用户名: 密码: 验证码:
同步代谢秸秆木糖和葡萄糖的产氢新菌种及其产氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵法生物制氢技术能够将废弃物处理和能源回收有效地结合在一起,已经成为环境微生物技术领域研究的热点。为了实现生物制氢的工业化,降低制氢成本,研究者对生物制氢技术进行了广泛的研究,主要的研究方向之一是致力于寻找合适的产氢底物,扩大基质利用范围。自然界中存在大量廉价可再生的木质纤维类生物质资源,但是由于其是纤维素、半纤维素和木质素构成的复合体,很少有微生物能够直接将其降解,通常都是先经过预处理及酶解将其水解为以五碳糖和六碳糖为主的液态水解产物,之后再加以利用。目前的生物制氢研究一般都是以单一六碳糖为主,而对于利用五碳糖生物产氢的研究一直未有突破。因此为了提高对木质纤维素中半纤维素的利用,分离具有利用木糖等五碳糖高效产氢的细菌,对有效地利用木质纤维素产氢,降低产氢成本,实现发酵法生物制氢工业化具有重要的现实意义。
     基于此问题,本研究进行了同步代谢五碳糖和六碳糖中温发酵产氢菌的定向筛选。获得了能够同步代谢木糖和葡萄糖产氢的新菌种,并对其利用木糖、葡萄糖以及二者混合物的产氢特性进行了详细的研究,最后研究了产氢新菌利用秸秆产氢的潜力,分析了其实际应用价值。
     发现了同步代谢五碳糖和六碳糖中温发酵产氢新菌种。根据系统进化关系及生理生化特性分析,证实所分离的菌株T2为梭菌属(Clostridium)下的一个新种。分类名为Clostridium hydrogeniproducens sp. nov. ,产氢梭菌(Clostridium hydrogeniproducens)为其模式种,菌株T2~T (=NBRC 105657~T = CCTCC AB 209026~T)为模式株。
     优化了产氢菌株T2产氢的条件,获得了其利用五碳糖木糖和六碳糖葡萄糖的平均比产氢量分别为2.32 mol-H_2/mol-xylose和2.76 mol-H_2/mol-glucose,平均比产氢速率分别为10.07 mmol-H_2/g-cdw/h和9.47 mmol-H_2/g-cdw/h,其产氢能力居于现有产氢菌的前列。
     揭示了产氢菌株T2分别利用五碳糖和六碳糖产氢的特性,初步预测了其代谢木糖的产氢途径。用Logistic方程和修正的Gompertz模型描述产氢菌的生长过程;选用修正的Gompertz模型来描述产氢菌产氢的过程;成功的获得了相应过程的动力学参数。构建了描述产氢菌株T2对数生长期特性的潜在生长速率方程和同步性产氢指数方程,解决了用于描述产氢菌株T2在五碳糖和六碳糖基质中的对数期潜在生长速率及生长与产氢的同步性问题。初步推测出产氢菌株T2是通过木糖异构酶直接将木糖转化为木酮糖而后进入磷酸戊糖途径加以利用。
     分别采用批式、连续和补料分批发酵的方式,研究了产氢菌株T2利用木糖和葡萄糖二者混合基质的产氢规律。证实了产氢菌株T2能够有效的同步代谢木糖和葡萄糖产氢的特性,同时发现了补料分批发酵是产氢菌株T2同步代谢五、六碳混合糖产氢的较优工艺。
     通过基质浓度扩大法对产氢菌株T2利用酸化汽爆液中木糖和葡萄糖的产氢进行研究,获得其最大比产氢量为分别为1.37 mol-H_2/mol-xylose和2.17 mol-H_2/mol-glucose,分别为其正常条件下的60%和79%,表明其具有很强的适应和抗逆能力。同时采用分步酶解发酵和同步酶解发酵法,对产氢菌株T2利用处理秸秆发酵产氢能力进行研究,分别得到其最大比产氢量71 ml/g-秸秆和110 ml/g-秸秆,这是就目前来说纯菌利用秸秆所能获得的最高产氢量,这充分显示了产氢菌株T2能够利用天然生物质中五碳糖和六碳糖高效产氢的性能。
Fermentative biological hydrogen production technology has now become a hot research field, in view of its ability to combine effectively waste treatment with energy recovery. In order to realize the industrialization of biohydrogen production and reduce the cost of hydrogen production, the researchers extensively conduct biohydrogen research, and one of the major research directions is dedicated to find low-cost substrates of hydrogen production, and expand the scope of available substrates. There are a lot of cheap and microorganisms rarely directly degrade renewable lignocelluloses; however, which mainly composed of cellulose, hemicellulose and lignin. Usually it needs to be pretreated and enzymatic hydrolyzed to liquid product-based pentose and hexose, and then is decided to be used. Currently, the attention of biohydrogen production, however, is generally dominated to research the utilization of single hexose substrate. Pentose, a component part of hemicellulose, for biohydrogen production has been no breakthrough. Therefore, in order to improve lignocellulose utilization of hemicellulose, it is necessity to isolate hydrogen-producing bacterium that is ability to use efficiently pentose and hexose to produce hydrogen. Which can increase the efficiency of lignocellulose and reduce the cost for fermentative biohydrogen production, to achieve bio-hydrogen fermentation industrialization has important practical significance.
