用户名: 密码: 验证码:
高拉速板坯连铸结晶器内钢/渣界面行为的数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高拉速条件下结晶器内的卷渣是困扰连铸生产的一个技术难题,尤其是浸入式水口吹氩时结晶器内的流动与钢/渣界面行为变得更为复杂,对其的控制也更加困难。因此,揭示并把握高拉速与吹氩条件下结晶器内的钢/渣界面行为特征以及操作参数的影响规律就显得尤为重要。针对目前关于钢/渣界面和卷渣研究工作中很少同时涉及高拉速和吹氩条件下的情况以及保持结晶器内双循环流型的条件仍不清晰的现状,本文采用数学和物理模拟相结合的研究方法对高拉速和吹氩条件下板坯结晶器内钢/渣界面和流动行为进行了研究,主要研究内容和获得的结果如下:
     (1)按照相似原理建立了结晶器物理模型研究体系,观察有、无吹气条件下结晶器内水/油界面运动和卷混现象;根据不同的工艺条件确定结晶器水模型内的临界吹气量(即保持双循环流型)。为数学模型的验证和完善提供基础。
     (2)利用连续性方程、动量方程、湍流模型、Lagrange多相流模型和界面波动模型VOF(Volume of Fluid)方法建立了描述结晶器内钢/渣界面行为的数学模型,并采用CSF (Continuum Surface Force)模型考虑钢/渣界面张力作用。在用水模型验证的基础上,描述了高拉速与吹氩条件下钢/渣界面瞬态行为特征,揭示了操作参数与界面行为之间的定量关系,并提出了抑制界面波动和防止熔渣层乳化的措施。结果表明:
     ①提高拉速明显加剧钢/渣界面的波动和增加界面速度,且最大界面速度位于距离窄面1/3附近处。拉速由1.4 m/min升至2.2 m/min过程中,最大波高的增幅达8.5mm,最大界面速度增加了0.087m/s;增大结晶器宽度对降低最大波高和界面速度的影响并不大;增加水口浸入深度和下倾角度能有效抑制钢/渣界面波动和降低界面速度,浸入深度由120 mm增至220 mm,最大波高降低了5.2mm,最大界面速度减少了0.052 m/s,水口出口角度每向下增加5°,以上两值分别降低约3.7 mm和0.05 m/s;熔渣黏度对钢/渣界面形状几乎没有影响,而适当增加熔渣黏度可降低最大界面速度,熔渣黏度由0.02 kg/(m·s)增至0.50 kg/(m·s),该值的降幅达0.059 m/s。
     ②吹氩使气泡上浮区域内的钢/渣界面速度降低,同时也导致波高显著上升。当钢流量为3.20 ton/min(所对应的拉速为1.8 m/min),吹氩量为4.5 L/min时,结晶器内的上循环区明显缩小;增至9.0 L/min时,钢液流型已转为单循环且界面波动剧烈。吹氩量由0增至9.0 L/min过程中,最大波高升高了7.7 mm,而最大界面速度降低了0.111 m/s。当吹氩量为4.5 L/min,钢流量由2.13 ton/min(所对应的拉速1.2 m/min)增至3.91 ton/min(所对应的拉速2.2 m/min),上循环流重新出现,且界面卷混减弱,最大波高降低了2.4 mm。钢液流动特征和界面行为受钢流量(拉速×结晶器宽度)和吹氩量的影响,两者的合理匹配对获得双循环流和平稳的钢/渣界面至关重要。
     ③增加水口浸入深度对抑制吹氩下钢/渣界面波动的作用较明显,当浸入深度由120 mm增至220 mm,最大波高和界面波动范围均降低了3.5 mm;气泡尺寸也显著影响钢/渣界面行为。
     (3)利用Lagrange多相流模型定量研究了吹氩结晶器内双循环流形成条件,确定实际操作参数下的临界吹氩量,并提出保持此流型的控制手段。在本研究条件中,当钢流量为2.84 ton/min(所对应的拉速1.6 m/min),吹氩量为6.0 L/min时,钢液流型已从双循环转为单循环。选择与其他工艺参数匹配的吹氩量是保证双循环流型的重要条件,临界吹氩量范围随钢流量的增加而扩大。当钢流量较大(>2.5ton/min)时,减小结晶器宽度和增加水口浸入深度均有助于扩大临界吹氩量范围,适当减少水口下倾角度使上循环流的趋势略有增强;当钢流量较小ton/min)时,以上操作参数的影响均不显著。
Mold powder entrapment with high casting speed is a technical problem in the continuous casting of steel. The fluid steel flow and steel/slag interface behavior become more complex and the control on them are also more difficult, especially blowing argon gas from the SEN (Submerged Entry Nozzle). Therefore, it is highly emphasized to reveal steel/slag interfacial behavior and the influences of operating parameters on it. On account of the present research on the steel/slag interface and powder entrapment phenomena in the mold rarely involving high casting speed and blowing argon gas simultaneously, as well as the conditions of maintaining a double-recirculation flow pattern (DRFP) in the mold is still inexplicit, the fluid steel flow pattern and interfacial behavior of fluid steel and molten slag in a slab continuous casting mold with both high casting speed and blowing argon gas were investigated by mathematical and physical simulations in this paper. The main contents and results obtained are as follows:
     (1) The physical model for the mold has been established according to similarity principle. Water/oil interfacial movement and entrainment phenomena with and without blowing gas have been observed and the critical air flowrate (to maintain DRFP) have been achieved under the different casting conditions in mold model. The results of physical model are greatly essential to validate and perfect the numerical model.
