine and dense structure was obtained on the substrate. The electrochemical measurements showed that the sample clad electroless plating exhibited lower corrosion current density and more positive corrosion potential than that of AZ31 magnesium alloy. Furthermore, the Ni-P coating on the AZ31 magnesium alloy exhibited high corrosion resistance in the accelerated corrosion test.
     Clad electroless plating process developed in this paper was environmentally friendly, no fluoride or hexacalent chromium compounds. In addition, it provided a new concept for plating the metals, such as Al alloys and Ti alloys which were considered difficult to plate due to high reactivity.
引文
1. 崔建忠,巴启先,班春燕,乐启炽.轻合金电磁冶金[M],沈阳:东北大学出版社,2005:12-16
    2. 乐启炽,崔建忠,赵晓红.镁合金熔体过滤净化工艺研究[J],特种铸造及有色合金,2005,25(6):333-335
    3. 郭世杰,乐启炽,崔建忠.加钙耐热镁合金的最新研究进展[J],材料导报,2004,18(10):44-46
    4. 王忠军,乐启炽,郭世杰,崔建忠,张彩碚.低频电磁铸造AZ41镁合金的热压缩流变与组织[J],中国有色金属学报,2006,1:123-129
    5. 朱祖芳.有色金属的耐腐蚀性及其应用[M],北京:化学工业出版社,1995:2-5
    6. 张永军,严川伟,王福会等.镁的应用及其腐蚀与防护[J],材料保护,2002,5(4):4-6
    7. Shijie Guo, Qichi Le, Yi Han, Zhihao Zhao, Jianzhong Cui. The effects of electromagnetic vibration on macrosegregation in AZ80 magnesium alloy billets [J], Materials Transactions,2006,47(2):392-398
    8. 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M],北京:机械工业出版社,2002,9:163-171
    9. 黄晓艳,周宏.镁合金的研究应用及最新发展,材料与冶金学报[J],2003,2(4):300-306
    10.张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J],世界科技研究与发展,2003,25(1):72-78
    11. Tunc Tuken, Zinc deposited polymer coatings for copper protection[J], Progress in Organic Coatings,2006,55:60-65
    12. Rajan Ambat, W. Zhou, Electroless nickel-plating on AZ91D magnesium alloy:effect of substrate microstructure and plating parameters[J], Surface and coatings Technology,2004,179:124-134
    13. J. Jutta Majumdar, R. Galun, B. L. Mordike, I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy [J], Materials Science and Engineering A361,2003,4:119-129
    14. B.L. Mordike, T. Ebert, Magnesium Properties-applications-potential[J], Materials Science and Engineering,2001,302:37-45
    15. A. Yfantis, I. Paloumpa, D. Schmeiber, D.Yfantis, Novle corrosion-resistant films for Magnesium alloys[J], Surface and coatings Technology,2002,151-152:400-404
    16. J. E Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review[J], Journal of Alloys and Compounds,2002,336:88-113
    17. B. L. Mordike, T. Ebert. Magnesium Properties-applications-potentia[J], Materials Science and Engineering,2001,302(2):37-45
    18. G S. Cole, A. M. Sherman. Lightweight Materials for automotive Applications[J], Materials Characterization,1995,35(5):3-9
    19.王秀鸾等.冶金和金属材料[M],北京:化学工业出版社,2001:12-16
    20.李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用[J],特种铸造及有色合金,1999,1:120-122