     Based on the above issues, this study carried through finding hydrogen-producing bacterium simultaneous using xylose and glucose. Firstly, samples, came from cow dung compost, are be enriched and cultured in xylose, glucose and both mixed substrates, and highly efficient hydrogen producing communities were given, followed by DGGE technique to analyze the structure of their communities. The results showed that the different hydrogen producing communities from different substrates were obtained to have only differences in structure, and similar in type of communities. The novel hydrogen-producing bacteria were isolated from hydrogen producing communities with mixed sugar substrates using Hungate anaerobic technique. According to the phylogenetic relationships and physiological and biochemical characteristics, the isolated strain T2 was verified as a new species under Clostridium, whose category name is called Clostridium hydrogeniproducens sp. nov.. Clostridium hydrogeniproducens was its type species, strain T2~T (= NBRC 105657T = CCTCC AB 209026T) as a model strain.
     When initial pH was 6.5 and the substrate concentration was under 60 mmol/l, the average yeild of hydrogen production of strain T2 using xylose and glucose was 2.32 mol-H_2/mol-xylose and 2.76 mol-H_2/mol-glucose, and the specific hydrogen production rate was 10.07 mmol-H_2/g-cdw/h and 9.47 mmol-H_2/g-cdw/h, respectively. Hydrogen production capacity of strain T2 is front rank.
     The characteristics and differences of hydrogen production bacteria T2, how to use xylose and glucose to produce hydrogen, were revealed by researching the dynamics of hydrogen production using xylose and glucose. When the substrate concentration is the 2-10 mmol/l, the hydrogen-producing bacteria T2 obtained parameters, such as the maximum biomass, the potential growth rate, substrate consumption rate and hydrogen production rate, which appeared a linear growth by using xylose and glucose. In comparison, the obtained parameters from glucose as substrate were larger than other ones. The potential growth rate equation is constructed and described characteristics of hydrogen-producing bacteria T2 in logarithmic growth phase. The synchronization of hydrogen index equation is constructed and described relationship of growth and hydrogen production of strain T2. It is speculated that xylose by hydrogen-producing bacteria T2 uptake through the xylose isomerized xylulose by xylose isomerase and then enter the pentose phosphate pathway to be used.
     Hydrogen production characteristics of the hydrogen producing bacteria T2 using the mixed substates of both xylose and glucose, were studied based on batch, continuous and fed-batch fermentation. The results show that strain T2 can metabolize simultaneously effectively xylose and glucose to produce hydrogen, although the increases of the proportion of glucose in the mixed sugar, to a certain extent, inhibited the xylose utilized to produce hydrogen by T2. This problem was be solved very well by fed-batch fermentation strategy, making xylose utilized in mixed sugar equivalent to the utilization of pure xylose.
