用户名: 密码: 验证码:
基于空频域信息的单星对星无源定轨与跟踪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子对抗技术和航空航天技术的不断发展,空间信息获取及对抗在现代化的高技术战争中发挥着越来越重要的作用,从而,对空间信息系统载体——卫星的运动状态确定和跟踪就成了亟待解决的关键问题。鉴于采用天基平台对卫星目标进行观测可以不受大气、时间和国界的影响限制,并且单站无源的观测方式具有隐蔽性强、设备简单、作用距离远和适用范围广等优点,利用单颗卫星平台对卫星目标的无源定轨跟踪(单星对星无源定轨跟踪)技术研究就成为具有重要意义的课题。在总结单站无源定位技术和卫星轨道力学知识的基础上,论文对基于空域和频域观测信息的单星对星无源定轨跟踪所涉及的理论方法及关键问题展开研究。
     卫星运动建模是单星对星无源定轨跟踪研究的前提。在定义适当的坐标系统和研究相关卫星轨道理论的基础上,建立了卫星运动的力学模型和基于F/G级数的状态递推F-G模型。该模型以对二体运动的精确描述为特点,具有比其它近似递推模型更高的准确性。根据现有文献,综述了只测角单星对星无源定轨的可观测性研究,并引入完全可观测的结论。卫星运动模型的建立和只测角定轨可观测结论的引入,为后续研究奠定了基础。
     论文研究了只测角条件下和联合测角与测频条件下的单星对星无源定轨跟踪方法。基于前面给出的卫星运动模型,对单星对星无源定轨系统进行建模,继而提出基于准确状态模型的只测角单星对星无源定轨跟踪方法。接着,在只测角的基础上引入频率观测量,提出基于准确状态模型的联合测角与测频的单星对星无源定轨跟踪方法,显著提高了只测角定轨方法的精度和收敛速度。与已有的基于泰勒级数展开近似模型的方法相比,由于模型准确性更高,论文的只测角和联合测角与测频两种定轨方法具有更优的性能,且运算复杂度相当。
     论文接着研究了基于质点运动学原理的单星对星无源测距和定轨跟踪方法。针对单星对星无源定轨背景的特点,推导无源测距方程并给出具体解法,实现了单星对星无源测距。在此基础上,结合测距分解观测模型,提出一种基于运动学原理的单星对星无源测距定轨跟踪方法,可实现快速定位。进一步将径向速度观测量引入观测量集并直接参与递推滤波计算,提出基于径向运动信息的单星对星无源定轨跟踪方法。除具有收敛速度快的优点外,该方法还具有很高的定轨精度,可用于要求快速和高精度的无源定轨场合。
     然后,鉴于单星对星无源定轨跟踪问题的非线性本质和递推滤波算法对定轨的重要作用,论文对非线性滤波问题进行了研究。从函数解析近似的思路出发,分析了EKF(Extended Kalman Filtering)及其改进算法的性能特点,针对其不足,对基于Stirling插值多项式近似的差分滤波算法DDF(Divided Difference Filtering)进行了深入研究。根据单星对星无源定轨背景的加性噪声特点,提出一种适合实时应用的简化差分滤波算法SDDF(Simplified DDF),降低了运算复杂度。针对单星对星无源定轨系统可观测性弱和观测误差大的问题,将最大似然迭代策略与DDF相结合,提出一种迭代差分滤波算法IDDF(Iterated DDF)。该方法迭代过程以似然概率增加为准则,在改善跟踪滤波精度和收敛速度的同时,算法稳定性也得到较大程度提高。
     本文系统地研究了基于空频域信息的单星对星无源定轨跟踪涉及的关键理论和技术问题,提出了相应的解决方法和结论,相关研究成果具有较强的理论意义和一定的工程意义。
With the development of the electronic countermeasures technology and the aerospace technology, the spatial information acquisition and confrontation plays an increasingly important role in modern high-tech war. Therefore, it is an urgent crucial task to obtain the motion state of a satellite, carrying the spatial information system. The technology of the passive orbit determination and tracking of a satellite by the single-satellite-borne (single-satellite-to-satellite passive orbit determination and tracking) becomes a very significant subject, as the spaceborne surveillance of the target satellites is not confined to the limits of atmosphere, national boundaries, and time, and the passive observation mode by single observer has many advantages, such as excellent invisibility, simplicity in the facility, large effective radius and wide applicability. Based on the single observer passive location technology and satellite orbit dynamics, this dissertation investigates some crucial theoretical methods and issues concerning the single-satellite-to-satellite passive orbit determination and tracking with observations from the spatial-frequency domain.
