用户名: 密码: 验证码:
冈底斯带中段北部早白垩世火山岩及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原隶属于特提斯构造域,被誉为研究大陆动力学的天然实验室。古生代—中生代的特提斯大洋两侧的多岛弧盆系奠定了青藏高原的物质基础,形成了三大造山系。新生代印度大陆与亚洲大陆的碰撞造就了世界上规模最大的、最高的高原。位于高原中部的冈底斯带(相当于传统的拉萨地块/地体)保存有丰富的特提斯演化记录,对这些记录的研究,是国内外地学界长期关注的焦点。冈底斯带上广泛发育的岩浆岩是人们探索高原形成演化的一个重要载体,然而人们多注重于印度与亚洲碰撞过程的岩浆活动和构造过程的研究,而对于前新生代的岩浆活动和构造过程研究尚显不足。前人对冈底斯带中生代岩浆活动虽然做过一些研究,但是主要集中在冈底斯带南部的中新生代岩基和火山岩,而对北部几条规模巨大的中生代火山岩却没有进行详细的年代学及岩石地球化学研究,限制了对冈底斯中生代演化的理解。为了丰富冈底斯带中生代的构造演化资料,有必要选取关键区域,对有关火山岩进行深入而系统的研究。基于上述研究目的,本论文选取尼玛到申扎一带广泛出露的中生代火山岩为研究对象,在详细的野外地质调查的基础上,通过岩石学、锆石SHRIMP和LA-ICPMS U-Pb年代学和岩石地球化学等综合研究,探讨了其形成时代、成因和构造环境,同时结合区域构造、沉积地层等资料,取得了以下认识:
     (1)冈底斯带中段北部的地层系统中,以大面积出露的火山沉积地层为主,主要以早白垩世为主,早期以沉积地层为主,晚期以火山岩为主。以永珠一纳木错蛇绿混杂岩带为中轴,两侧对称分布。
     (2)申扎地区的则弄群火山岩主要由玄武安山岩、安山岩和英安岩组成,化学成分以高钾钙碱性火山岩为主,微量元素分布特征相似,富集大离子亲石元素(Rb、Ba、Th、U等)和轻稀土元素,亏损Nb、Ta、Ti等高场强元素,稀土配分模式均表现为一致的轻稀土富集右倾型,可能反应了其母岩浆的同源性。地球化学特征与弧火山岩相似。底部英安岩锆石SHRIMP U-Pb年龄约为116.7Ma,顶部英安岩锆石LA-ICPMS U-Pb年龄为110.9Ma,为永珠—纳木错弧后洋盆在早白垩世向南俯冲消减的产物。
     (3)多尼组火山岩主要由玄武安山岩、安山岩、英安岩和流纹岩组成,上部主要为长英质火山岩,为连续的岩浆演化序列,化学成分主要属于中—高钾钙碱性火山岩,具有明显富集大离子亲石元素(Rb、Ba、Th、U等)和轻稀土元素、亏损高场强元素(Nb、Ta、Ti等)等特征类似于岛弧火山岩,富集强不相容性元素Rb、Th、U,而亏损Nb、Ta、Ti的特点,表现出明显的弧火山岩成分特征。上部长英质火山岩与南部林子宗群酸性火山岩具有非常相似的蛛网图曲线,表明多尼组酸性岩与中基性岩可能来自不同的岩浆源区,前者很可能来源于上覆地壳的部分熔融,后者可能与来自消减沉积物和/或蚀变玄武质洋壳的含水流体引起上覆地幔楔物质的部分熔融有关。多尼组火山岩上部长英质火山岩年龄时限为116-114Ma,代表了申扎弧与班戈弧碰撞的开始。
     (4)去申拉组主要为玄武岩,安山岩,总体上具有富集强不相容性元素Rb、Th、U,而亏损Nb、Ta、Ti的特点,与弧火山岩的特征相似。去申拉组成因比较复杂,可能为班公湖—怒江的残余洋盆俯冲的产物。
     (5)从大地构造相分析,综合研究区的岩浆活动、沉积学、构造地质学研究,详细解剖了永珠—纳木错弧-弧碰撞带的演化过程,经历了中-晚三叠世的伸展裂陷,侏罗纪—早白垩世早期的扩张,-130Ma永珠—纳木错弧间洋盆双向俯冲,116-110Ma初始弧-弧碰撞,110Ma碰撞结束。
     (6)根据多岛弧盆系和增生造山理论,结合研究区的区域地质资料,首次提出冈底斯带中北部为—典型的增生造山带,自中-晚三叠世受班公湖—怒江洋的后退式俯冲制约,火山前锋向海沟方向迁移,导致弧前增生和弧后伸展拉张,侏罗纪—早白垩世出现多岛弧盆系统。
     (7)从比较大地构造学角度出发,将永珠—纳木错弧-弧碰撞带与东南亚现今正在进行的马鲁古海弧-弧碰撞带作比较,认为多岛弧盆系构造是造山带研究尤其是造山带细结构研究的一把实用的钥匙。
The Qinghai-Tibet Plateau belongs to Tethyan tectonic domain, known as natural laboratory for continental dynamics study. Composite arc-basin systems separated by the Tethyan ocean in the Paleozoic—Mesozoic has constituted the material foundation of the Qinghai-Tibet Plateau, forming three major orogenic systems. India-Asian collision yielded the largest and highest plateau in the earth. The Gandese belt (Lhasa block/terrane) is located in the central part of the Tibet, it preserved a wealth of records about Tethyan evolution, for a long time, many studies focus on these records. The significant magmatic rocks in the belt are the media, which are explored the formation and evolution of the Qinghai-Tibet plateau, but most people concentrate on the studies about the magmatic activity and tectonic evolution during the India-Asia collision process, while it is insufficient to study the Pre-Cenozoic magmatic activity and tectonic setting. Previous studies concentrated in the Mesozoic-Cenozoic magmatic activity of the southern Gangdese. The huge volcanic rocks in the northern part have not been studied extensively and insightfully based on geochronology and geochemistry, which put some limitations on the understanding of Mesozoic evolution history of the belt. In order to enrich geological evidences of the Mesozoic tectonic evolution of the Gangdese, so the study of the Mesozoic volcanic rocks in the northern part is essential. Based on field investigations, three suits of volcanic rocks related to in northern part of Gangdese were selected for comprehensive studies on petrology, geochemistry, and zircon U-Pb SHRIMP & LA-ICPMS dating in this thesis, with the aim of revealing their age and petrogenesis and tectonic implication. These studies also have significant implications in understanding the Mesozoic subduction history of the northern part of Gangdese. Some results are gained as following:
     1. A large area of volcano-sedimentary strata exposed in northern part of central Gangdese, the strata are the Early Cretaceous mainly, the lower and upper part are mainly sedimentary rocks and volcanic rocks, respectively, the volcano-sedimentary strata distributed symmetrically in both sides of the Yongzhu-Namco ophiolitic melange belt.
     2. The volcanic rocks from the Zenong Group mainly contain basalt, andesite and dacite based on the TAS diagram. From the SiO2-K2O diagram they mainly are composed of high-K calc-alkaline series, they show a similar trace element characteristics, e.g., the enrichment of LILE (Rb、Ba、Th、U) and depletion of HFSE (Nb、Ta、Ti), similar to those of an island arc volcanic rock. The similar spider diagram and REE models imply that theses volcanic rocks were probably derived from a same magmatic source. Zircons from the Zenong volcanic rocks were dated by SHRIMP and LA-ICPMS, obtaining an age of 116.7-110.9Ma. Thus, this thesis suggest that the Zenong volcanic rocks were resulted from the southward subduction of the Yongzhu—Namco ocean in the Early Cretaceous.