     (2) The mathematical model to simulate the interfacial behavior between fluid steel and molten slag layer in a slab continuous casting mold with blowing argon gas has been developed by the conservation equations for mass continuity and momentum, turbulence model, Lagrange multi-phase model, VOF (Volume of Fluid) method, and CSF (Continuum Surface Force) model considering the steel/slag interfacial tension. Steel/slag interfacial transient behavior with high casting speed and blowing argon gas and the quantitative relationship between operating parameters and interfacial behavior have been described and revealed basing on the prediction results validated by the water model. In addition, the countermeasures to restrain the interface fluctuation and avoid the emulsification phenomena of the molten slag have been presented. The results show that:
     ①Steel/slag interface fluctuates strongly and the interface velocity increases significantly along with raising the casting speed, moreover, the maximum interface velocity is found about 1/3 of the mold width to the narrow face. Within the range of casting speed from 1.2 m/min to 2.2 m/min, the maximum wave height and the largest interface velocity increase by 8.5 mm and 0.087 m/s, respectively. Mold width has a little impact on the maximum wave height and interface velocity; nevertheless, increasing the penetration depth and downward port degree of SEN can effectively restrain interfacial oscillations and decrease the whole interface velocity. The maximum wave height and interface velocity decrease by 5.2 mm and 0.052 m/s, respectively, with the submergence depth added from 120 mm to 220 mm. Furthermore, the downward port degree increasing every 5°, the above two values approximately reduce by 3.7 mm and 0.05m/s, respectively. Molten slag viscosity has hardly influence on interfacial profile of steel and slag, however, the maximum steel/slag interface velocity decreases with increasing molten slag viscosity, and it reduces by 0.059 m/s with molten slag viscosity increasing from 0.02 kg/(m·s) to 0.50 kg/(m·s).
     ②Blowing argon gas can reduce the steel/slag interface velocity of the region with the bubbles floating up, it also lead to wave height increasing remarkably at the same time. For a giving fluid steel mass flowrate of 3.20 ton/min (corresponding to the casting speed of 1.8 m/min), the upper circulation region is significantly suppressed with argon gas flowrate of 4.5 L/min, while the flow pattern of fluid steel changes to single recirculation, and the steel/slag interface fluctuates evidently with argon gas flowrate increasing to 9.0 L/min. The maximum wave height increases by 7.7 mm, nevertheless, the maxim interface velocity decreases by 0.111 m/s from the mold without argon gas to the flowrate of 9.0 L/min. In the process of the fluid steel mass flowrate increasing from 2.13 ton/min (corresponding to the casting speed of 1.2 m/min) to 3.91 ton/min (corresponding to the casting speed of 2.2 m/min) with the argon gas flowrate of 4.5 L/min, the upper recirculation appears again, and steel/slag interface entrainment are weakened, moreover, the maximum wave height is lowered by 2.4 mm. Fluid steel flow pattern and interfacial behavior of steel and slag strongly depend on the fluid steel mass flowrate (casting speed×mold width) and the argon gas flowrate, so it is very important that the argon gas flowrate matches the fluid steel mass flowrate for ensuring the DRFP and the even steel/slag interface.