    21.刘正,王中光,王越.压铸镁合金在汽车工业中的应用和发展趋势[J],特种铸造及有色合金,1999,5:55-58
    22.张殉.镁合金产业的现状与发展[J],有色金属,2002,9:10-13
    23. R. Brown. Magnesium Automotive Meeting[J], Light Metal Age,1992,6:18-24
    24.耿浩然.镁合金的应用开发与展望[J],山东机械.2001,6:12-15
    25. Voytko J. E. Organic Finishing & Plating & Surface Finishing [J], Plating & Surface Finishing. 2000,8:54-56
    26.夏兰廷,藏东勉,罗小萍,师素粉.镁及镁合金在环境(介质)中的腐蚀行为[J],铸造,2006,55(9):950-952
    27.刘广,张振忠,张少明,沈晓冬,马立群[J].高阻尼镁锆合金的研究进展及展望[J],材料导报,2006,20:425-439
    28.李冬升,程晓农.抗蠕变镁合金研究进展[J],材料导报,2006,20:424-427
    29.王建军,王智民,郑晶.镁基复合材料的制备技术及其超塑性研究[J],铸造,2006,55(4):477-481
    30.李荣华,黄继华,殷声.镁基复合材料研究现在与展望[J],材料导报,2002,16(8):17-19
    31.付传锋,何孝成,夏华等.镁合金杆件等温复合挤压研究[J],模具工程,2006,5:39-41
    32.付传锋,张钰成,赖周艺,胡亚民.国内外镁合金等温锻造进展[J],中国机械工程,2006,17(增刊):135-139
    33.许越,陈湘,吕祖舜,周德瑞,赵连城.镁合金表面的腐蚀特性及其防护技术[J],哈尔滨工业大学学报,2001,33(6):33-35
    34.吴振宁,李培杰,刘树勋,曾大本.镁合金腐蚀问题研究现状[J],铸造,2001,50(10):33-36
    35.张永军,严川伟,王福会等.镁的应用及其腐蚀与防护[J],材料保护,2002,35(4):4-6
    36.吴振宁,李培杰,刘树勋,曾大本.镁合金腐蚀问题研究现状[J],铸造,2001,50(10):63-67
    37.李金桂,赵闽彦.腐蚀与腐蚀控制手册[M],北京:国防工业出版社,1988:32-36
    38.齐公台,郭稚弧,林汉同,魏伯康.腐蚀保护常用的几种牺牲阳极材料[J],材料开发与应用,2001,16(1):36-40
    39.余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮.Mg合金的腐蚀与防护[J],中国有色金属学报,2002,12(6):1087-1098
    40.李龙川,高家成,王勇.医用镁合金的腐蚀行为与表面变性[J],材料学报,2003,17(10):29-32
    41. Huaiyu Shao, Yuntao Wang, Hairuo Xu, Xingguo Li. Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy [J], Journal of Solid State Chemistry2005,178:2211-2217
    42. Guangling Song, Amanda L. Bowles, David H. StJohn. Corrosion resistance of aged die cast magnesium alloy AZ91D [J], Materials Science and Engineering A,2004,366:74-86
    43.张忠林,刘兆晶,李凤珍.镁合金燃点和耐蚀性及力学性能的研究[J],轻合金加工技术,2003,31(7):31-34
    44.樊昱,吴国华,高洪涛等.Ca对镁合金组织、力学性能和腐蚀性能的影响[J],中国有色金属学报,2005,15(2):210-215
    45.曹林锋,杜文博,苏学宽,聂祚仁,左铁镛.Ca合金化在镁合金中的作用[J],铸造技术,2006,27(2):182-184
    46.李娜,刘建睿,王栓强,沈淑娟,黄卫东,绛玉台.稀土在镁及镁合金中的应用[J],铸造技术,2006,27(10):1133-1136
    47.黎业生,董定乾,吴子平.稀土镁合金的研究现状及应用前景[J],轻合金加工技术,2006,34(4):1-6
    48. G. L. Makar, J. Kruger. Corrosion Studies of Rapidly Solidified Magnesium Alloy[J], Journal of Electrochemical Society,1990,2:414-421
    49.曾发翠.镁合金的应力腐蚀及其研究展望[J],甘肃冶金,2006,28(4):16-18
    50.王莹,张津,麻彦龙,吴超云.镁合金表面处理新进展[J],表面技术,2006,35(6):61-64
    51. ShigematsuM. Surface treatment ofAZ91D magnesium alloy by aluminum [J], Journal of Materials Science Letters,2000,19:473-475
    52.兰伟,孙建春,周安若,邱会东,张丁非.镁合金表面处理技术的研究现状[J],材料导报, 2006,20:428-.430
    53.姚军,孙广平,林文光.AZ91D镁合金激光熔覆A1+Al2O3涂层的界面特征[J],热加工工艺,2006,35(19):32-34
    54. Hikmet Altun, Sadri Sen. The effect of DC magnetron sputtering AIN coatings on the corrosion behaviour of magnesium alloys [J], Surface& Coatings Technology,2005,197:193-200