     3. Duoni Formation volcanic rocks mainly contain basalt, basaltic andesite, dacite and rhyolite. The intermediate-basic rocks show geochemical characteristics similar to the volcanic rocks in arcs or active continental margins, such as LILE's enrichment and HFSE's depletion, which thought to be the melting products of continental marginal mantle wedge due to northward subduction of the Yongzhu-Namco ocean. The acid rocks have relatively high SiO2, K2O, enrich in Rb, Ba, Th, U and LREE, high Rb/Sr, and spidergram patterns similar to the acid rocks of the Linzizong Group derived from a crust source. Thus, the acid rocks in Duoni Formation were come from a magmatic source different from those of the intermediate-basic rocks. Zircons from two acid rocks in Duoni Formation were dated by SHRIMP and LA-ICPMS, obtaining age of 116Ma and 114Ma, respectively. So, the formation tectonic setting of Duoni Formation is related to the arc-arc collision.
     4. Qushenla Formation volcanic rocks include basalt and andesite, which show a similar trace element characteristics, e.g., the enrichment of LILE(Rb、Ba、Th、U) and depletion of HFSE (Nb、Ta、Ti), similar to those of an island arc volcanic rock. However, they originate complex sources, they were probably resulted from the southward subduction of the Bangong-Nujiang ocean in the Early Cretaceous.
     5. According to tectonic facies, based on comprehensive magmatic activity, sedimentary records, structural geology reseach, the tectonic history was proposed between the Yongzhu-Namco arc-arc collision belt in detail. The belt rifted in the extensional setting since the Middle-Late Triassic, spread in the Jurassic-Early Cretaceous, the Yongzhu-Namco ocean dually subducted in-130Ma, the initial arc-arc collision begin from 116 to 110Ma, the collision process end in 110.
     6. On the basis of composite arc-basin system and accretionary orogenesis, an accretionary orogenic belt is proposed in the northern part of Gangdese, based on comprehensive research of regional tectonics. Since the Middle-Late Triassic, the subdution zone of the Bangong-Nujiang Ocean retreated, the process control the evolution of the northern part of Gangdese and result in the magmatic front migrating toward the trench, forearc accretion and back-arc extension, the composite arc-basin systems formed in the Jurassic-Early Cretaceous.
     7. From the viewpoint of comparative tectonics, by comparative analysising the Yongzhu-Namco arc-arc collision zone in the Gangdese and the ongoing Molucca Sea arc-arc collision zone in the southeast Asia, we realized that the composite arc-basin system is a practical key to understand the evolution of orogenic belt.
引文
朱弟成、耿全如、周长勇,等,2006,喜马拉雅—冈底斯造山带岩浆岩地质.成都地质矿产研究所内部报告
    王天武、程立人、李才、武世忠、刘俊才、和钟铧、张予杰、朱志勇、杨德明,2002,1:25万申扎县幅地质图及区域地质调查报告
    曲永贵、王永胜、段建祥、张树岐、王忠恒、吕鹏、刘贵忠、李学彬、冯德臣、谢元和、于喜文、姜雪飞、孙中纲、李庆武、梁世福、王洪双、郭双山,2003,1:25万多巴区幅地质图及区域地质调查报告
    卢书炜、张彦启、杜凤军、刘品德、贾共祥、裴中朝、谢朝永、李香资,2002,1:25万尼玛区幅地质图及区域地质调查报告
    陈玉禄、赵咸民、陈国荣、张宽忠、赵守仁、刘保民、索朗更才,2002,1:25万班戈县幅地质图及区域地质调查报告
    吴珍汉,孟宪刚,·胡道功,江万,叶培盛,朱大岗,刘琦胜,杨欣德,邵兆刚,吴中海,赵希涛,王建平,冯向阳,纪占胜.2003.中华人民共和国1:25万区域地质调查报告当雄幅
    卢书炜、张彦启、杜凤军、刘品德、贾共祥、裴中朝、谢朝永、李香资,2002,1:25万热布喀幅地质图及区域地质调查报告
    郑来林、耿全如、董瀚,等,2003,中华人民共和国1:25万墨脱县幅地质图和区域地质调查报告
    郑有业、许荣科、茨邛,等,2004,中华人民共和国1:25万斯诺乌山、狮泉河幅地质图和区域地质调查报告
    [1]周云生,张旗,梅厚钧,等.西藏岩浆活动和变质作用[M].北京:科学出版社,1981.
    [2]Maluski H, Proust F, Xiao X C.39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet[J]. Nature,1982,298:152-154.
    [3]Scharer U, Xu R H, Allegre C J. U-Pb geochronology of Gandese (Transhimalaya) plutonism in the Lhasa-Xigaze region Tibet[J]. Earth and Planetary Science Letters,1984,69:311-320.
    [4]金成伟,杨瑞英,赵珍兰,等.喜马拉雅和冈底斯中段花岗岩类的微量元素和稀土元素特征[M]//(ed.).喜马拉雅地质(二),中法合作喜马拉雅地质考察1981年成果.北京:地质出版社,1984:167-182.
    [5]Xu R, Scharer U, Allegre C J. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study[J]. Journal of Geology,1985,93:41-57.
    [6]Debon F, Le Fort P S, S. M. F., Sonet J. The four plutonic belts of the Transhimalaya-Himalaya:a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section[J]. Journal of Petrology,1986,27:219-250.
    [7]Harris N B W, Inger S, Xu R. Cretaceous plutonism in Central Tibet:An example of post-collision magmatism?[J]. Journal of Volcanology and Geothermal Research,1990,44:21-32.
    [8]刘国惠,金成伟,王富宝,等.西藏变质岩及火成岩[M].北京:地质出版社,1990.
    [9]刘振声,王洁民.青藏高原南部花岗岩地质地球化学[M].成都:四川科学技术出版社,1994.
    [10]张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋 早侏罗世俯冲作用的证据[J].岩石学报,2007,23(6):1347-1353.
    [11]Wen D-R, Liu D, Chung S-L, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology,2008,252:191-201.
    [12]朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学(D辑:地球科学),2009,39(7):833-848.
    [13]莫宣学,赵志丹,邓晋福,等.印度—亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
    [14]周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].2004,49(20):2095-2103.
    [15]董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J].岩石学报,2006,22(3):661-668.
    [16]姚鹏,李金高,王全海,等.西藏冈底斯南缘火山——岩浆弧带中桑日群adakite的发现及其意义[J].岩石学报,2006,22(3):612-620.
    [17]Zhu D, Zhao Z, Pan G, et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34(3):298-309.
    [18]耿全如,潘桂棠,金振民,等.西藏冈底斯带叶巴组火山岩地球化学及成因[J].地球科学-中国地质大学学报,2005,30(6):747-760.
    [19]王立全,潘桂棠,朱弟成,等.西藏冈底斯带石炭—二叠纪岛孤造造山作用:火山岩及地球化学证据[J].地质通报,2008,27(9):1509-1 534.
    [20]耿全如,王立全,潘桂棠,等.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义[J].岩石学报,2007,23(11):2699-2714.
    [21]耿全如,王立全,潘桂棠,等.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据[J].地质学报,2007,81(9):1260-1276.
    [22]Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters,1986,79:281-302.
    [23]Pearce J A, Mei H. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philos. Trans. R. Soc. London,1988,327:169-201.
    [24]朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世—早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534-546.
    [25]朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,2008,27(4):458-468.
    [26]朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550.
    [27]Liao Z, Mo X, Pan G, et al. Spatial and Temporal Distribution of Peraluminous Granites in Tibet and Its Tectonic Significance[J]. Journal of Asian Earth Sciences,2007,29(2-3):378-389.
    [28]廖忠礼,莫宣学,潘桂棠,等.初论西藏过铝花岗岩[J].地质通报,2006,25(7):812-821.
    [29]廖忠礼,莫宣学,潘桂棠,等.西藏过铝花岗岩研究近况[J].地学前缘,2003,10(4):437-438.
    [30]潘桂棠,丁俊,王立全,等.1:150万青藏高原及邻区地质图[M].成都:地图出版社,2004.
    [31]Suess E. Are great ocean depths permanent?[J]. Natural Science,1893,2:180-187.
    [32]Argand E. La tectonique de l'Asie. C. R. ⅩⅢe Congrs Geol. Int.1922,171-372, Liege.[M],1924.