     ③Increasing the submergence depth of SEN is useful to reduce interfacial oscillations in the mold. The maximum wave height and fluctuation range of steel/slag interface both reduce by 3.5 mm when the submergence depth increasing from 120 mm to 220mm, moreover, bubble size also has a remarkable influence on the interfacial behavior of fluid steel and molten slag.
     (3) The condition for the formation of the DRFP in a slab continuous casting mold with blowing argon gas has been quantitively described using the Lagrange multi-phase flow model, and the operating parameters for maintaining the DRFP have been presented. The flow pattern of fluid steel changes from double recirculation to single recirculation with the fluid steel mass flowrate of 2.84 ton/min (corresponding to the casting speed of 1.6 m/min) and argon gas flowrate of 6.0 L/min in this study condition. The critical argon gas flowrate increases with the increasing fluid steel mass flowrate, and the range of argon gas flowrate for keeping the DRFP will be enlarged by decreasing the mold width and increasing the submergence depth of SEN as the fluid steel mass flowrate is more than 2.5 ton/min, nevertheless, the port downward angle of SEN has little effect on it. However, the operation parameters have no significant influence on it as the fluid steel mass flowrate is below 2.5 ton/min.
引文
1.王雅贞,张岩,刘术国.新编连续铸钢工艺及设备[M],北京:冶金工业出版社,1999,12-14.
    2.干勇,刘浏,王新林,董瀚.新世纪冶金工业的发展与展望[J],中国冶金,2003,1:24-29.
    3.干勇.钢铁生产流程发展及先进钢铁材料研究的展望[J],宝钢技术,2007,1:1-6.
    4.雷洪.连铸结晶器内异相迁移行为的数学物理模拟(D),沈阳:东北大学,2000,2-4.
    5. Hintikka S, Konttinen J, Leiviska K. Optimization of Molten Steel Flow in Continuous Casting Mold [A],75th Steelmaking Conference Proceedings [C],1992,887-891.
    6.李宝宽赫冀成.炼钢中的计算流体力学[M],北京:冶金工业出版社,1998,265-265.
    7. Thomas B G Modeling of the continuous casting of steel-past, present, and future [J], Metallurgical and Materials Transactions B,2002,33(6):795-812.
    8.谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践(D),重庆:重庆大学,2004,3-4.
    9. Emling W H, Waugaman T A, Feldbauer S L, Cramb A W. Subsurface Mold Slag Entrapment in Ultra Low Carbon Steel [A].77th Steelmaking Conference Proceedings [C],1994,371-379.
    10. Thomas B G. Modeling of Continuous-Casting Defects Related to Mold Fluid Flow [J], Iron and Steel Technology,2006,3(7):128-143.
    11. Han Z J, Holappa L. Bubble bursting phenomenon in Gas/Metal/Slag systems [J], Metallurgical and Materials Transactions B,2003,34(5):525-532.
    12. Andrzejewski P, Gotthelf D, Julius E, Haubrich H. Mould flow monitoring at no.3 slab caster, Krupp Hoesch Stahl AG [A],80th Steelmaking Conference [C],1997, 153-157.
    13. Assar M B, Dauby P H, Lawson G D. Opening the Black Box:PIV and MFC Measurements in a Continuous Caster Mold [A],83rd Steelmaking Conf. Proceedings [C], 2000,397-411.
    14. Kunstreich S, Dauby P H. Electromagnetic stirring in slab caster molds before and after year 2000 [A], Proceedings of CSM 2003 Annual Meeting [C],2003,653-657.
    15. Kunstreich S, Dauby P H. Effect of liquid steel flow pattern on slab quality and the need for dynamic electromagnetic control in the mould [J], Ironmaking and Steelmaking, 2005,32(1):80-86.
    16. Zhang L F, Yang S B, Cai K K, Li J Y Wan X G, Thomas B G.Investigation of Fluid Flow and Steel Cleanliness in the Continuous Casting Strand [J], Metallurgical and Materials Transactions B,2007,38(1):63-83.