     Liquid and solid products were be acquired by steam explosion of corn straws acidified by acetic acid. The hydrogen-producing study on xylose and glucose from steam explosion liquid acidated utilized by T2 through the expansion of substrate concentration. The maximum yeild of hydrogen production was 1.37 mol-H_2/mol-xylose and 2.17 mol-H_2/mol-glucose, respectively, for 60% and 79% under normal conditions, indicating that T2 had strong adaptation and resilience. The maximum yeild of hydrogen production of T2 with the solid substances of corn straws to produce hydrogen by the methods of SHF and SSF, were 71ml/g-CS and 110ml /g-CS, respectively, which was the highest hydrogen yield of available straw used by pure strains. Therefore, it was be demonstrated adequately that the hydrogen-producing bacteria T2 could utilize pentose and hexose hydrolysates of corn straw to produce efficiently hydrogen.
引文
1 Bockris JM. The origin of ideas on hydrogen economy and its solution to the decay of the environment. Int J Hydrogen Energy. 2002, 27:731~740.
    2 Das D, Veziroglu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy. 2001, 26:13~18.
    3 Armor JN. Themultiple roles for catalysis in the production of H2. Appl Catal A: Gen 1999; 176:159~176.
    4 Winter CJ. Into the hydrogen energy economy-mile stones. Int J Hydrogen Energy. 2005, 30:681~685.
    5 Hwang MH, Jang SH, Hyun SH, et al. Anaerobic biohydrogen production from ethanol fermentation: the role of pH. J Biotechnology. 2004, 111: 297~309.
    6柯水洲,马晶伟.生物制氢研究进展(I).化工进展. 2006, 25(9):1001~1010.
    7 Hussy I, Hawkes F R, Dinsdale R, et al. Continuous Fermentative Hydrogen Production from a Wheat Starch Co-Product by Mixed Microflora. Biotech & Bioeng, 2003, 84(6):620~630.
    8卢文玉,刘铭辉,陈宇等.厌氧发酵法生物制氢的研究现状和发展前景.中国生物工程学杂志. 2006, 26(7): 99~104.
    9宋佳秀,任南琪,邢德峰.木质纤维素生物转化氢气技术及前景.太阳能学报. 2007, 28 (1):97~102.
    10 Benemann JR. Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy. 1997, 22 (10-11):979~987.
    11 Ruppreecht J, Hankamer B, Mussgung JH, et al. Perspectives and advanced of bilogical H2 production in microorganism. Appl Microbiol Biotecnol. 2006, 72:442~449.
    12周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展.中国沼气. 2006, 24(2): 31-34.
    13陈宇.厌氧发酵法生物制氢菌种的选育及发酵工艺的初步研究.天津大学硕士论文. 2005.
    14 Liu BF, Ren NQ, Tang J, et al. Bio-hydrogen production by mixed culture of photo fermentation and dark fermentation bacteria. Int J Hydrogen Energy.doi:10.1016/j.ijhydene. 2009.05.005.
    15 Tanisho S, Kamiya N, WaKao N. Hydrogen Evolution of Enterobacter aerogenes Depending on Culture pH: Mechanism of Hydrogen Evolution from NADH by Means of Membrane~bound Hydrogenase. Biochim Biophys Acta. 1989, 973:1~6.
    16任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社. pp. 137~154.
    17 Ren NQ, Wang BZ, Huang JC. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotech Bioeng. 1997, 54(5):428-433.
    18 Muyzer G, Waal EC. Profiling of Complex microbial population by DGGE analysis encoding for 16S rRNA. Appl Envion Microbiol. 1993, 59:695~700.
    19 Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol. 2003, 68:5142~5150.
    20 Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol. 2005, 62:1405~1415.
    21 Gomes NC, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol. 2003, 69:3758~3766.
    22 Eichner CA, Erb RW, Timmis KN, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol. 1999, 65:102~109.
    23 Ferris MJ, Muyzer G, Ward DM. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol. 2004, 62:340~346.
    24 Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993, 59:695~700.
    25 Ueno Y, Haruta S, Ishii M. Microbial community in anaerobic hydrogenproducing microflora enriched from sludge compost. Appl Microbiol Biotechnol. 2001, 57:555~562.
    26邢德峰,任南琪,宫曼丽. PCR-DGGE技术解析生物制氢反应器微生物多样性.环境科学. 2005, 36(2):172~175.
    27 Liu WT, Chan OC, Fang HHP. Microbial community dynamicsduring start-up of acidogenic anaerobic reactors. Water Research. 2002, 36:3203~3210.