    [33]Huang T K. On the major tectonic forms of China[J]. Geological Memoirs Ser. A,1945,20:1-165.
    [34]常承法,潘裕生,郑锡澜,等.青藏高原地质构造[M].北京:科学出版社,1982:1-9i.
    [35]李廷栋,韩同林.青藏高原地质构造特征和地质发展历程[M].北京:地质出版社,1980.
    [36]刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化[M].中华人民共和国地质专报.Vol.5构造地质地质力学.地质:地质出版社,1990.
    [37]肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈构造演化总论[M].北京:地质出版社,1988:1-236.
    [38]潘桂棠,王培生,徐耀荣,等.青藏高原新生代构造演化[M].北京:地质出版社,1991.
    [39]Allegre C J, Courtillot V, Tapponnie P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature,1984,307:17-22.
    [40]Burg J P, Chen G M. Tectonics and structural zonation of southern Tibet[J]. Nature,1984,311:219-223.
    [41]Sengor A M C. The Cimmeride orogenic system and the tectonics of Euraisa[J]. Geological Society of America Special Paper,1984,195:1-82.
    [42]Dewey J F, Shackelton R M, Chang C, et al. The tectonic evolution of the Tibetan plateau[J]. Philos. Trans. R. Soc. London,1988, A327:379-413.
    [43]李廷栋.青藏高原地质调查研究历史之回顾[J].青海地矿科技信息,2000,(2):1-4.
    [44]李廷栋.青藏高原地质科学研究的新进展[J].地质通报,2002,21(7):370-376.
    [45]潘桂棠,丁俊,王立全,等.青藏高原区域地质调查重要新进展通报[J].地质通报,2002,21(11):787-793.
    [46]潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004,23(1):12-19.
    [47]王立全,朱弟成,潘桂棠.青藏高原1:25万区域地质调查主要成果和进展综述(南区)[J].地质通报,2004,23(5-6):413-420.
    [48]潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(1):701-707.
    [49]任纪舜,肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报,2004,23(1):1-11.
    [50]许志琴,杨经绥,李海兵,等.造山的高原—青藏高原地体拼合、碰撞造山和高原隆升[M].北京:地质出版社,2006:1-458.
    [51]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.
    [52]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521-543.
    [53]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [54]Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature,2003,421:622-624.
    [55]Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature,2006,439:677-681.
    [56]李继亮,孙枢,郝杰,等.论碰撞造山带的分类[J].地质科学,1999,34(2):129-138.
    [57]马文璞,李锦轶,李江海,等.造山带概念的演变及它在现今大陆构造研究中面临的问题[J].地质论评,2002,48(2):153-157.
    [58]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [59]杨巍然.论造山作用和造山带[J].地质论评,1999,45(1):10-15.
    [60]张长厚,吴正文.造山带构造研究中几个重要学术概念问题的讨论[J].地质论评,2002,48(4):337-344.
    [61]张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考[J].中国地质,2002,29(1):7-13.
    [62]钟大赉,丁林,张进江,等.中国造山带研究的可顾和展望[J].地质论评,2002,48(2):147-152.
    [63]崔盛芹.全球性中—新生代陆内造山作用与造山带[J].地学前缘,1999,6(4):283-293.
    [64]刘本培,冯庆来,方念乔,等.滇西南昌宁—孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学-中国地质大学学报,1993,18(5):529-539.
    [65]殷鸿福,黄定华.早古生代镇淅地块与秦岭多岛小洋盆的演化[J].地质学报,1995,69(3):193-204.
    [66]钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社,1998.
    [67]Hsu K J. Tectonic facies in an archipelago model of intraplate orogenesis[J]. GSA Today,1994, 4(12):289-293.
    [68]陈海泓,肖文交.多岛海型造山作用-以华南印支期造山带为例[J].地学前缘,1998,5(增刊):95-102.
    [69]Xiao W, Sun S, Li J, et al. Early Mesozoic collapse of the Late Paleozoic archipelago in South China [M]//Briegel U. and Xiao W. (ed.).Paradoxes in Geology. The Netherlands:Elsevier,2001:15-37.
    [70]潘桂棠.全球洋陆转换中的特提斯演化[J].特提斯地质,1994,18:23-40.
    [71]潘桂棠,王立全,尹福光,等.从多岛弧盆系研究实践看板块构造登陆的魅力[J].地质通报,2004,23(9-10):933-939.
    [72]葛肖虹.华北板内造山带的形成史[J].地质论评,1989,35(3):254-261.
    [73]宋鸿林.燕山式板内造山带基本特征与动力学探讨[J].地学前缘,1999,6(4):309-316.
    [74]张长厚.初论板内造山带[J].地学前缘,1999,6(4):295-308.
    [75]万天丰,赵维明.论中国大陆的板内变形机制[J].地学前缘,2002,9(2):451-463.
    [76]张长厚.大陆板内构造变形及其动力学机制[J].地学前缘,2008,15(3):140-149.
    [77]Coney P J, Jones D L, Monger J W H. Cordilleran suspect terranes[J]. Nature,1980,288:29-33.
    [78]Howell D G. Tectonics of Suspect Terranes--Mountain Building and Continental Growth[M]. London: Chapman & Hall,1989.
    [79]郭令智,舒良树,卢华复,等.中国地体构造研究进展综述[J].南京大学学报(自然科学),2000,36(1):1-17.
    [80]Hsu K J. The concept of tectonic facies[J]. Bulletin of the Technical University of Istanbul,1990, 44(1-2):25-42.
    [81]李继亮.碰撞造山带大地构造相[M]//李继亮(ed.).现代地质研究文集(上).南京:南京大学出版社,1992:9-21.
    [82]Robertson A H F. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region[J]. Earth-Science Reviews,1994,37:139-213.
    [83]张克信,朱云海,殷鸿福,等.大地构造相在东昆仑造山带地质填图中的应用[J].地球科学,2004,29(6):661-666.
    [84]潘桂棠,肖庆辉,陆松年,等.大地构造相的定义、划分、特征及其鉴别标志[J].地质通报,2008,27(10):33-57.
    [85]陆松年.初论“泛华夏造山作用”与加里东和泛非造山作用的对比[J].地质通报,2004,23(9-10):952-959.
    [86]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造—中国及邻区大地构造图及简要说明[M].北京:地质出版社,1999:1-50.
    [87]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.
    [88]钟大赉,丁林,刘福田,等.造山带岩石层多向层架构造及其对新生代岩浆活动制约—以三江及邻区为例[J].中国科学(D辑),2000,30(增刊):1-8.
    [89]Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31-47.
    [90]李荣社,徐学义,计文化.对中国西部造山带地质研究若干问题的思考[J].地质通报,2008,27(12):2020-2025.
    [91]Xiao W, Han C, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences,2008,32:102-117.
    [92]陆松年,于海峰,李怀坤,等.“中央造山带”早古生代缝合带及构造分区概述陆松年[J].地质通报,2006,25(12):1369-1380.
    [93]潘桂棠,莫宣学,候增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
    [94]Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    [95]Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic tectonic evolution of central Asia:From continental assembly to intracontinental deformation. Geological Society of America Memoir Vol.194. Colorado:Boulder.2001:i-ii.
    [96]潘桂棠,王培生,徐耀荣,等.青藏高原新生代构造演化[M].北京:地质出版社,1991.
    [97]Burg J P, Proust F, Tapponnier P, et al. Deformation phases and tectonic evolution of the Lhasa block (southernTibet, China)[J]. Eclogae Geologicae Helvetiae,1983,76:643-665.
    [98]England P C, Houseman G A. Finite strain calculations of continental deformation 2:application to the India-Asia plate collision[J]. Journal of Geophysical Research,1986,91:3664-3676.
    [99]Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology,1997,25(8):719-722.
    [100]丁林,来庆洲.冈底斯地壳碰撞前增厚及隆升的地质证据岛弧拼贴对青藏高原隆升及扩展历史的制约[J].科学通报,2003,48(8):836-842.