    17. Dauby P H, Kunstreich S. Electromagnetic Stirring in Slab Caster Molds:What and Why [J], Iron and Steelmaker,2003,30(11):21-29.
    18. Liovic P, Liow J L, Rudman M. A Volume of Fluid (VOF) Method for the Simulation of Metallurgical Flows [J], ISIJ International,2001,41(3):225-233.
    19. Liovic P, Rudman M, Liow J L. Numerical modelling of free surface flows in metallurgical vessels [J], Applied Mathematical Modelling,2002,26(2):113-140.
    20. Ilegbusi O J, Szekely J. Interfacial phenomena and computational fluid-mechanics in materials processing [J], ISIJ International,1994,34(12):943-950.
    21. Panaras G A, Theodorakakos A, Bergeles G.Numerical investigation of the free surface in a continuous steel casting mold model [J], Metallurgical and Materials Transactions B,1998,29(5):1117-1126.
    22. Takatani K, Tanizawa Y, Mizukami H, Nishimura K. Mathematical model for transient fluid flow in a continuous casting mold [J], ISIJ International,2001,41(10): 1252-1261.
    23.刘和平,王忠英.板坯结晶器液面波动的数学物理模拟及其特点[J],钢铁研究,2002,2:47-50,54.
    24.谭利坚,沈厚发,柳百成,刘晓,徐荣军,李永全.连铸结晶器液位波动的数值模拟[J],金属学报,2003,39(4):435-438.
    25. Dash S K, Mondal S S, Ajmani S K. Mathematical simulation of surface wave created in a mold due to submerged entry nozzle [J], International Journal of Numerical Methods for Heat and Fluid Flow,2004,14(5):606-632.
    26. Miranda R, Barron M A, Barreto J, Hoyos L, Gonzalez J. Experimental and numerical analysis of the free surface in a water model of a slab continuous casting mold [J], ISIJ International,2005,45(11):1626-1635.
    27. Yuan Q, Thomas B G, Vanka S P. Study of transient flow and particle transport in continuous steel caster molds:Part Ⅰ. Fluid flow [J], Metallurgical and Materials Transactions B,2004,35 (4):685-702.
    28. Kamal M, Sahai Y. Modeling of melt flow and surface standing waves in a continuous casting Mold [J], Steel Research,2005,76 (1):44-52.
    29.张焕鑫,沈厚发,柳百成.连续铸造板坯结晶器中流动与液位波动模拟研究[J],铸造,2005,54(7):710-712.
    30.蔡开科,程士富.连续铸钢与工艺[M],北京:冶金工业出版社,1994,46-47.
    31. Gupta D, Lahiri A K. Water-Modeling Study of the Surface Disturbances in Continuous Slab Caster [J], Metallurgical and Materials Transactions B,1994,25(4): 227-233.
    32.万晓光,韩传基,蔡开科,杨素波,严学模,顾武安.连铸板坯结晶器浸入式水口试验研究[J],钢铁,2000,35(9):20-23.
    33.包燕平,张涛,蒋伟,徐保美,王岩春,姚忠卯.安钢板坯连铸机结晶器冷态模型和结构优化[J],特殊钢,2001,22(4):7-9.
    34.包燕平,田乃媛,徐保美.薄板坯连铸机新型浸入式水口[J],北京科技大学学报,2002,24(3):262-265.
    35.李宝宽,李东辉.连铸结晶器内钢液涡流现象的水模型观察和数值模拟[J],金属学报,2002,38(3):315-320.
    36. Qinglin H E. Observation of vortex formation in the mold of a continuous slab caster [J], ISIJ International,1993,33(2):343-345.
    37. Gebhard M, He Q L, Herbertson J. Vortexing Phenomena in Continuous Slab Casting Moulds [A],76th Steelmaking Conference Proceedings [C],1993,441-446.
    38. Li B K, Tsukihashi F. Vortexing flow patterns in a water model of slab continuous casting mold [J], ISIJ International,2005,45(1):30-36.
    39. Beskow K, Dayal P, Bjorkvall J, Nzotta M, Sichen D. A new approach for the study of slag/metal interface in steelmaking [J], Ironmaking and Steelmaking,2006,33(1): 74-80.
    40.彭一川,肖泽强.卷油现象的理论和实验研究[J],化工冶金,1988,9(1):71-77.