    28 Chang JJ, Wu JH, Wen FS, et al. Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrogen Energy. 2008, 33:1579~1585.
    29 Niu K, Zhang X, Tan WS, et al. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrogen Energy. 2010, 35:71~80.
    30 Oh YK, Seol EH, Kim JR, et al. Fermentative biohydrogen production by a new hemoheterotrophic bacterium Citrobacter sp.Y19. Int J Hydrogen Energy. 2003, 28:1353~1359.
    31 Hamilton C, Hiligsmann S, Beckers L, et al. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode. Int J Hydrogen Energy. 2010, 35(3):1089~1098.
    32 Xing DF, Ren NQ, Wang AJ, et al. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. Int J Hydrogen Energy. 2008, 33:1489~1495.
    33 Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by the Bacterium Enterobacter aerogenes. Int J Hydrogen Energy. 1994, 19(10): 807~812.
    34 Kotay SM, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresource Technology. 2007, 98:1183~1190.
    35 Taguchi F, Chang J D, Mizukami N, et al. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B from termites. Can J Microbiol. 1993, 39(7):726~730.
    36 Taguchi F, Mizukami N, Hasegawa K, et al. Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2. Can JMicrobiol. 1994, 40:228~233.
    37 Evvyernie D, Yamazaki S, Morimoto K, et al. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic, Mesophilic and Hydrogen-Producing Bacterium. J Bioscience Bioengineering. 2000, 89(6):596~601.
    38 Chen WM, Tseng ZJ, Lee KS, et al. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated fromanaerobicsewage sludge. Int J Hydrogen Energy. 2005, 30:1063~1070.
    39 Wang XY, Jin B. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng. 2009, 107:138~144.
    40 Jo JH, Lee DS, Park D, et al. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology. 2008, 99:6666~6672.
    41 Ramachandran U, Wrana N, Cicek N, et al. Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or a-cellulose. Int J Hydrogen Energy. 2008, 33:7006~7012.
    42 Pan CM, Fan YT, Zhao P, et al. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy. 2008, 33:5383-5391.
    43 Chong ML, Rahima RA, Shiraib Y, et al. Bio-hydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J hydrogen energy. 2009, 34:764~771.
    44邢德峰.产氢-产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士学位论文. 2006.
    45林明.高效产氢发酵新菌中的产氢机理及生态学研究.哈尔滨工业大学博士学位论文. 2002.
    46 Xing D, Ren N, Li Q, et al. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol. 2006, 56:755~760.
    47 Tanisho S, Suzuki Y, Wakao N. Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int J Hydrogen Energy. 1987,12:623~627.
    48 Yokoi H, Tokushige T, Hirose J, et al. Hydrogen production by Immobilized Cells of Enterobacter aerogenes Strain HO-39. J Ferment Bioeng. 1997, 83(5):481~484.
    49 Rachman M, Furutani Y, Nakashimada Y, et al. Enhanced Hydrogen Production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng. 1991, 4:358~363.
    50 Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT08. Proc Biochem. 2000, 35:589~593.
    51 Shin JH, Yoon JH, Ahna EK, et al, Park TH. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1 Int J Hydrogen Energy. 2007, 32:192~199.
    52 Jayasinghearachchi HS, Sarma PM, Singh S, et al. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines. Int J Hydrogen Energy. 2009, 34:7197~7207.
    53 Wang JL, Wan Wei. Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy. 2009, 34:799~811.
    54陈明.利用玉米秸秆制取燃料乙醇的关键技术研究.浙江大学博士学位论文. 2007.
    55刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工. 2005, 25(3):19~22.
    56夏黎明.可再生纤维素资源酶法降解的研究进展.林产化工通讯. 1999, 33(l):23~28.
    57陈洪章.纤维素生物技术.北京:化学工业出版社. 2005, 1~2.
    58 Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy, Annual Reviews, Energy Environment. 1996, 21:403~465.
    59 Tsao GT, Ladisch MR, Voloch M, et al. Production of ethanol and chemicals from cellulosic materials. Proc Biochem. 1982, 17:34~38.
    60 Wyman CE. Ethanol from lignocellulosic biomass:Technology, economies, and opportunities. Bioresource Technology. 1994, 50:3~15.