    55. Hikemet Altun, Sadri Sen. The effect of PVD coating on the corrosion behavior of AZ91 magnesium alloy [J], Materials and Design,2006,27:1174-1179
    56. M. Vilarigues, L. C. Alves, I.D. Nogueira. Characterisation of corrosion products in Cr implanted Mg surfaces [J], Surface and Coatings Technology,2002,158-159:328-333
    57.雷明凯,李朋,常海威.金属离子高温注入原理与工艺研究[J],中国表面工程,2006,19(2):1-5
    58.幸松民,王一璐.有机硅合成工艺及产品应用[M],北京:化学工业出版社,2003:11-15
    59.姚江柳,贾朝阳.高功能性有机硅改性聚酯树脂的研究[J],上海涂料,2007,45(7):4-6
    60.赵燕,卿宁,孙宁.聚氨酯/无机刚性纳米复合材料的制备进展[J],皮革化工,2006,23(6):13-17
    61.陈建兵,王宇,王武生,曾俊.聚丁二烯二醇改性水基聚氨酯分散体合成研究[J],皮革化工,2007,24(3):24-28
    62.李书卿,罗建勋,韩茂清,申屠勇敢,单志华.水性聚氨酯在皮革涂饰中的应用[J],皮革化工,2007,24(2):35-39
    63.郑家焱,李可彬.聚硅氧烷改性醇酸树脂的研究[J],合成树脂与塑料,1992,9(3):22-26
    64.丁筱强,相宏伟,夏旭林.有机硅改性醇酸树脂性能的研究[J],精细石油化工,1993(1):31-34
    65.李正仁.金属表面涂塑[M],北京:冶金工业出版社,1994:56-59
    66.周新华,尹国强,廖列文,崔英德.丙烯酸酯-有机硅氧烷接枝共聚乳胶[J],涂料工业,1999,29(5):45-49
    67.杨慕雄.有机硅改性丙烯酸涂料的研究[J],涂料工业,1991(3):1-4
    68.吴双成.塑料粗化原理与实践[J],材料保护,2000,33(10):20-21
    69.邬润德,童筱莉,周安定.有机硅氧烷原位接枝聚合改性丙烯酸树脂研究[J],涂料工业,1999,33(5):5-8
    70. Scbralla L, Adlcr H J, Bram C, Method for treating metallic surfaccs[M],1998:45-47
    71.罗运军,桂红星.有机硅树脂及其应用[M],北京:化学工业出版社,2002:7-17
    72.晨光化工研究院.有机规单体及聚合物[M],北京:化学工业出版社,1986:398-410.
    73.阿迈隆国际公司.还氧聚硅氧烷涂料和地板组合物[P],C. N. Patent:1,173,191A,1998
    74.王宏刚,毛绍兰,高金堂.耐热有机硅树脂研究进展[J],粘接,2003,3:29-33
    75. James M, Derek W B. Siloxane-polyester Compositions[P], U. S. Patent:4,521,461,1985
    76.刘克祥,刘敏,侯丽华,张书香.有机硅改性环氧树脂的研究进展[J],山东化工,2007,36:12(6):11-13
    77.杨玉玮,张爱波,李明.有机硅改性有机合成树脂的研究状况[J],高分子通报,2007,7:50-53
    78.谢海安,王伟.聚氨酯改性环氧树脂的研究[J],应用化工.2007,36(8):779-781
    79.张文军,朱春宇.不饱和聚酯树脂改性研究进展[J],热固性树脂,2007,22(4):41-45
    80.文艳霞,闫福安.水性醇酸树脂的合成及改性的研究进展,上海涂料[J],2007,45(2):21-25
    81.包汇川,傅知青,曾朝霞,燕冲,陈焕钦.醇酸改性硝化纤维素水乳液的制备研究[J],涂料工业,2007,37(3):27-29
    82.赵慧昂,于文.丙烯酸改性改性丙烯酸聚合物在玻璃清洗剂中的应用研究[J],日用化学品科学,2007,30(8):27-30
    83.杜茂平,毛君绒,曾睿.丙烯酸酯涂料改性研究现状及发展趋势[J],涂料涂装与电镀,2006,4(5):11-14
    84.周铭,张玉兴,周树军.丙烯酸树脂的制备及其在涂料中的应用与研究现状[J],上海涂料,2007,45(7):25-29
    85.梁永政,郝远,张汉茹等.镁合金表面技术的研究近况[J],铸造设备研究,2003,5:48-51
    86.梁春林,刘宜汉,韩变华,李红兵,吉海滨,姚广春.镁合金表面处理研究现状及发展趋势.表面技术[J],2006,35(6):57-64
    87.谭昌瑶,王钧石.实用表面工程技术[M],北京:新时代出版社,1998:33-37
    88. Truong V T, Lai P K, Moore B T, et al. Corrosion protection of magnesium by electroactive polypyrrole paint coatings[J], Synthetic Metals,2000,110:7-15
    89. Jiang Y F, Guo X W. Corrosion protection of polypyrrole electrodeposion on AZ91 magnesium alloys in alkaline solutions[J], Synthetic Metals,2003,139:335-339
    90. De Long H K. Method of producing a metallic coating on magnesium and its alloys[P], U. S. Patent:252,6,544,1950
    91.姜巍巍,李峻青,张密林,刘冰,刘海燕.镁合金表面防护涂层的研究进展[J],电镀与涂饰,2006,25(11):42-45
    92. Kurze P. Magnesium Legicrurngen clcktrochemisch beschichten[J], Metallober fluche,1994, 48(2):104-105