     Satellite motion modeling is the theoretic premise in single-satellite-to-satellite passive orbit determination and tracking research. After difining the appropriate coordinate system and investigating the concerned orbit theory, a dynamics equation and a state prediction F-G equation of satellite with the F/G series based on precise modeling of two-body motion are established, which is more accurate than other state prediction equations based on approximate modeling of two-body motion. Then, the literature as to the observability of the single-satellite-to-satellite passive orbit determination system using bearings information is reviewed, and the conclusion that the system is entirely observable is introduced. The satellite motion modeling and the conclusion of system observability are theoretical bases of following research. The bearings-only method and the bearings-frequency combination method of the single-satellite-to-satellite passive orbit determination and tracking are investigated successively. Firstly, the single-satellite-to-satellite passive orbit determination system is modeled based on the satellite state prediction equation established above, and a novel bearings-only passive orbit determination and tracking method is proposed.
     Subsequently, the frequency is introduced into the observation information group, and a novel single-satellite-to-satellite bearings-frequency combination passive orbit determination method based on an accurate state equation is proposed, thus the accuracy of estimation and the speed of convergence are improved greatly. Compared with the methods using an approximate state prediction equation based on Taylor series, higher estimation accuracy and faster convergence are obtained using the both novel methods, due to the more accurate satellite motion model, while the computational complexity is comparable.
     A novel single-satellite-to-satellite passive ranging and orbit determination method is investigated based on the particle kinematics theory. Aimed at the characteristics of single-satellite-to-satellite passive orbit determination, a passive ranging equation and its solution are derived, thus, the single-satellite-to-satellite passive ranging is achieved. Next, combined with the ranging orthogonal decomposition measurement model, a novel single-satellite-to-satellite passive ranging and orbit determination method based on kinematics is proposed, by which fast location can be achieved. Furthermore, by utilizing the radial velocity as observation information for recursive filtering directly, another novel single-satellite-to-satellite passive orbit determination and tracking method is proposed, which is based on the radial motion measurements information. Using this novel method, great fast convergence and high accuracy are obtained, and fast and accurate orbit determination can be also achieved.
     Then, considering the nonlinear nature of the single-satellite-to-satellite passive orbit determination and the important role of the recursive filtering algorithm in orbit determination, the nonlinear filtering is investigated also. The performance and potential drawbacks of the EKF (Extended Kalman Filtering) algorithm and its upgrades are discussed from the perspective of analytical approximation to nonlinear functions. To remedy its drawbacks, the DDF (Divided Difference Filtering) algorithms based on polynomial approximation according to Stirling interpolation are fully investigated. Due to the character of the additive noise in the single-satellite-to-satellite passive orbit determination, a simplified DDF (SDDF) is proposed to reduce the computational complexity of the standard DDF. It is more suitable for real-time application. In view of the weak observability and the large observation error of a single-satellite-to-satellite passive orbit determination system, an iterated DDF (IDDF) is proposed by combining the maximum likelihood probability iterated means with the DDF. Since the likelihood probability is always increased in the iterated process, IDDF is more robust than the standard DDF, while its tracking accuracy and convergence speed are improved.
     With the observation information of the spatial-frequency domain, some crucial theoretical problems and technological issues in the single-satellite-to-satellite passive orbit determination and tracking are investigated systemically in this dissertation, and, the solutions, methods and conclusions are put forward correspondingly. These research fingdings are very significant in both theory and engineering.
引文
[1]李明.从科索沃战争谈现代战争中的空间电子战[J].航天电子对抗, 2002(4):8-18.
    [2]杨志强.反卫星武器的发展及其对未来作战的影响[J].外军信息战, 2006(3):25-27.
    [3]马元申,陈文清,张文静.空间战总体概念体系结构分析[J].航天电子对抗, 2003(5):10-13.
    [4]周宇昌,熊之凡.空间信息战初探[J].空间电子技术, 2004(1):7-14.
    [5]张晓岚,施少范,高世文.信息战与航天信息装备[J].上海航天, 2005(1):43-47.
    [6]闻新,陈勃红.国外军事侦察卫星的发展状况[J].现代防御技术, 2001, 29(4):5-10.
    [7]吴培中.美国海军海洋监视卫星系统[J].国际太空, 2000(10):9-11.