    [101]Pan Y. Unroofing history and structural evolution of the southern Lhasa terrane,Tibetan Plateau: Implications for the continental collision between India and Asia [D]. Albany:State University of New York,1993:287.
    [102]Ratschbacher L, Frisch W, Chen C, et al. Deformation and motion along the southern margin of the Lhasa block (Tibet) prior to and during the India-Asia collision[J]. Journal of Geodynamics,1993, 16:21-54.
    [103]Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics,2003,22.
    [104]Kapp P, Yin A, Harrison M T, et al. Cretaceous-Tertiary shortening, basin development and, and volcanism in central Tibet[J]. Geological Society of America Bulletin,2005,117:865-878.
    [105]李继亮,张国伟,钟大赉,等.”造山带研究”笔谈会[J].地学前缘,1999,6(3):1-19.
    [106]马文璞.当前造山带研究的几个重要问题[J].地学前缘,1999,6(3):103-111.
    [107]任纪舜,郝杰,肖草薇.回顾与展望中国大地构造学[J].地质论评,2002,48(2):113-124.
    [108]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京:地质出版社,1997.
    [109]Kroner A, Windley B F, Badarch G, et al. Accretionary growth in the Central Asian Orogenic Belt of Mongolia during the Neoproterozoic and Palaeozoic and comparison with the Arabian-Nubian Shield and the present Southwest Pacific[J]. Geophysical Research Abstracts,2005, EGU05-A-06650.
    [110]刘本培,1991,滇西古特提斯多岛洋构造古地理格局,in中国西部特提斯构造演化及成矿作用,地质矿产部成都地质矿产研究所,Editor.电子科技大学出版社:成都.
    [111]Liu B, Feng Q, Fang N. Tectonic evolution of the Paleo-Tethys in Changning-Menglian Belt and adjacent region, Western Yunnan[J]. Journal of China University of Geosciences,1991,2(1):18-28.
    [112]刘本培,冯庆来,Chonglakmani C,等.滇西古特提斯多岛洋的结构及其南北延伸[J].地学前缘,2002,9(3):161-171.
    [113]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学,1997,22(4):339-342.
    [114]殷鸿福,吴顺宝,杜远生,等.华南是特提斯多岛洋体系的一部分[J].地球科学,1999,24(1):1-12.
    [115]Yin H, Zhang K, Feng Q. The archipelagic ocean system of the eastern Eurasian Tethys[J]. Acta Geologica Sinica,2004,78(1):230-236.
    [116]Dalziel I W D. Back-arc extension in the southern Andes. A review and critical appraisal[J]. Royal Society London Philosophical Transactions, Series A.,1981,300:319-335.
    [117]Haxel G B, Killon J. The Pelona-Orocopia Schist and the Vincent-Chocolate Mountain thrust system, southern California [M]//Howell D. G. and McDougall K. A. (ed.). Mesozoic Paleogeography of the Western United States:Pacific Section:Society of Economic Paleontologists and Mineralogists Symposium,1978:453-469.
    [118]Ehlig P L. Origin and tectonic history of the basement terrane of San Gabriel Mountains, Central Transverse Ranges [M]//Ernst W. G. (ed.). The geotectonic development of California (Rubey Volume I). Englewood Cliffs, New Jersey:Prentice Hall,1981:258-283.
    [119]许靖华,崔可锐,施央申.一种新型的大地构造相模式和弧后碰撞造山[J].南京大学学报,1994,30(3):381-389.
    [120]Hsu K J, Pan G T, Sengor A M C. Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review,1995,37:473-508.
    [121]许靖华,孙枢,王清晨,等.中国大地构造相图(1:4000000)[M].北京:科学出版社,1998.
    [122]Hsu K J. An Application of the Tectonic Facies Concept and the Archepelago Model of Orogenesis to interpret the Phanerozoic Tectonic History of China[J]. Journal of the Geological Society of China, 1997,40(3):469-480.
    [123]Hsu K J. The Geology of Switzerland and An Introduction to Tectonic Facies[M]. Princeton:Princeton University Press,1995.
    [124]Hsu K J. Role of ophiolites in archipelago model of orogenesis[J]. Geological Society of America Special Paper,2003,373:159-171.
    [125]Hsu K J. Pelona Schist, Perry Ehlig, and the archipelago model of orogenesis[J]. Geological Society of America Special Paper,2002,365:155-160.
    [126]李春昱,王荃,刘雪亚,等.亚洲大地构造图(1:800万)及说明书[M].北京:地质出版社,1982.
    [127]Simandjuntak T O, Barber A J. Contrasting tectonic Styles in the Neogene orogenic belts of Indonesia[J]. Geological Society Special Publication,1996,106:185-201.
    [128]Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences,2002,20:353-431.
    [129]Hsu K J. The Geology of Switzerland and An Introduction to Tectonic Facies[M]. Princeton:Princeton University Press,1995.
    [130]Karig D E. Temporal relationships between back arc basin formation and arc volcanism with special reference to the Philippine Sea[J]. Geophysical Monograph Series,1983,27:318-325.
    [131]Karig D E. Basin genesis in the Philippine Sea[J]. Initial Reports of the Deep Sea Drilling Project,1975, 31:857-879.
    [132]Hamilton W B. Tectonics of the Indonesian region[M]. Washington:USGS,1979.
    [133]Hutchison C S. Geological evolution of South-east Asia[M]. Oxford:Oxford University Press,1989.
    [134]Sengor A M C, Okurogullari A H. The role of accretionary wedges in the growth of continents:Asiatic examples from Argand to plate tectonics[J]. Eclogae Geologicae Helvetiae,1991,84:535-597.
    [135]Sengor A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    [136]Hsu K J. The concept of tectonic facies[J]. Bull. Tech. Univ. Istanbul,1991,44(1-2):25-42.
    [137]冯益民,曹宜铎,张而朋,等.西秦岭造山带结构造山过程及动力学[M].西安:西安地图出版社,2002.
    [138]殷鸿福,张克信.中华人民共和国区域地质调查报告(比例尺1:250000),冬给措纳湖幅(I47C001002),中国地质调查局地质调查专报A1[M].武汉:中国地质大学出版社,2003:1-455.
    [139]罗建宁.大陆造山带沉积地质学研究中的几个问题[J].地学前缘,1994,1(1-2):177-183.
    [140]Sengor A M C. Orogenic architecture as a guide to size of ocean lost in collisional mountain belts[J]. Bulletin of the Technical University of Istanbul,1991,44:43-74.
    [141]Sengor A M C. Turkic-type orogeny in the Altaids:Implications for the evolution of continental crust and methodology of regional tectonic analysis (The 34th Bennett Lecture). [J]. Transactions of the Leicester Literary and Philosophical Society,1993,87:37-54.
    [142]Sengor A M C, Natal'in B A. Phanerozoic analogues of Archaean oceanic basement fragments:Altaid ophiolites and ophirags[J]. Developments in Precambrian Geology,2004,13:675-726.
    [143]李继亮.增生型造山带的基本特征[J].地质通报,2004,23(9-10):947-951.
    [144]Cawood P A, Kroener A, Windley B F,2003, Accretionary orogens:definition, character, significance. EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice,France,6-11 April 2003.
    [145]Sengor A M C, Natal'in B A. Turkic-type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences,1996,24:263-337.
    [146]Condie K C. Plate Tectonics and Crustal Evolution[M]. Oxford:Butterworth-Heinemann,1997.
    [147]Condie K C. Earth as an evolving planetary system[M]. Elsevier:Academic Press,2006.
    [148]Windley B F, Badarch G, Cunninghaml W D, et al. Subduction-Accretion History of the Central Asian Orogenic Belt:Constraints from Mongolia[J]. Gondwana Research,2001,4(4):825-826.
    [149]Gray D R, Foster D A. Crust restoration for the western Lachlan Orogen using the strain-reversal, area-balancing technique:Implications for crustal components and original thicknesses[J]. Australian Journal of Earth Sciences,2006,53:329-341.