    93. Fumihiro S, Yoshihiko A, Takenori N. Corrosion Behavior of Magnesium Alloys with Differrent Surface Treatments [J], Journal of Japan Institute of Light Metals,1992,42(12):752-758
    94.周婉秋,单大勇,曾荣昌,韩恩厚,柯伟.镁合金的腐蚀行为与表面防护方法[J],材料保护,2002,35(7):1-3
    95.赵明,吴树森,罗吉荣,毛有武.镁合金无铬表面处理现状和前景[J],铸造,2003,52(7):462-466
    96. Tran Bao Van, Brun S. D., Write G P. Anodic spork reation products in aluminate, tungstate and silicate [J], Bullertions Americasocity,1997,56 (6):563-565
    97. Dittrick K. H., leoazd L. G. Microare oridation of aluminium components cryst [J], Res.Technol, 1984,19(1):93-96
    98. Van T.B., Brown S.D., Wirz.G P. Mechanism of Anodic spark Deposition [J], Am. Ceram.Soc. Bull,1997,6(1):87-115
    99. Kurze P. Magnesium Legicrumgen clcktrochemisch beschichten[J], Metallober fluche,1994, 48(2):104-105.
    100.薛文斌,邓志威,来永春,陈如意,张道和.有色金属表面微弧氧化技术评述[J],金属热处理,2000,1(1):1-3
    101. J. E. Gray, P. R, K. Griffiths. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane) [J], Thin solid films,2005,484:196-207
    102.薛文斌.铝合金微弧氧化过程中能量转化的实验研究[J],表面技术,1997,26(3):21-24
    103.王燕华,王佳,张际标.微弧氧化处理对AZ91D镁合金腐蚀行为的影响[J],中国腐蚀与防护学报,2006,26(4):216-220
    104. De Long H K. Electrodeposition of metal from alkaline cyanide bath[P], U. S. Patent:2,654,702, 1948
    105. Delong H K. Plating on magnesium[J], Metal Finishing Guidebook,1978,11(1):175-183
    106.向阳辉,胡文彬,沈彬,赵昌正,丁文江.镁合金直接化学镀镍的初始沉积机制[J],上海交通大学学报,2000,34(12):1638-1644
    107.向阳辉,刘宽新,胡文彬等.镁合金化学镀镍的磷含量控制[J],电镀与环保,2001,21(2):25-27
    108. K.Nisancidglu, O. Lunder, T. K. Aume. Corrosion Mechanism of AZ91 Magnesium Alloys[J], Protection Of 47th World Magnesium AssociationⅤ,1990:43-50
    109.李宁.化学镀实用技术[M],北京:化学工业出版社,2003:66-69
    110.朱伟勇.正交与回归正交试验法的应用[M],沈阳:辽宁人民出版社,1978:2-4
    111.高允彦.正交及回归试验设计方法[M],沈阳:冶金工业出版社,1988:5-9
    112.褚庆国,黄燕滨,刘菲菲,梁志杰.Ni2P/Al2O3化学复合镀镀液及工艺研究[J],电镀与涂饰,2006,24(9):17-20
    113.姜晓霞,沈玮.化学镀理论及实践[M],北京:国防工业出版社,2000:121-126
    114.李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M],哈尔滨:哈尔滨工业大学出版社,2000:33-35
    115.王建泳,成旦红,张庆,李科军,苏永堂.AZ31镁合金无氰化学镀镍工艺的研究[J],电镀与涂饰,2006,25(3):43-46
    116.刘宽新,向阳辉,胡文彬,丁文江.镁合金上高耐蚀性组合镀层[J],电镀与环保,2004,24(6):3-5
    117.胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术[J],北京:化学工业出版社,2003:34-38
    118.武利民.涂料技术基础[M].北京:化学工业出版社,2000:58-62
    119. Antonio Perez Padilla, Jorge A. Rodriguez, Hugo A. Saitua. Synthesis and water ultrafiltration properties of silver membrane supported on porous ceramics[J], Desalination,1997,114(2): 203-208
    120. B. L. Mordike, T. Ebert. Magnesium Properties-applications-potential[J], Materials Science and Engineering,2001,302:37-45
    121. Fang Mei, Donglu Shi, Electroless Plating of Thin silver films on porous Al2O3 substrate and the study of deposition kinetics[J], Tsinghua science and technology,2005,10(6):680-689