    [8]梁宏涛,吕斌,张晋民.小卫星的现状及军用前景[J].国际太空, 2001(9):11-15.
    [9]张维胜,王红兵,李辉.美国军用卫星现状与性能[J].中国航天, 2001(6):42-45.
    [10]周克强,高晓光,白奕.反卫星卫星攻击方式研究[J].飞行力学, 2006, 24(4):80-83.
    [11]葛之江,刘品雄,王乃东.美俄天基反卫星技术的发展[J].航天电子对抗, 2003(4):1-6.
    [12]冯志刚,方昌华.世界各国反卫星策略综述[J].中国航天, 2006, 3:38-41.
    [13]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006(3):5-10.
    [14]乔凯,王治乐,丛明煜.空间目标天基与地基监视系统对比分析[J].光学技术, 2006, 32(5):744-747.
    [15]刘林.人造地球卫星轨道力学[M].北京:高等教育出版社, 1992.
    [16]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000.
    [17]李济生.航天器轨道确定[M].北京:国防工业出版社, 2003.
    [18]李颖,张占月,方秀.空间目标监视系统发展现状及展望[J].国际太空, 2004(6):28-31.
    [19]杨嘉墀,范秦鸿,张云彤.航天器轨道动力学与控制(上)[M].北京:宇航出版社, 1995.
    [20]王杰娟,于小红.国外天基空间目标监视研究现状与特点分析[J].装备指挥技术学院学报, 2006, 17(4):33-37.
    [21]钱宗峰,张更新.建立我军天基信息系统的几点思考[J].国防技术基础, 2005(1):19-21.
    [22]余建慧,苏增立,谭谦.空间目标天基光学观测模式分析[J].量子电子学报,2006, 23(6):772-774.
    [23]吕洁,吴季,孙波.天基雷达观测空间碎片的研究现状及关键技术分析[J].航天返回与遥感, 2003, 24(4):28-33.
    [24]黄培康.试论空间目标信息获取[J].航天电子对抗, 2005(2):17-20.
    [25]柳仲贵.空间目标监视系统设计[D].硕士,南京:南京大学, 2001.
    [26]黄振,陆建华.天基无源定位与现代小卫星技术[J].装备指挥技术学院学报, 2003, 14(3):24-29.
    [27]魏晨曦.俄罗斯的空间目标监视、识别、探测与跟踪系统[J].中国航天, 2006(8):39-41.
    [28]魏晨曦,汪琦,韦荻山.俄罗斯空间监视系统及其发展[J].国际太空, 2007(5):8-12.
    [29]夏南银,张守信,穆鸿飞.航天测控系统[M].北京:国防工业出版社, 2002.
    [30]文援兰.航天器精密轨道抗差估计理论与应用的研究[D].博士,郑州:信息工程大学, 2001.
    [31] http://www.sars.gov.cn/chinese/2005/Mar/825588.htm,中国航天测控实现多星同时定轨,定轨精度达厘米量级,中新网, 2005, 3.
    [32] http://www.hb.xinhuanet.com/newscenter/2006-12/18/content8808664.htm,中国航天测控技术获突破,定轨能力延伸到月球,人民日报, 2006, 12.
    [33] http://news.sohu.com/20070328/n249024163.shtml,上海两成果入选”十大天文科技进展”,东方网, 2007, 3.
    [34]肖峰.人造地球卫星轨道摄动理论[M].长沙:国防科学技术大学出版社, 1995.
    [35]刘艳芳,洪炳熔,郭建宁等.用1颗或2颗GPS卫星确定低轨卫星初轨的算法研究[J].中国科学(A)辑, 1999, 29(5):462-470.
    [36]刘林,王海红,胡松杰.卫星定轨综述[J].飞行器测控学报, 2005, 24(2):28-34.
    [37]刘林,王歆.考虑地球扁率摄动影响的初轨计算方法[J].天文学报, 2003, 44(2):175-179.
    [38]张世杰,曹喜滨.基于预警卫星观测的弹道导弹运动状态估计算法[J].宇航学报, 2005, 26(sup):16-22.
    [39]田继超,刘剑锋,崔乃刚.卫星编队飞行相对轨道主被动结合测量方案研究[J].宇航学报, 2007, 28(1):223-226.
    [40]李强,郭福成,周一宇.基于角度和频率信息的卫星被动定轨方法[J].系统工程与电子技术, 2007, 29(3):354-357.