    [150]Cawood P, Lahtinen R, Isozaki Y. Accretionary orogens:Character and processes [C].33rd IGC STT-03 2008. Oslo.
    [151]Sengor A M C. Orogenic style, sea level, Sr isotopes and a brief history of the Earth for the last 600 million years[J]. Russ. Geol.Geophys,2006,47(1):21-31.
    [152]罗建宁,彭勇民,潘桂棠.东特提斯板块会聚边缘与岛弧造山作用[J].岩相古地理,1996,16(3):2-15.
    [153]Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics,2003,22(6):1069, doi:10.1029/2002TC001484.
    [154]Jahn B-m, Windley B, Natal'in B, et al. Phanerozoic Continental Growth in Central Asia [J]. Journal of Asian Earth Sciences,2004,23(5):599-603.
    [155]Kroner A, Windley B F, Badarch G, et al. Accretionary growth in the Central Asian Orogenic Belt of Mongolia during the Neoproterozoic and Palaeozoic and comparison with the Arabian-Nubian Shield and the present Southwest Pacific[J]. Geophysical Research Abstracts,2005, Vol.7,06650.
    [156]Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia[J]. Journal of the Geological Society,2004, 161:339-342.
    [157]肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].中国基础科学,2009,3:14-19.
    [158]袁四化,潘桂棠,王立全,等.大陆边缘增生造山作用[J].地学前缘,2009,16(3):31-48.
    [159]常承法.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨[J].中国科学(A辑),1973,(2):190-201.
    [160]任纪舜,姜春发,张正坤,等.中国大地构造及其演化—1:400万中国大地构造图简要说明[M].北京:科学出版社,1980:1-124.
    [161]李春昱,王荃,刘雪亚,等,亚洲大地构造图(1:800万).北京:地质出版社.1982
    [162]罗建宁,王小龙,李永铁,等.青藏特提斯沉积地质演化[J].沉积与特提斯地质,2002,22(1):7-15.
    [163]刘增乾,焦淑沛,张以茀,等.青藏高原及邻区地质图(1:15000000)及说明书[M].北京:地质出版社,1986.
    [164]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造—中国及邻区大地构造图及简要说明[M].北京:地质出版社,1999:1-50.
    [165]黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,1987.
    [166]周详,曹佑功,朱明玉,等.西藏板块构造-建造图[M].北京:地质出版社,1984:1-47.
    [167]西藏地质矿产局.两藏自治区域地质志[M].北京:地质出版社,1993.
    [168]Chang C, Chen N, Coward M P, et al. Preliminary conclustions of the Royal Society and Academic Sinica 1985 geotraverse of Tibet[J]. Nature,1986,323:501-507.
    [169]潘裕生,孔祥儒,eds.青藏高原岩石圈演化和动力学.广州:广东科技出版社.1998.
    [170]常承法.中国西藏南部珠穆朗玛峰地区构造特征[J].地质科学,1973,(1):1-12.
    [171]金成伟,周云生.喜马拉雅和冈底斯山弧形山系中的岩浆岩带及其形成模式[J].地质科学,1978,(4):297-310.
    [172]夏代祥,1986,班公湖—怒江、雅鲁藏布江带中段演化历史的剖析,青藏高原地质文集(9):123-138.
    [173]耿全如,潘桂棠,郑来林,等.藏东南雅鲁藏布江蛇绿混杂带的物质组成及形成环境[J].地质科学,2004,39(3):1-19.
    [174]潘桂棠,丁俊,姚东生,等.1:150万青藏高原及邻区地质图说明书[M].成都:地图出版社,2004.
    [175]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社,2001:1-439.
    [176]潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质,2009,36(1):1-28.
    [177]罗建宁.论东特提斯形成与演化的基本特征[J].特提斯地质,1995,19:1-8.
    [178]李兴振,许效松,潘桂棠.泛华夏大陆群与东特提斯构造域演化[J].岩相古地理,1996,15(4):1-13.
    [179]陈智梁.特提斯地质一百年[J].特提斯地质,1994,18:1-19.
    [180]Chang C, Pan Y. A brief discussion on the tectonic evolution of the Qinghai-Xizang Plateau [M]//(ed.). Geological and ecological studies of Qinghai-Xizang Plateau. Beijing:Science Press,1981:1-18.
    [181]Sengor A M C. Tectonics of the Tethysides:orogenic collage development in a collisional setting[J]. Annual Review of Earth and Planetary Sciences,1987,15:213-224.
    [182]Sengor A M C, Altmer D, Cin A, et al.Origin and assembly of the Tethyside orogenic collagenic at the expence of Gondwana Land[J]. Geological Society Special Publication,1989,37:119-181.
    [183]Zhang Z M, Liou J G, Coleman R G. An outline of the plate tectonics of China[J]. Geological Society of America Bulletin,1984,95(3):295-312.
    [184]Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys, breakup of Rodinia and Gondwanaland and assembly of Asia[J]. Australian Journal of Earth Sciences,1996, 43:605-623.
    [185]李荣社,杨永成,孟勇.青藏高原1:25万区域地质调查主要成果和进展综述(北区)[J].地质通报,2004,23(5-6):421-426.
    [186]王立全,潘桂棠,李才,等.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP年龄—兼论原-古特提斯洋演化[J].地质通报,2008,27(12):2045-2056.
    [187]李才,董永胜,翟庆国,等.青藏高原羌塘早古生代蛇绿岩-堆晶辉长石的锆石SHRIMP定义及其意义[J].岩石学报,2008,24(1):31-36.
    [188]杨经绥,许志琴,耿全如,等.中国境内可能存在一条新的高压/超高压(?)变质带--青藏高原拉萨地块中发现榴辉岩带[J].地质学报,2006,80(12):1787-1792.
    [189]杨经绥,许志琴,李天福,等.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆地残留?[J].地质通报,2007,26(10):1277-1287.
    [190]李才,王天武,李惠民,等.冈底斯地区发现印支期巨斑花岗闪长岩—古冈底斯造山的存在证据[J].地质通报,2003,22(5):364-367.
    [191]曲永贵,王永胜,张树岐.西藏申扎地区晚三叠世多布日组地层剖面的启示--对冈底斯印支运动的地层学制约[J].地质通报,2003,22(7).
    [192]郑来林,廖光宇,耿全如,等.墨脱县幅地质调查新成果及主要进展[J].2004,23(5-6):458-462.
    [193]和钟铧,杨德明,郑常青,等.西藏冈底斯带门巴地区印支期花岗岩地球化学特征及其构造意义[J].地质通报,2005,24(4):354-359.
    [194]张宏飞,徐旺春,郭建秋,等.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据[J].地球利学-中国地质大学学报,2007,32(2):155-166.
    [195]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281-290.
    [196]Ding L, Kapp P, Zhong D L, et al. Cenozoic Volcanism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction[J]. Journal of Petrology,2003,44:1833-1865.
    [197]温显德,陈清华.中—新生代西藏冈底斯岛弧演化的节律特征[J].地学前缘,1997,4(3-4):109-110.
    [198]Allmendinger R W, Jordan T E, Kay S M, et al. The evolution of the Altiplano-Puna plateau of the central Andes[J]. Annual Review of Earth and Planetary Sciences,1997,25:139-174.
    [199]Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet:A history of episodic unroofing[J]. Tectonics,1995,14(2):223-236.
    [200]Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin,2004,116:1202-1222.
    [201]Chu M-F, Chung S-L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology,2006,34:745-748.
    [202]Gutscher M A, Maury R, Eissen J P. Can slab melting be caused by flat subduction?[J]. Geology,2000, 28(6):535-538.
    [203]朱弟成,潘桂棠,莫宣学,等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报,2006,80(9):1312-1328.
    [204]陈玉禄,张宽忠,杨志民,等.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报,2006,25(6):694-699.
    [205]康志强,许继峰,董彦辉,等.拉萨地块中北部白至纪则弄群火山岩:Slainajap洋南向俯冲的产物?[J].岩石学报,2008,24(2):303-314.