    122. Thin-Chia Huang, Ming-Chi Wei, Huey-Ing Chen, Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition[J], Separation and Purification Technology,2003,32:239-245
    123. V.Bogush, A. Inberg, N. Croitoru, V. Dubin, Y. Shachanm-Diamand, Electroless deposition of novel Ag-W thin films[J], Microelectronic engineering,2003,70:489-494
    124. Hui Zhao, Jiangzhong Cui,Electroless plating of silver on AZ31 magnesium alloy substrate[J], Surface & Coatings Technology,2006,201:4512-4517
    125. GB/T 9286-1998, Paints and varnishes-cross cut test for films[P], China,1999
    126.仵海东,曹鹏军,刘筱薇,范培耕.镁合金表面涂装前处理工艺研究[J],电镀与涂饰, 2006,25(10):14-15
    127. W. C Wang, R. Hvora, E. T. Kang, K. GNeoh. Electroless plating of copper on fluorinated polyamide films modified by surface grant copolymerization with 1-vinylimidazole and 4-vinylpyridine[J], Polymer Engineering and Science,2004,44 (1):362-375
    128. Antonio Perez Padilla, Jorge A.Rodriguez, Hugo A.Saitua. Synthesis and water ultrafiltration properties of copper membranes supported on porous ceramics[J], Desalination,1997,114 (9): 203-208
    129. S. J. Choi, J. Choi, C. Y. Seo, C. N. Park. An electroless copper plating method for Ti, Zr-based hydrogen storage alloys[J], Journal of Alloys and Compounds,2003,356-357(2):725-729
    130. R. S Liu, C. C. You, M. S. Tsai, S. F. Hu, Y. H. Li, C. P. Lu. An investigation of smooth nano-sized copper seed layers on TiN and TaSiN by new non-toxic electroless plating[J], Solid State Communications,2003,125 (3):445-448
    131. Yingpeng Gong, Zhangcheng Guo, Weichang Lu. Electroless copper coating on nickel foils in super-gravity field[J], Materials Letters,2005,59 (5):667-670
    132. Eugenijus Norkus, Algirdas Vaskelis, Jane Jaciauskiene, Irena Stalnioniene, Giedrius Stalnionis. Obtaining of high surface roughness copper deposits by electroless plating technique[J], Electrochemica Acta,2006,51 (6):3495-3499
    133. Paunov Icm, Zebl Isky. Properties and structure of electrolesscopper[J], Plating Surface Finishing, 1985,72 (2):52-54
    134.杨防祖,杨斌,黄剑廷,吴丽琼,黄令,周绍民.次磷酸钠化学镀铜镍合金的研究[J],电镀与涂饰,25(7),2006:1-3
    135.曾华梁,吴仲达.电镀工艺手册[M].北京:机械工业出版社,2002:56-61
    136.于雄,张鹏,姚振.非胶体钯活化PET塑料化学镀铜的研究[J],装饰与电镀,2007,3:29-32
    137.王勇,张远明,陈云飞.半导体硅表面化学镀铜[J].电镀与涂饰,2005,25(2):5-7
    138. Yoshiki H, Hashimoto K, Fujishima A. Reaction Mechanismof Electroless Metal Deposition Using ZnO Thin Film(I):Process of Catalyst Formation[J], J Electrochem Soc,1995,142(2): 428-432
    139.谷新,王周成,林昌.健陶瓷表面化学镀的前处理工艺新进展[J],材料保护,2003,36(9):1-4
    140.霍宏伟,李明升,尹红生,陈庆阳.AZ91D镁合金化学镀镍前处理工艺及腐蚀行为研究[J],表面技术,2006,35(5):40-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700