    41. Cramb A W, Chung Y, Harman J, Sharan A, Jimbo I. The slag/metal interface and associated phenomena [J], Iron and Steelmaker,1997,24(3):77-83.
    42. Scheller P R. Interfacial Phenomena between Fluxes for Continuous Casting and Liquid Steel [J], Ironmaking and Steelmaking,2002,29(2):154-160.
    43. Scheller P R. Interfacial convection and mass transport in thin liquid layer [J], Steel Research,2005,76(8):581-587.
    44. Chung Y, Cramb A W. Dynamic and equilibrium interfacial phenomena in liquid steel/slag systems [J], Metallurgical and Materials Transactions B,2000,31(5):957-971.
    45. Jakobsson A, Sichen D S, Seetharaman N, Viswanathan N. Interfacial phenomena in some slag/metal reactions [J], Metallurgical and Materials Transactions B,2000,31(5): 973-980.
    46. Solhed H, Jonsson L, Jonsson P. A theoretical and experimental study of continuous casting tundishes focusing on slag-steel interaction [J], Metallurgical and Materials Transactions B,2002,33(2):173-185.
    47. Sun H P, Nakashima K, Mori K. Interfacial Tension between Molten Iron and CaO SiO2 Based Fluxes [J], ISIJ International,1997,37(4):323-331.
    48. Sun H P, Nakashima K, Mori K. Influence of slag composition on slag/iron interfacial tension [J], ISIJ International,2006,46 (3):407-412.
    49. Cha P R, Yoon J K. The effect of a uniform direct current magnetic field on the stability of a stratified liquid flux/molten steel system [J], Metallurgical and Materials Transactions B,2000,31(2):317-326.
    50. Suda M, Iwai K, Asai S. Free Surface Behavior of a Liquid Metal under the Imposition of a High Frequency Magnetic Field [J], ISIJ International,2005,45(7): 979-983.
    51. Chang F C, Hull J R. Computer Modeling of Electromagnetic Fields and Fluid Flows for Edge Containment in Continuous Casting [J], Journal of Manufacturing Science and Engineering,2005,127(4):724-730.
    52. Thomas B G, Jenkins M S, Mahapatra R B. Investigation of strand surface defects using mould instrumentation and modelling [J], Ironmaking and Steelmaking,2004, 31(6):485-494.
    53. Ojeda C, Tecnalia L, Sengupta J, Thomas B G, Barco J, Arana J L. Mathematical Modeling of Thermal-Fluid Flow in the Meniscus Region During an Oscillation Cycle [A], AISTech Conference Proceedings, Volumes I [C],2006,1017-1028.
    54. Dauby P H, Emling W H, Sobdewski R. Lubrication in the Mold:A multiple Variable System [J], Iron and Steelmaker,1986,13(2):28-36.
    55. Nakato H, Saito K. Surface quality improvement of continuously cast blooms by optimizing solidification in early stage [A],70th Steelmaking Conference Proceedings [C],1987,427-431.
    56. Kubota J, Okimoto K, Shirayama A, Murakami H. Meniscus Flow Control in the Mold by Travelling Magnetic Field for High Speed Slab Caster [A],74th Steelmaking Conference Proceedings [C],1991,233-241.
    57. Emling W H, Waugaman T A, Feldbauer S L, Cramb A W. Subsurface Mold Slag Entrapment in Ultra Low Carbon Steel [A],77th Steelmaking Conference Proceedings [C],1994,77:371-379.
    58.文光华,何俊范,李刚.薄板坯连铸伸入式水口的研究[J],重庆大学学报,1994,17(1):89-94.
    59. Tozawa K, Itogawa S, Nakato M, Sorimachi K. Investigation of periodical change of molten steel flow and entrainment of mold powder in continuous casting mold [J], CAMP-ISIJ,9(4):604-605.
    60. Gupta D, Lahiri A K. Cold model study of the surface profile in a continuous slab casting mold:Effect of second phase [J], Metallurgical and Materials Transactions B, 1996,27(4):695-697.
    61. Gupta D, Lahiri A K. Cold model study of slag entrainment into liquid steel in continuous slab caster [J], Ironmaking and Steelmaking,1996,23(4):361-363.