    [206]李光明,高大发,黄志英.西藏冈底斯构造带侏罗纪浊积岩特征及构造环境判别[J].矿物岩石,2001,21(3):95-99.
    [207]李光明,雍永源.藏北那曲盆地中-上侏罗统拉贡塘组浊流沉积特征及微量元素地球化学[J].地球学报,2000,21(4):373-378.
    [208]Zhang K J. Cretaceous palaeogeography of Tibet and adjacent areas (China):Tectonic implications[J]. Cretaceous Research,2000,21:23-33.
    [209]England P, Searle M. The Cretaceous-Tertiary Deformation of the Lhasa Block and its Implications for Crustal Thickening in Tibet[J]. Tectonics,1986,5(1):1-14.
    [210]Leeder M R, Smith A B, Yin J. Sedimentology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud geotraverse[J]. Philos. Trans. R. Soc. London,1988,327:107-143.
    [211]Yin A, Harrison T M, Ryerson F J. et al. Tertiary structural evolution of the Gangdese thrust system in southeastern Tibet[J]. Journal of Geophysical Research,1994,99:18175-18201.
    [212]闫臻,王宗起,李继亮,等.造山带沉积盆地构造原型恢复[J].地质通报,2008,27(12):2001-2013.
    [213]熊盛青,周伏烘,姚正煦.青藏高原中西部航磁概查[M].北京:地质出版社,2002
    [214]孔祥儒,下谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究[J].中国科学(D辑)1996,26(4):308-315.
    [215]陈国荣,蒋光武,刘鸿飞,等.班公错—怒江结合带中段组成及其相互有关系[J].西藏地质,2005,(1):22-29.
    [216]夏斌,徐力峰,韦振权,等.西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义[J].地质学报,2008,82(4):528-531.
    [217]饶荣标,徐济凡,陈永明,等.青藏高原的三叠系[M].北京:地质出版社,1987.
    [218]Girardeau J, Marcous J, Allegre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature,1984,307:27-31.
    [219]Coward M P, Kidd W S F, Yun P, et al. The structure of the 1985 Tibet geotraverse, Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London,1988,327:307-333.
    [220]Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters,1996,142:311-316.
    [221]郑有业,.许荣科,何来信,等.西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J].沉积与特提斯地质,2004,24 (1):13-20.
    [222]郭铁鹰,梁定益,张宜智,等.西藏阿里地质[M].武汉:中国地质大学出版社,1991.
    [223]郑有业,许荣科,马国桃,等.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报,2006,22(4):895-904.
    [224]张宽忠,陈玉禄.古昌蛇绿岩中的斜长花岗岩特征[J].沉积与特提斯地质,2007,27(1):32-37.
    [225]张玉修,张开均,黎兵,等.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报,2007,52(1).
    [226]郑来林,廖光宇,耿全如,等.墨脱县幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):458-462.
    [227]周长勇,朱弟成,赵志丹,等.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束[J].岩石学报,2008,24(2):348-358.
    [228]朱弟成,莫宜学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报,2008,24(3):401-412.
    [229]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281-290.
    [230]石和,马润则,刘登忠,等.西藏措勤地区的中新世布嘎寺组[J].成都理工大学学报(自然科学版),2005,32(2):173-176.
    [231]Turner S, Arnaud N, Liu J, et al. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Gonvective Thinning of the Lithosphere and the Source of Ocean Island Basalts[J]. Journal of Petrology,1996,37(1):45-71.
    [232]Miller C, Schuster R, Klotzli U S, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constrains for mantle source characteristics and petrogenesis[J]. Journal of Petrology,1999,40:1399-1424.
    [233]Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology,2001, 29:339-342.
    [234]Nomade S, Renne P R, Mo X X, et al. Miocene volcanism in the Lhasa block, Tibet:spatial trends and geodynamic implications[J]. Earth and Planetary Science Letters,2004,221:227-243.
    [235]胡道功,吴珍汉,江万,等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究[J].中国科学D辑地球科学,2005,35(1):29-37.
    [236]袁健芽,李晓勇,徐银保,等.西藏中南部雄马—措麦以南地区早、中二叠世地层及其意义[J].地质通报,2003,22(6):412-418.
    [237]Zhu D, Mo X, Niu Y, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet:Implications for Permian collisional orogeny and paleogeography[J]. Tectonophysics,2009,469(1-4):48-60.
    [238]朱弟成,潘桂棠,莫宣学,等.藏南特提斯喜马拉雅带中段二叠纪——白垩纪的火山活动(Ⅰ):分布特点及其意义[J].地质通报,2004,23(7):645-654.
    [239]杨德明,黄映聪,戴琳娜,等.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石SHRIMP U-Pb年龄及其意义[J].地质通报,2005,24(3):235-238.
    [240]丁林,来庆洲.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约[J].科学通报,2003,48(8):836-842.
    [241]翟庆国,李才,李惠民,等.西藏冈底斯中部淡色花岗岩锆石U-Pb年龄及其地质意义[J].地质通报,2005,24(4):349-353.
    [242]杨德明,和钟铧,郑常青,等.西藏门巴地区德宗花岗质片麻岩SHRIMP锆石U-Pb年龄及地质意义[J].吉林大学学报(地球科学版),2004,34:12-14.
    [243]和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义[J].岩石矿物学杂志,2006,25(3):185-193.
    [244]邓晋福,赵海玲,莫宣学.中国大陆要-柱构造—大陆动力学的钥匙[M].北京:地质出版社,1996.
    [245]吴旭铃,陈振华.西藏尼雄岩体岩石地球化学特征及其成因探讨[J].中国地质,2005,32(1):122-127.
    [246]Scharer U, Hamet J, Allegre C J. The Transhimalaya Gangdese plutonism in the Ladakh region:a U-Pb and Rb-Sr study[J]. Earth and Planetary Science Letters,1984,67:327-339.
    [247]Harris N B W, Xu R H, Lewis C L, et al. Plutonic rocks of the 1985 Tibet Geotransverse:Lhasa to Golmud[J]. Philos. Trans. R. Soc. London,1988, A327:263-285.
    [248]Chung S-L, Chu M-F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Review,2005,68:173-196.
    [249]Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of Himalaya[J]. Geological Society of America Bulletin,1987,98:678-701.
    [250]Ji W-Q, Wu F-Y, Chung S-L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology,2009,262(3-4):229-245.
    [251]耿全如,潘桂棠,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地质,2006,26(1):1-7.
    [252]王全海,李金高,程力军,等.西藏冈底斯多金属矿产资源的研究概况与勘查历史回顾[J].西藏地质,2002,20:74-77.
    [253]曲晓明,辛洪波,徐文艺.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,2007,26(5):512-518.
    [254]张万平,莫宣学,朱弟成,等.西藏冈底斯带南部雄村金矿成因探讨—来自锆石U-Pb年龄的证据[J].岩石矿物学杂志,2009,28(3):235-242.
    [255]Zhu D-C, Zhao Z-D, Pan G-T, et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34:298-309.
    [256]董国臣,莫宣学,赵志丹,等.拉萨北部林周盆地林子宗火山岩层序新议[J].地质通报,2005,24(6):549-557.
    [257]Mo X, Zhao Z, Deng J, et al. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau:Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow[J]. Geological Society of America Special Paper,2006,409:507-530.
    [258]莫宣学,赵志丹,周肃,等.印度-亚洲大陆碰撞的时限[J].地质通报,2007,26(10):1240-1244.
    [259]侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1-12.
    [260]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31(11):1021-1024.
    [261]Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139-155.
    [262]侯增谦,曲晓明,黄卫.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,28(10):27-29.
    [263]王全海,王保生,李金高,等.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,2002,20(1):35-40.
    [264]郑有业,王保生,樊子珲,等.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J].地质科技情报,2002,21(2):55-60.
    [265]芮宗瑶,陆彦,李光明,等.西藏斑岩铜矿的前景展望[J].中国地质,2003,30(3):302-308.