    61 Kuhad RC, Singh A. Lignocellulose biotechnology: Current and futureprospects. Crit Rev Biotechnol. 1993, 13:151~172.
    62 J?rgensen H, Kristensen JB, Felby C, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref. 2007, 1:119~134.
    63 Lin Yan, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006, 69:627~642.
    64 Lynd LR, Elander RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl. Biochem Biotechnol. 1996, 57/58:741~761.
    65 Lasser M, Schulman D, Allen SG, et al. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology. 2002, 81:33~44.
    66 Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 2002, 83(1):1~11.
    67 Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels bioprod bioref. 2008, 2:26~40.
    68 Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 2005, 96:673~686.
    69 Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006, 38:569~582.
    70 Saddler JN, Ramos LP, Breuil C. Steam pretreatment of lignocellulosic residues. Bioconversion of Forest and Agricultural Plant Residues (Saddler, J.N., Ed.). CAB International, Wallingford, UK. 1993, 73~91.
    71 Vallander L, Eriksson KEL. Production of ethanol from lignocellulosic materials: State of the Art. Adv Biochem Eng/Biotechnol. 1990, 42:63~95.
    72 Weil J, Westgate P. Cellulose pretreaments of lignocellulosic substrates. Enzyme microb Technol. 1994, 16(11):1002~1004.
    73 Cadoche L, Lopez GD. Assessment of size reduetion as a preliminary step in the produetion of ethanol from lignocellulosic wastes. Biol Wastes, 1989, 30:153~157.
    74 Zhu SD, Wu YX, Yu ZN, et al. Pretreatment by microwave/alkali of rice Straw and its enzymic hydrolysis. Process Biochem. 2005, 40:3082~3086.
    75 Neely WC. Faetors affecting the pretreatment of biomass with gaseous ozone.Biotech Bioeng. 1984, 20:59~65.
    76 Esteghlalian A, Hashimoto AG, Fenske JJ, et al. Modeling and optimization of the dilute-sulfuric-acid Pretreatment of cornstover, poplar and switehhgrass. Bioresource Teehnology. 1997, 59:129~136.
    77 Torget R, Himmel ME, Grohnlann K. Dilute sulfuric acid pretreatment of hardwood bark. Bioresource Technology. 1991, 35:239~246.
    78 Suna RC, Tomkinsona J, Mab PL, et al. Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydrate Polymers. 2000, 42:111~122.
    79 Kaar WE, Holtzapple MT. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenerg. 2000, 18:189~199.
    80 Kim TH, Kim JS, Sunwoo CS, et al. Pretreatment of corn stover by aqueous ammonia. Bioresource Technology. 2003, 90:39~47.
    81 Fang JM, Sun RC, Salisbury D, et al. Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polymer Degradation Stability. 1999, 66:423~432.
    82 Weil J, Westgate P. Cellulose pretreaments of lignocellulosic substrates. Enzyme microb Technol. 1994, 16(11):1002~1004.
    83 Akin DE, Rigsby LY, Sethuraman A, et al. Alterations in strueture, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cathus stercoreus. Appl Environ Microbiol. 1995, 61:1591~1598.
    84 Ballesteros I, Oliva JM, Negro MJ, et al. Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochemistry. 2002, 38:187~192.
    85 Ben-Ghedalia D, Miron J. The effete of combined chemieal and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotech Bioeng. 1981, 23:823~831.
    86 Bjerre AB, Olesen AB, Fernqvist F. Pretreatment of wheat straw using combined Wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicelluloses. Biotech Bioeng. 1996, 49:568~577.
    87 Millet MA, Baker AJ, Seatter LD. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp. 1976, 6:125~153.
    88 Kim BS, Lee YY. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresource Technology. 2002, 8(3):165~171.
    89 Teymouri F, Laureano-Perez L, Alizadeh H, et al. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technology. 2005, 96:2014~2018.
    90 Zheng YZ, Lin HM, Tsao GT. Pretreatment for cellulose hydrolysis by carbondioxide explosion. Biotechnol Prog. 1998, 14:890~896.
    91 Grethlein HE, Converse AO. Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresource Technology.1991, 36:77~82.
    92 Ghose TK, Bisaria VS. Studies on mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng. 1979, 21:131~146.
    93 Nguyen Q, Tucker M, Boynton B, et al. Dilute acid pretreatment of softwoods. Appl. Biochem Biotechnol. 1998, 70~72:77~87.