    [41]郭福成,樊昀.空间信息对抗中的单星对卫星无源定位跟踪方法[J].宇航学报, 2005, 26(2):196-200.
    [42]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社, 1996.
    [43]任萱.人造地球卫星轨道力学[M].长沙:国防科学技术大学出版社, 1988.
    [44] Litton Develops Phased Interferometers for Passive Accurate Target Fixing[J]. Aviation Week and Space Technology, 1990(10): 73-74.
    [45] Gershanoff H. Experimental Passive Range and Aoa System Shows Promise[J]. Journal of Electronic Defence, 1992(12): 31-33.
    [46] A Cots Solution for Single Platform Passive Targeting[J]. Journal of Electronics Defense, 1996(7): 42.
    [47] Lum Z. Killing Ew On the Offensive[J]. Journal of Electronic Defence, 1997(7): 37-39.
    [48] Col L., Wilson J. Precision Location and Identification: A Revolution in Threat Warning and Situational Awareness[J]. Journal of Electronic Defence, 1999(11): 43-48.
    [49] Adamy D. Radar Warning Receiver: The Digital Revolution[J]. Journal of Electronic Defence, 2000(11): 45-50.
    [50] Fisher H. R. Method of Position Fixing Active Sources Utilizing Differential Doppler[P]. United States Patent: 4350984, Sep. 21, 1982.
    [51] Golinsky M. Passive Ranging of an Airborne Emitter by a Single Non-Maneuvering Or Stationary Sensor[P]. United States Patent: 4613867, Sep. 23, 1986.
    [52] Kaplan A. Passive Ranging Method and Apparatus[P]. United States Patent: 4734702, Mar. 29, 1988.
    [53] Hammerquist L. E. Phase Measurement Ranging[P]. United States Patent: 4788548, Nov. 29, 1988.
    [54] Rose Conrad M., Drude Jeffrey J. (Aoa/Lbi)Emitter Ranging Method and Apparatus[P]. United States Patent: 5343212, Aug. 30, 1994.
    [55] Fowler Mark L. Air-to-Air Passive Location System[P]. United States Patent: 5870056, Feb. 9, 1999.
    [56] Rose M. C. Combined Phase-Circle and Multiplatform Tdoa Precision Emitter Location[P]. United States Patent: 5914687, Jun. 22, 1999.
    [57] Rose M. C. Multiplatform Ambiguous Phase Circle and Tdoa Protection Emitter Location[P]. United States Patent: 5999129, Dec. 7, 1999.
    [58] Bass D. C.,Finnigan S. J.,Bryant J. P. System for Signal Emitter Location Using Rotational Doppler Measurement[P]. United States Patent: 6727851, Apr. 27, 2004.
    [59] Rose M. C. Method for Determing the Optimum Observer Heading Change in Bearing-Only Passive Emitter Tracking[P]. United States Patent: 6801152, Oct.5, 2004.
    [60]许耀伟,周一宇,孙仲康.引入测频信息进行无源被动定位的方法研究[J].国防科学技术大学学报, 1998, 20(5):61-65.
    [61]安玮,孙仲康.利用多普勒变化率的单站无源定位测距技术[A].北京:雷达无源定位跟踪技术研讨会论文集[C], 2001: 41-45.
    [62]孙仲康.基于运动学原理的无源定位技术[J].制导与引信, 2001, 22(1):40-44.
    [63]单月晖,李纲,孙仲康等.地/海面远距离慢速目标单站无源定位技术研究[J].系统工程与电子技术, 2002, 24(7):13-16.
    [64]单月晖,孙仲康,皇甫堪. Kalman滤波算法在单站无源定位中的应用[J].航天电子对抗, 2002(3):30-33.
    [65]单月晖,孙仲康,皇甫堪.变化姿态角下相位差变化率无源定位方法研究[J].电子学报, 2002, 30(12):1897-1900.
    [66]郭福成,孙仲康.方向角及其变化率的单站无源定位的可观测性[J].系统工程与电子技术, 2002, 24(9):30-32.
    [67]郭福成,孙仲康,安玮.利用方向角及其变化率对固定辐射源的三维单站无源定位[J].电子学报, 2002, 30(12):1885-1887.
    [68]单月晖,王展,万建伟等.固定飞行姿态角下的相位差变化率无源定位方法研究[J].电子与信息学报, 2003, 25(5):577-584.
    [69]单月晖,赵巨波,孙仲康等. MGEKF算法在无源定位中的应用[J].航天电子对抗, 2003(1):10-13.