    [266]李光明,潘桂棠,王高明,等.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工学院学报(自然科学版),2004,31(1):22-27.
    [267]Einsele G, Liu B, Durr S, et al. The Xigaze forearc basin:evolution and facies architecture (Cretaceous, Tibet)[J]. Sedimentary Geology,1994,90:1-32.
    [268]Durr S B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet)[J]. Geological Society of America Bulletin,1996,108:669-684.
    [269]王希斌,鲍佩声,邓万明,et al.西藏蛇绿岩[M].北京:地质出版社,1987.
    [270]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001:182.
    [271]. 朱杰,刘早学,杜远生,等.拉孜县幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):471-474.
    [272]Wang Y, Yang Q, Matsuoka A, et al. Triassic radiolarians from the Yarlung Zangbo suture zone in the Jinlu area, Zetang country, southern Tibet[J]. Acta Micropalaeontologica Sinica,2002,19(3):215-227.
    [273]胡敬仁,孙中良,陈国结,等.日喀则市幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):463-470.
    [274]高洪学,宋子季.西藏泽当蛇绿岩混杂岩研究新进展[J].中国区域地质,1995,4:316-322.
    [275]李海平,张满社.西藏罗布莎蛇绿岩的地球化学特征及形成环境探讨[J].西藏地质,1996,2:55-61.
    [276]朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,(2).
    [277]Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature,1997, 390:159-162.
    [278]Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology,2001,172(1-2):5-24.
    [279]Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology,2004,205(1-2):115-140.
    [280]Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:application to U-Pb geochronology[J]. Chemical Geology,2000,164(3-4):281-301.
    [281]Li X-H, Liang X, Sun M, et al. Geochronology and geochemistry of single-grain zircons:Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS[J]. European Journal of Mineralogy, 2000,12:1015-1024.
    [282]刘海臣,朱炳泉,张展霞.LAM-ICPMs法用于单颗粒错石定年研究[J].科学通报,1998,43:1103-1106.
    [283]梁细荣,李献华,刘永康,等.激光等离子体质谱法(LA — IcPMS)用于年轻错石U-Pb定年[J].地球化学,2000,29:1-5.
    [284]宋彪,张玉海,刘敦一.微区原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J].质谱学报,2002,23(1):58-62.
    [285]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30.
    [286]Gunther D, Frischknecht R, Heinrich C A, et al. Capabilities of an Argon Fluoride 193nm Excimer Laser for Laser AblationInductively Coupled Plasma Mass Spectometry Microanalysis of Geological Materials[J]. Journal of Analytical Atomic Spectrometry,1997,12:939-944.
    [287]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004,28(3):353-370.
    [288]柳小明,高山,第五春荣,等.单颗粒错石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J].科学通报,2007,52:228-235.
    [289]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [290]Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002,192(1-2):59-79.
    [291]Ludwig K R. Isoplot 3.0:a geochronological toolkit for Mierosoft Excel[J]. Berkeley Geochronology Center, Spec. Publ.,2003,4:70.
    [292]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,2000,18(4):423-439.
    [293]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [294]陶晓风,刘登忠,石和,等.西藏措勤地区达雄群时代质疑[J].中国地质,2001,28(11):10-12.
    [295]康志强,许继峰,王保弟,等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学-中国地质大学学报,2009,34(1):89-104.
    [296]Condie K C. Plate tectonics and crustal evolution (2nd edition)[M]. Oxford:Pergamon Press,1982.
    [297]Hyndman D W. Petrology of igneous and metamorphic rocks (2nd edition)[M]. New York:McGraw-Hill, 1985.
    [298]莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993:1-234.
    [299]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘,1999,6(2):259-270.
    [300]夏林圻.造山带火山岩研究[J].岩石矿物学杂志,2001,20(3):225-232.
    [301]张本仁.大陆造山带地球化学研究:Ⅰ岩石构造环境地球化学判别的改进[J].西北地质,2001,34(3):1-17.
    [302]肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑),2000,30((增刊)):22-28.
    [303]刘晔,柳小明,胡兆初,等.1CP-MS测定地质样品中37个元素的准确度度和长期稳定性分析[J].岩石学报,2007,23:1203-1212.
    [304]Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms,2nd ed[M]. Cambridge: Cambridge Univ. Press,2002:236.
    [305]Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences,1971,8:523-548.
    [306]Rollinson H R. Using geochemical data:Evaluation, presentation, interpretation[M]. New York: Longman Group U K Ltd,1993.
    [307]Perfit M R, Gust D A, Bence A E, et al. Chemical characteristics of island-arc basalts:Implications for mantle sources[J]. Chemical Geology,1980,30(3):227-256.
    [308]Sun S S, McDough W F. Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders AD (Eds.), Magmatism in ocean Basins[J]. Geological Society of London Special Publication,1989,42:313-345.
    [309]Rudnick R L, Gao S. The Composition of the Continental Crust[M]. Treatise on Geochemistry, ed. Holland H. D. and Turekian K. K. Vol.3. Oxford:Elsevier,2003.
    [310]Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins [M]// Hawkesworth C. J. and Norrym M. J. (ed.). Continental basalts and mantle xenoliths. United Kingdom: Shiva Nantwich,1983:230-249.
    [311]Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology,1981,32:139-154.
    [312]Brown G C, Thorpe R S, Webb P C. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources[J]. journal of Geological Society,1984,141:413-426.
    [313]Richards J P, Villeneuve M. Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina[J]. Journal of Volcanology and Geothermal Research,2002,116:161-200.
    [314]Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50(1):11-30.
    [315]Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences,1995,23:251-285.
    [316]Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956-983.
    [317]Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146.
    [318]Brenan J M, Shaw H F, Ryerson F J, et al. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2.0 GPa:constraints on the trace element chemistry of mantle and deep crustal fluids[J]. Geochimica et Cosmochimica Acta,1995,59:3331-3350.
    [319]You C F, Castillo P R, Gieskes J M, et al. Trace element behaviour in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones[J]. Earth and Planetary Science Letters,1996,140:41-52.
    [320]Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust:2. Origin of chemical and physical characteristics in arc magmatism[J]. Earth and Planetary Science Letters,1997,148:193-205.
    [321]Castillo P R, Newhall C G. Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines[J]. Journal of Petrology,2004,45:1089-1108.
    [322]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990,347:662-665.
    [323]Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research,1997,102:14991-15019.
    [324]Yogodzinski G M, Kay R W, Volynets 0 N, et al. Magnesian andesite in the western Aleutian Komandorsky region:Implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin,1995,107:505-519.
    [325]Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments:implication for arc and ocean island magmatism[J]. Island Arc,1999,8:38-46.
    [326]Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology,1988,98:224-256.
    [327]Ingle S, Weis D, Frey F A. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137)[J]. Journal of Petrology,2002,43(7):1241-1257.
    [328]Roberts M P, Clemens J D. Origin of high-potassium calcalkaline I-type granitoids[J]. Geology,1993, 21(9):825-828.
    [329]Tepper J H, Nelson B K, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington:generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy and Petrology,1993,113(3):333-351.
    [330]Guffanti M, Clynne M A, Muffler L J P. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research,1996,101(B2):3003-3013.
    [331]Sun W, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas:evidence from Lau Basin basaltic glasses and primitive melt inclusions[J]. Earth and Planetary Science Letters,2004, 222:101-114.
    [332]Hanyu T, Tatsumi Y, Nakai S i, et al. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr:Constraints from geochemistry [J]. Geochemistry Geophysics Geosytems,2006,8(7):1-29.
    [333]Mo X, Hou Z, Niu Y, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos,2007,96:225-242.
    [334]Mo X, Niu Y, Dong G, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008,250:49-67.
    [335]Price R C, Stewart R B, Woodhead J D, et al. Petrogenesis of high-K arc magmas:Evidence from Egmont volcano, North Island, New Zealand[J]. Journal of Petrology,1999,40:167-197.
    [336]Mo X, Ho Z, Niu Y, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos,2007,96:225-242.