    62.包燕平,朱建强,蒋伟,王昌旭,田乃媛,徐保美.薄板坯结晶器内卷渣现象的研究[J],北京科技大学学报,1999,21(6):530-534.
    63.雷洪,许海虹,朱苗勇,干勇,刘新,倪满森,刘家奇.高速连铸结晶器内卷渣机理及其控制研究[J],钢铁,1999,34(8):20-23.
    64.雷洪,朱苗勇,赫冀成.连铸结晶器内卷渣过程的数学模型[J],金属学报,2000,36(10):1113-1117.
    65. Iguchi M, Yoshida J, Shimizu T, Mizuno Y. Model study on the entrapment of mold powder into molten steel [J], ISIJ International,2000,40(7):685-691.
    66. Iguchi M, Terauchi Y. Karman Vortex Probe for the Detection of Molten Metal Surface Flow in Low Velocity Range [J], ISIJ International,2002,42(9):939-943.
    67.齐新霞,岳峰.板坯连铸结晶器钢液卷渣现象研究[J],河南冶金,2003,2:12-14.
    68.齐新霞,刘国林,包燕平,徐保美.板坯连铸机结晶器钢液卷渣的水模型研究[J],特殊钢,2004,25(3):29-31.
    69.齐新霞,包燕平.结晶器钢液卷渣指数的讨论[J],钢铁研究,2005,3:17-20.
    70.陈芝会,王恩刚,王清成,刘全利,赫冀成.薄板坯连铸结晶器内涡流及卷渣行为的研究[J],炼钢,2005,21(5):37-41.
    71. Kasai N, Iguchi M. Water-model experiment on melting powder trapping by vortex in the continuous casting mold [J], Tetsu-to-Hagane,2006,92(9):544-550.
    72. Theodorakakos A, Bergeles G Numerical investigation of the interface in a continuous steel casting mold water model [J], Metallurgical and Materials Transactions B,1998,29(6):1321-1327.
    73. Anagnostopoulos J, Bergeles G Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model [J], Metallurgical and Materials Transactions B,1999,30(6):1095-1105.
    74. Mcdavid R M, Thomas B G. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds [J], Metallurgical and Materials Transactions B,1996,27(4):672-685.
    75. Huang X, Thomas B G Modeling of transient flow phenomena in continuous casting of steel [J], Canadian Metallurgical Quarterly,1998,37(3-4):197-212.
    76. Kastner G, Brandstatter W, Kaufmann B, Wassermayr C, Javurek M. Numerical study on mould powder entrapment caused by vortexing in a continuous casting process [J], Steel Research,2006,77(6):404-408.
    77. Zhang L F, Aoki J, Thomas B G. Inclusion removal by bubble flotation in a continuous casting mold [J], Metallurgical and Materials Transactions B,2006,37(3): 361-379.
    78. Wang Z, Mukai K, Lee I J. Behavior of fine bubbles in front of the solidifying interface [J], ISIJ International,1999,39(6):553-562.
    79. Esaka H, Kuroda Y, Shinozuka K, Tamura M. Interaction between argon gas bubbles and solidified shell [J], ISIJ International,2004,44(4):682-690.
    80. Bai H, Thomas B G.Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles part I:model development and validation [J], Metallurgical and Materials Transactions B,2001,32(2):253-267.
    81. Bai H, Thomas B G.Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles:Part II. Effect of operation conditions and nozzle design [J], Metallurgical and Materials Transactions B,2001,32(2):269-284.
    82. Ishiguro K, Iguchi M. Model experiment on the behavior of argon gas in immersion nozzle [J], ISIJ International,2003,43(5):663-670.
    83. Iguchi M, Sasaki Y. Prediction of Argon Gas Attachment to Sliding Gate in Immersion Nozzle [J], ISIJ International,2006,46(8):1264-1266.
    84. Iguchi M, Chihara T. Water model study of the frequency of bubble formation under reduced and elevated pressures [J], Metallurgical and Materials Transactions B,1998, 29(4):755-761.
    85. Bai H, Thomas B G. Bubble formation during horizontal gas injection into downward-flowing liquid [J], Metallurgical and Materials Transactions B,2001,32 (6): 1143-1159.