    94 Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flow through Pretreatment on the enzymatic digestibility of cornstover cellulose. Biotech Bioeng. 2004, 86:88~95.
    95 Larsson S, Palmqvist E, Hahn-H?gerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999, 24:151~159.
    96 Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology. 2000, 74:17~24.
    97 Mononmani HK, Sreekantiah KR. Saccharification of sugar-cane bagasse with enzymes from Aspergillus ustus and Trichoderma viride. Enzyme Microb Technol. 1987, 9:484~488.
    98 Sternberg D. Production of cellulase by Trichoderma. Biotech Bioeng Symp. 1976, 35~53.
    99高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展. 2003, 13(1):21~27.
    100张继泉,王瑞明,孙玉英等.里氏木霉生产纤维素酶的研究进展.饲料工业. 2003, 24(1):9~13.
    101 Olsson L, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microbial Tech. 1996, 18:312~331.
    102 Lynd LR, Laser MS, Bransby D, et al. How biotech can transform biofuels. Nature biotechnology. 2008, 26(2):69~72.
    103 Lynd LR, van Zyl WH, McBride JE, et al. Consolidated bioprocessing of cellulosic biomass:an update. Current Opinion in Biotechnology. 2005, 16:577~583.
    104 Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology Molecular Biology Reviews. 2002, 66(3):506~577.
    105 Levina DB, Carerea CR, Ciceka N, et al. Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrogen Energy. 2009, 34:7390~7403.
    106 Kadar Z, Vrije TD, van Noorden GE, et al. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol. 2004, 113-116:497-508.
    107 Ren NQ, Cao GL, Wang AJ, et al. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy. 2008b, 33:6124~6132.
    108 Lin CY, Cheng CH. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy. 2006, 31:832~840.
    109 Lin CY, Wu CC, Hung CH. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. Int J Hydrogen Energy. 2008, 33:43~50.
    110 Datar R, Huang J, Maness PC, et al. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy. 2007, 32:932~939.
    111 Pattra S, Sangyoka S, Boonmee M, et al. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy. 2008, 33:5256~5265.
    112 Cao GL, Ren NQ, Wang AJ, et al. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharol- yticum W16. Int J Hydrogen Energy. doi:10.1016/j.ijhydene. 2009.11.127.
    113 Lo YC, Lu WC, Chen CY, et al. Dark fermentative hydrogen production fromenzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource Technology. 2010, 101:5885~5891.
    114 Li DM, Chen HZ. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy. 2007, 32(12):1742~1748.
    115周俊虎,戚峰,程军等.秸秆发酵产氢的影响因素研究.环境科学. 2007, 28(5):1153~1157.
    116 Guo YP, Fan SQ, Fan YT, et al. The preparation and application of crude cellulase forcellulose-hydrogen production by anaerobic fermentation. Int J Hydrogen Energy. 2010, 35:459~468.
    117 Fan YT, Zhu YH, Zhang SF. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology. 2006, 97:500~505.
    118 Zhang ML, Fan YT, Xing Y, et al. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy. 2007, 31:250~254.
    119 Pan CM, Zhang SF, Fan YT, et al. Bioconversion of corncob to hydrogen using anaerobic mixed Microflora. Int J Hydrogen Energy. 2010, 35:2663~2669.
    120 Ren NQ, Wang AJ, Gao L, et al. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrogen Energy. 2008, 33(19):5250~5255.
    121 de Vrije T, de Haas GG, Tan GB, et al. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy. 2002, 27:1381~1390.
    122 Nguyen TA, Han SJ, Kim JP, et al. Hydrogen production by the hyperthermo- philic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int J Hydrogen Energy. 2008, 33:5161~5168.
    123 Liu H, Zhang T, Fang HHP. Thermophilic H2 production from a cellulose- containing wastewater. Biotechnol Lett. 2003, 25:365~369.
    124 Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy. 2004, 29:1355~1363.
    125杨文钰,王兰英.作物秸秆还田的现状与展望.四川农业大学学报. 1999, 17:211~216.
    126赵宗保.加快微生物油脂研究为生物柴油产业提供廉价原料.中国生物工程杂志. 2005, 25(2):8~11.