    [337]Ramos V A. Plate tectonic setting of the Andean Cordillera[J]. Episodes,1999,22(3):183-190.
    [338]Wilson M. Igneous Petrogenesis[M]. Dordrecht:Springer,1989:466.
    [339]Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977,20:325-343.
    [340]邱瑞照,周肃,邓晋福,等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定:兼论班公湖怒江蛇绿岩带形成时代[J].中国地质,2004,31(3):262-268.
    [341]潘桂棠.初论班公湖-怒江结合带[J].青藏高原地质文集,1983,12:北京:地质出版社.
    [342]肖序常,李廷栋.青藏高原构造演化与隆升机制[M].广州:广东科学技术出版社,2000.
    [343]Taner I, Meyerhoff A. Petroleum at the roof of the world. The geological evolution of Tibet (Qinghai-Xizang) Plateau Part 1[J]. Journal of Petroleum Geology,1990,13:157-178.
    [344]赵文津,刘葵,蒋忠惕,等.西藏班公湖!怒江缝合带——深部地球物理结构给出的启示[J].地质通报,2004,23(7):623-635.
    [345]Haines S S, Klemperer S L, Brown L D. INDEPTH III seismic data:From surface observations to deep crustal processes in Tibet[J]. Tectonics,2003,22:doi:0.1029/2001TC001305.
    [346]黄汲清,陈国铭,陈炳蔚.特提斯-喜马拉雅构造域初步分析[J].地质学报,1984,(1):1-17.
    [347]Zhou M F, Malpas J, Robinson'P T, et al. The dynamothermal aureole of the Donqiao Ophiolite (northern Tibet)[J]. Canadian Journal of Earth Sciences,1997,34:59-65.
    [348]Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology,2006,34:505-508.
    [349]尹光侯,侯世云.西藏碧土地区怒江缝合带基本特征与演化[J].中国区域地质,1998,17(3):247-254.
    [350]王玉净,王建平,刘彦明,等.西藏丁青蛇绿岩特征、时代及其地质意义[J].微体古生物学报,2002,19(4):417-420.
    [351]陈玉禄,张宽忠,李关清,等.班公湖—怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义[J].地质通报,2005,24(7):622-625.
    [352]尼玛次仁,谢尧武.藏北那曲地区中三叠世地层的新发现及其地质意义[J].地质通报,2005,24(12):1141-1149.
    [353]王忠恒,王永胜,谢元和,等.西藏班公湖—怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质,2005,25(1-2):155-162.
    [354]王建平,刘彦明,李秋生,等.西藏班公湖—丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报,2002,21(7):405-410.
    [355]郑有业,许荣科,何建社,等.兹格塘错幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):538-542.
    [356]陈国荣,陈玉禄,张宽忠,等.班戈县幅地质调查新成果及主要进展[J].地质通报,2004,23(5-6):520-524.
    [357]许靖华,孙枢,王清晨,等.中国大地构造相图(1:400万)[M].北京:科学出版社,1998.
    [358]王永胜,曲永贵,吕鹏,等.西藏永珠蛇绿岩带地质特征[J].吉林地质,2003,22(2):2-14.
    [359]王永胜,曲永贵,王忠恒,等.藏北永珠席状岩墙群的发现——海底扩张的证据[J].地质通报,2005,24(12):1150-1156.
    [360]杨日红,李才,迟效国,等.西藏永珠-纳木湖蛇绿岩地球化学特征及其构造环境初探[J].现代地质,2003,17(1):14-19.
    [361]Silver E A, Moore J C. The Molucca Sea Collision Zone, Indonesia[J]. Journal of Geophysical Research, 1978,83:1681-1691.
    [362]McCaffrey R, Silver E A, Raitt R W. Crustal Structure of the Molucca Sea Collision Zone, Indonesia[J]. Geophysical Monograph Series,1980,23:161-177.
    [363]魏文博,金胜,叶高峰,等.西藏高原中、北部断裂构造特征INDEPTH (III)-MT观测提供的依据[J].地球科学-中国地质大学学报,2006,31(2):257-265.
    [364]廖六根,曹圣华,肖业斌,等.班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义[J].沉积与特提斯地质,2005,25(1-2):163-170.
    [365]曲晓明,辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,2006,25(7):792-799.
    [366]潘桂棠,徐强,候增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2003.
    [367]李学彬,崔亚茹,王洪双,等.西藏班戈县苦嘎铜矿床地质特征及发现意义[J].吉林地质,2008,27(1):10-15.
    [368]段建祥,于喜文,孙中纲,等.永珠结合带控岩与成矿作用探讨[J].吉林地质,2005,24(1):28-33.
    [369]潘桂棠,徐强,王立全.矿产资源预测评价的理论和实践--以西南”三江”研究为例[J].矿床地质,2002,21(Sup.):40-43.
    [370]肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2000,22(5):1062-1076.
    [371]Pogue K R, DiPietro J A, Khan S R, et al. Late Paleozoic rifting in Northern Pakistan[J]. Tectonics 1992, 11:871-883.
    [372]Vannay J-C, Spring L. Geochemistry of continental basalts within the Tethys Himalaya of Lahul-Spiti and SE Zanskar, northwest India[J]. Geol. Soc. London, Spec. Publ.,1993,74:237-249.
    [373]Sciunnach D, Garzanti E. Sedimentary record of Late Paleozoic rift and break-up in Northern Gondwana (Thini Chu Group and Tamba-Kurkur Formation; Dolpo Tethys Himalaya, Nepal).[J]. Geodinamica Acta,1996,9:41-56.
    [374]杨经绥,许志琴,耿全如,等.中国境内可能存在一条新的高压/超高压(?)变质带--青藏高原拉萨地块中发现榴辉岩带[J].地质学报,2006,80(12):1787-1792.
    [375]杨经绥,许志琴,李天福,等.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆地残留?[J].地质通报,2007,26(10):1277-1287.
    [376]Yang J, Xu Z, Li Z, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences,2009,34(1):76-89.
    [377]Garzanti E, Le Fort P, Sciunna D. First report of Lower Permian basalts in South Tibet:tholeiitic magmatism during break-up and incipient opening of Neotethys[J].Journal of Asian Earth Sciences, 1999,17:533-546.
    [378]陈松永,杨经绥,徐向珍,等.西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMSU-Pb定年[J].岩石学报,2008,24(7):1528-1538.
    [379]Zhu D C, Pan G T, Chung S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet[J]. International Geology Review,2008,50:442-471.
    [380]McDermid I R C, Aitchison J C, Davis A M, et al. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet[J]. Chemical Geology,2002, 187(3-4):267-277.
    [381]Aitchison J C, Badengzhu, Davis AM, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). [J]. Earth and Planetary Science Letters,2000, 183(1-2):231-244.
    [382]潘桂棠,王培生,徐耀荣,等.青藏高原新生代构造演化[M].北京:地质出版社,1990:1-190.
    [383]李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1):1-11.
    [384]施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-20.
    [385]张克信,王国灿,曹凯,等.青藏高原新生代主要隆升事件:沉积响应与热年代学记录[J].中国科学D辑:地球科学,2008,38(12):1575-1588.
    [386]Burchfiel B C, Chen Z, Hodges K V, et al. The south Tibetan detachment system,Himalayan orogen,extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Geological Society of America (Special Paper),1992,269:1-40.
    [387]袁四化,刘永江,葛肖虹,等.青藏高原北缘的隆升时期——来自阿尔金山和柴达木盆地的证据[J]. 岩石矿物学杂志,2008,27(5):413-421.
    [388]葛肖虹,任收麦,马立祥,等.青藏高原多期次隆升的环境效应[J].地学前缘,2006,13(6):1]8-130.
    [389]李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究究而十年[J].地质论评,2008,54(1):105-119.
    [390]潘桂棠,朱弟成,王立全,等.班公湖—怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘,2004,11(4):371-382.
    [391]李才.龙木错-双湖—吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘,2006,13(4):136-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700