    86. Bessho N, Yoda R, Yamasaki H, Fujii T, Nozaki T, Takatori S. Numerical Analysis of Fluid Flow in the Continuous Casting Mold by a Bubble Dispersion Model [J], ISIJ International,1991,31(1):40-45.
    87. Thomas B G, Huang X, Sussman R C. Simulation of argon gas flow effects in a continuous slab caster [J], Metallurgical and Materials Transactions B,1994,25(8): 527-547.
    88. Thomas B G, Dennisov A, Bai H. Behavior of Argon Bubbles during Continuous Casting of Steel [A],80th Steelmaking Conference [C],1997,375-384.
    89.张炯明,赫冀成,李宝宽.吹入气体对连铸结晶器流体流动的影响[J],金属学报,1995,31(6):269-274.
    90. Toh T, Hasegawa H, Harada H. Evaluation of multiphase phenomena in mold pool under in-mold electromagnetic stirring in steel continuous casting [J], ISIJ International, 2001,41(10):1245-1251.
    91. Li B K, Okane T, Umeda T. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static magnetic-field application [J], Metallurgical and Materials Transactions B,2000,31(6):1491-1503.
    92. Kubo N, Ishii T, Kubota J, Aramaki N. Two-phase Flow Numerical Simulation of Molten Steel and Argon Gas in a Continuous Casting Mold [J], ISIJ International,2002, 42(11):1251-1258.
    93. Kubo N, Ishii T, Kubota J, Ikagawa T. Numerical simulation of molten steel flow under a magnetic field with argon gas bubbling in a continuous casting mold [J], ISIJ International,2004,44 (3):556-564.
    94. Sanchez-Perez R, Morales R D, Diaz-Cruz M, Olivares-Xometl O, Palafox-Ramos J. A physical model for the two-phase flow in a continuous casting mold [J], ISIJ International,2003,43(5):637-646.
    95. Sanchez-Perez R, Morales R D, Garcia-Demedices L, Ramos J P, Diaz-Cruz M. Dynamics of coupled and uncoupled two-phase flows in a slab mold [J], Metallurgical and Materials Transactions B,2004,35(1):85-99.
    96. Ramirez-Lopez P, Morales R D, Sanchez-Perez R, Demedices L G, Davila O. Structure of turbulent flow in a slab mold [J], Metallurgical and Materials Transactions B, 2005,36(6):787-800.
    97. Ramos-Banderas A, Morales R D, Sanchez-Perez R, Garca-Demedices L, Solorio-Diaz G. Dynamics of two-phase downwards flows in submerged entry nozzles and its influence on the two-phase flow in the mold [J], International J of Multiphase Flow,2005,31(5):643-665.
    98.于会香,朱国森,王新华,张炯明,王万军.连铸板坯结晶器内钢液吹氩行为的数值模拟[J],北京科技大学学报,2003,25(3):215-217.
    99. Wang Z, Mukai K, Izu D. Influence of wettability on the behavior of argon bubbles and fluid flow inside the nozzle and mold [J], ISIJ International,1999,39(2):154-163.
    100.马范军,文光华,李刚.板坯连铸结晶器内吹入气体对钢液行为的影响[J],炼钢,2000,16(3):42-45.
    101. Kasai N, Iguchi M. Water-model experiments on gas and liquid flow in continuous casting immersion nozzle and mold [J], Tetsu-to-Hagane,2005,91(12):847-855.
    102. Kasai N, Iguchi M. Water-model experiments on gas and liquid flow in the continuous casting immersion nozzle [J], Tetsu-to-Hagane,2005,91(6):546-552.
    103. Iguchi M, Kasai N. Water model study of horizontal molten steel-Ar two-phase jet in a continuous casting mold[J], Metallurgical and Materials Transactions B,2000,31(3): 453-460.
    104. Andrzejewski P, Kohler K U, Pluschkeli W. Model investigations on the fluid flow in continuous casting moulds of wide dimensions [J], Steel Research,1992,63(6): 242-246.
    105. Mietz J, Schnerder S, Oeters F. Emulsification and mass transfer in ladle metallurgy [J], Steel Research,1991,62(1):10-15.
    106. Jonsson L, Jonsson P. Modeling of Fluid Flow Conditions around the Slag/Metal Interface in a Gas-stirred Ladle [J], ISIJ International,1996,36 (9):1127-1134.