    127 Http://www.atcc.org/Attachments/2455.pdf.
    128 Hungate RE. Anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950, 14:1~49.
    129 Bryant MP. Commentary on the Hungate technique for culture of anaerobic bacteria. The American J Clinical Nutriition. 1972, 25:1324~1328.
    130 Ren NQ, Xing DF, Rittmann BE, et al. Microbial community structure of ethanol type fermentation in bio-hydrogen production Environmental Microbiology. 2007, 9(5):1112~1125.
    131 Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999, 2:317~322.
    132东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社. 2001
    133 Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology Evolution. 2007, 24:1596~1599.
    134 Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: ?exible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25:4876~4882.
    135 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4:406~425.
    136 Miller GL. Use of dinitrosalicylic acid and reagent for the determination of reducing sugars. Anal Chem. 1959, 31:426~428.
    137沈煜.木酮糖激酶对酿酒酵母代谢工程菌木糖利用的影响.山东大学博士论文. 2005.
    138 Wang JL, Wan W. Kinetic models for fermentative hydrogen production: A review. Int J Hydrogen Energy. 2009, 34(8):3313-3323.
    139王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序.微生物学通报. 1987, 2:81~84.
    140 Guo XM, Trably E, Latrille E, et al. Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energy. doi:10.1016 /j.ijhydene.2010.03.008.
    141 Adav SS, Lee DJ, Wang AJ, et al. Functional consortium for hydrogenproduction from cellobiose: Concentration-to-extinction approach. Bioresource Technology. 2009, 100:2546~2550.
    142 Wang AJ, Gao LF, Ren NQ, et al. Enrichment strategy to select functional consortium from mixed cultures: Consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2009.11.117.
    143 Kumar RJ, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008, 35:377~391.
    144孙云章,毛胜勇,姚文等.瘤胃厌氧真菌和细菌对木质素含量不同底物的发酵特性.福建农林大学学报(自然科学版). 2007, 36(4):393~395.
    145 Lee ZK, Li SL, Lin JS, et al. Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrogen Energy. 2008, 33(19):5234~5241.
    146陈晓倩,殷浩文.微生物群落多样性分析方法的进展.上海环境科学. 2003, 22(3):213~217.
    147陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法.生态学报. 2006, 26(10):3404~3412.
    148王君,马挺,刘静等.利用PCR-DGGE技术指导高温油藏中功能微生物的分离. 2008, 29(2):462~468.
    149 Tai J, Adav SS, Su A, et al. Biological hydrogen production from phenol containing wastewater using Clostridium butyricum. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2009.11.111.
    150 Liang DW, Shayegan SS, Ng WJ, et al. Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR). Biochemical Engineering J. 2010, 49(1):119~125.
    151 Li SL, Whang LM, Chao YC, et al. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone. Int J Hydrogen Energy. 2010, 35(1):61~70.
    152 Winker S. Woese CR. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 1994, 14:305~310.
    153 Andres R, Marga F, Mohamed E. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rDNA gene internal transcribed spacer sequence. J Clin Microbiol. 1998, 36:139~148.
    154 Matthies C, Kuhner CH, Acker G, et al. Clostridium uliginosum sp. nov., a novel acidtolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol. 2001, 51:1119~1125.
    155 Kovarova-Kovar K, Egli T. Growth kinetics of suspended microbial cells: from single substrate-controlled growth to mixed-substrate kinetics. Micro Molbio R. 1997, 62(3):646~666.
    156 Lendenmann U, Snozzi M, Egli T. Growth kinetics of Escherichia coli with galactose and several other sugars in carbon-limited chemostat culture. Can J Microbiol. 2000, 46(1):72~80.
    157 Zwietering MH, Jongenburger I, Rombouts FM, et al. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990, 56(6):1875~1881.
    158 Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 1999, 33(11):2579~2586.
    159 Wu JH, Lin CY. Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol. 2004, 49(5-6):223~228.
    160 Nath K, Muthukumar M, Kumar A, et al. Kinetics of two stage fermentation process for the production of hydrogen. Int J Hydrogen Energy. 2008, 33(4):1195~1203.
    161 Ntaikou I, Gavala HN, Kornaros M, et al. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy. 2008, 33(4):1153~1163.
    162 Lin PY, Whang LM, Wu YR, et al. Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrogen Energy. 2007, 32(12):1728~17335.
    163 Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 2000, 35(6):589~593.
    164 Fabiano B, Perego P. Thermodynamic study and optimizationof hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy. 2002, 27(2):149~156.
    165 Wang JL, Wan W. Application of desirability function based on neural networkfor optimizing biohydrogen production process. Int J Hydrogen Energy. 2009, 34(3):1253~1259.
    166 Mu Y, Wang G, Yu HQ. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology. 2006, 97(11):1302~1307.
    167 Forsberg CW. Future hydrogen markets for large-scale hydrogen production systems. Int J Hydrogen Energy. 2007, 32:431~439.
    168张亚珍.代谢木糖和葡萄糖产乙醇的重组酿酒酵母的构建.首都师范大学硕士学位论文. 2008.
    169 Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol. 1996, 62(12):4648~4651.
    170 Guedon E, Payot S, Desvaux M, et al. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriology. 1999, 181(10):3262~3269.
    171 Desvaux M, Guedon E, Petitdemange H. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Applied Environmental Microbiology. 2001, 67(9):3837~3845.
    172 Beall DS, Ohta K, Ingram LO. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng. 1991, 38:296~303.
    173 Mohagheghi A, Dowe N, Schell D, et al. Performance of a newly developed integrant of Zymomonas Mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett. 2004, 26:321~325.
    174 Bao XM, Gao D, Qu YB, et al. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin J Biotechnol. 1997, 13:225~231.
    175 Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol. 2003, 69:1990~1998.
    176刘巍峰,张晓梅,陈冠军等.木糖发酵酒精代谢工程的研究进展过程工程学报. 2006, 6(1):138~143.
    177刘健,陈洪章,李佐虎.木糖发酵生产乙醇的研究.工业微生物. 2001, 31(2):30~32.
    178 Beg QK, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001, 56:326~338.
    179 Ditzelmuller G, Kubicek CP, Wohrer W, et al. Xylose metabolism in Pachysolen tannophilus purification properties of xylose reductase. Can J Microbiol. 1984, 30:1330~1336.
    180陈艳萍,勇强,刘超纲等.戊糖发酵微生物及其选育.纤维科学与技术. 2001, 9(3):57~61.
    181 Lau MW, Dale BE, Balan Venkatesh. Ethanolic fermentation of hydrolysates from Ammonia Fiber Expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotech Bioeng. 2008, 99:529~539.
    182 Hewitt CJ, Nienow AW. The scale-up of microbial batch and fed-batch fermentation processes. Adv Appl Microbiol. 2007, 62:105~135.
    183 Yee L, Blanch HW. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology. 1992, 10(12): 1550~1556.
    184王岁楼,熊卫东.生化工程.北京:中国医药科技出版社. 2002.
    185 Hawkes FR, Hussy I, Kyazze G, et al. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy. 2007, 32:172~184.
    186 Yang MH, Li WL, Liu BB, et al. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource Technology. 2010, 101(13):4884~4888.
    187 Kargi F, Pamukoglu MY. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. In J Hydrogen Energy. 2009, 34(7):2940~2946.
    188 Ozmihci S, Kargi F. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. Int J Hydrogen Energy. 2010, 35(3):1106~1111.
    189郝素琴,刘艳.我国农作物秸秆综合利用概况.中国环境管理干部学院学报.2007, 17(1):63~65,73.
    190韩餐佳,刘向阳,胡金有.中国农作物秸秆资源及其利用现状.农业工程学报. 2002, 18(3):87-91.
    191张亮,伍小兵,翟井振.玉米秸秆发酵生产燃料乙醇的研究综述.安徽农业科学. 2007, 35(11):3365~3366.
    192赵磊.玉米秸秆降解及其生产乙醇的研究.西北大学硕士学位论文. 2008.
    193刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工. 2005, 25(3):19~22.
    194 Kim TH, Lee YY. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresource Technology. 2006, 97(2):224~232.
    195 Duguid KB, Montross MD, Radtke CW, et al. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresource Technology. 2009, 100(21):5189~5195.
    196 Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microbial Technology. 2001, 28:835~844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700