    107. Iguchi M, Sumida Y, Okada R, Morita Z. Evaluation of Critical Gas Flow Rate for the Entrapment of Slag Using a Water Model [J], ISIJ International,1994,34(2): 164-170.
    108. Kobayashi S. Iron Droplet Formation Due to Bubbles Passing through Molten Iron/Slag Interface [J], ISIJ International,1993,33 (5):577-582.
    109. Chevrier V F, Cramb A W. X-ray fluoroscopy observations of bubble formation and separation at a metal/slag interface [J], Metallurgical and Materials Transactions B,2000, 31(3):537-540.
    110. Han Z J, Holappa L. Characteristics of Iron Entrainment into Slag Due to Rising Gas Bubbles [J], ISIJ International,2003,43 (3):1698-1704.
    111. Han Z J, Holappa L. Mechanisms of Iron Entrainment into Slag due to Rising Gas Bubbles [J], ISIJ International,2003,43 (3):292-297.
    112. Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold [J], ISIJ International,2001,41(12): 1529-1531.
    113. Ueda Y, Kida T, Iguchi M. Unsteady pressure coefficient around an elliptic immersion nozzle [J], ISIJ International,2004,44(8):1403~1409.
    114. Teshima T, Kubota J, Suzuki M, Ozawa K, Masaoka T, Miyahara S. Influence of Casting Conditions on Molten Steel Flow in Continuous Casting Mold at High Speed Casting of Slabs [J], Tetsu-to-Hagane,1993,79(5):576-584.
    115. Kumar D S, Rajendra T, Sarkar A, Karande A K, Yadav U S. Slab quality improvement by controlling mould fluid flow [J], Ironmaking and Steelmaking,2007, 34(2):185-191.
    116.雷洪,朱苗勇,汪湿泉,许海虹,王文忠,樊俊飞,弁济宁.水口吹氩对结晶器弯月面波动的影响[J],中国有色金属学报,1998,8(S2):468-471.
    117. Wang Z, Mukai K, Ma Z Y, Nishi M, Tsukamoto H, Shi F. Influence of injected ar gas on the involvement of the mold powder under different wettabilities between porous refractory and molten steel [J], ISIJ International,1999,39(8):795-803.
    118. Singh V, Dash S K, Sunitha J S, Ajmani S K, DAS A K. Experimental Simulation and Mathematical Modeling of Air Bubble Movement in Slab Caster Mold [J], ISIJ International,2006,46 (2):210-218.
    119.卢金雄,王文科,张炯明,王新华,王万军,郄芳.板坯连铸结晶器吹氩对铸坯卷渣的影响[J],北京科技大学学报,2006,28(1):34-37.
    120.陆巧彤,杨荣光,王新华,张炯明,王万军.板坯连铸结晶器保护渣卷渣及其影响因素的研究[J],钢铁,2006,41(7):29-32.
    121.张胜军,朱苗勇,张永亮,郑淑国,程乃良,宋景欣.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J],金属学报,2006,42(10):1087-1090.
    122.张永亮,朱苗勇,张胜军,郑淑国,程乃良,宋景欣.浸入式水口堵塞过程板坯结晶器内流动与液面波动的模拟[J],2006,特殊钢,27(5):27-29.
    123.朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M],北京:冶金工业出版社,1998,4-5.
    124.刘儒勋,王志峰.数值模拟方法和运动界面追踪[M],合肥:中国科学技术大学出版杜,2001,36-38.
    125. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries Journal of Computational Physics [J], Journal of Computational Physics, 1981,39(1):201-225.
    126. Ubbink O, Issa R I. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes [J], Journal of Computational Physics,1999,153(1):26-50.
    127.贺铸,柳朝晖,陈胜,刘亚明,郑楚光.颗粒惯性对气固两相各向同性湍流中温度统计特性的影响[J],中国科学E辑技术科学,2006,36(1):39-50.
    128. Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J], Journal of Computational Physics,1992,100,335-354.
    129. Launder B E, Spalding D B. The numerical computation of turbulent flows [J], Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    130.王福军.计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004,26,87-88.
    131. Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting [J], Journal of Computational Physics,1986,62(1):40-65.
    132.李博知.高速连铸结晶器保护渣[J],耐火材料,2006,40(4):306-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700