    [70]单月晖,赵巨波,孙仲康等.基于α-β滤波器的相位差滤波环设计[J].航天电子对抗, 2003(2):29-32.
    [71]李宗华,冯道旺,周一宇等.一种固定单站对运动辐射源的无源定位跟踪算法[J].国防科学技术大学学报, 2003, 25(4):27-30.
    [72]冯道旺,李宗华,周一宇等.一种单站无源定位方法及其可观测性分析[J].国防科学技术大学学报, 2004, 26(1):68-71.
    [73]李宗华,冯道旺,周一宇等.估计目标速度矢量对运动辐射源的固定单站无源定位算法[J].电子学报, 2004, 32(6):953-956.
    [74]李宗华,冯道旺,周一宇等.固定单站对三维运动辐射源无源定位算法及可观测性分析[J].信号处理, 2004, 20(2):117-122.
    [75]李宗华,郭福成,周一宇等.测量TOA和DOA的单站无源定位跟踪可观测条件[J].国防科学技术大学学报, 2004, 26(2):30-34.
    [76]李宗华,肖予钦,周一宇等.利用频域和空域信息的单站无源定位跟踪算法[J].系统工程与电子技术, 2004, 26(5):613-616.
    [77]郭福成,孙仲康.基于离心加速度信息的单站无源测距定位方法[J].宇航学报, 2005, 26(增刊):55-58.
    [78]郭福成,冯道旺,龚享铱等.基于运动学原理的单站无源定位跟踪地面试验研究[J].航空兵器, 2005(5):19-22.
    [79]郭福成,孙仲康.三维机动辐射源的单站无源跟踪方法[J].现代雷达, 2005, 27(3):5-8.
    [80]周亚强,陈翥,皇甫堪等.噪扰条件下多基线相位干涉仪解模糊算法[J].电子与信息学报, 2005, 27(2):259-261.
    [81]周亚强,郭福成,皇甫堪等.对频率跳变辐射源的单站无源定位算法[J].信号处理, 2005, 21(4):366-370.
    [82]郭福成,李腾,冯道旺等.基于运动学原理的地对空单站被动跟踪研究及试验[J].火控雷达技术, 2006, 35(6):5-8.
    [83]许耀伟.一种快速高精度无源定位方法的研究[D].博士,国防科学技术大学, 1998.
    [84]邓新蒲.运动单观测器无源定位与跟踪方法研究[D].博士,国防科学技术大学, 2000.
    [85]郭福成.基于运动学原理的单站无源定位与跟踪关键技术研究[D].博士,国防科学技术大学, 2002.
    [86]冯道旺.利用径向加速度信息的单站无源定位技术研究[D].博士,国防科学技术大学, 2003.
    [87]李宗华.无机动单站对运动辐射源的无源定位与跟踪[D].博士,国防科学技术大学, 2003.
    [88]龚享铱.利用频率变化率和波达角变化率单站无源定位与跟踪的关键技术研究[D].博士,国防科学技术大学, 2004.
    [89]周亚强.基于视在加速度信息的单站无源定位与跟踪关键技术研究及其试验[D].博士,国防科学技术大学, 2005.
    [90]占荣辉.基于空频域信息的单站被动目标跟踪算法研究[D].博士,国防科学技术大学, 2007.
    [91]李强.单星对卫星目标的被动定轨与跟踪关键技术研究[D].博士,国防科学技术大学, 2007.
    [92]郁春来.利用空频域信息的单站无源定位与跟踪关键技术研究[D].国防科学技术大学, 2008.
    [93]张正明.辐射源无源定位研究[D].博士,西安电子科技大学, 2000.
    [94]单月晖.空中观测平台对海面慢速目标单站无源定位跟踪及其关键技术研究[D].博士,国防科学技术大学, 2002.
    [95]张治国,罗景青.无源观测下运动辐射源多普勒频差Esprit算法[J].中国人民解放军电子工程学院学报, 2001, 20(1):7-9.
    [96]刘建,陈韦,杨同森.单站快速空对地固定辐射源的无源定位[A].北京:雷达无源定位跟踪技术研讨会论文集[C], 2001: 29-32.
    [97] Nardone Steven C., Graham Marcus L. A Closed-Form Solution to Bearings-Only Target Motion Analysis[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 168--178.
    [98] Nardone S. C., Aidala V. J. Observability Criteria for Bearing-Only Target Motion Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(2): 162-166.
    [99]占荣辉,王玲,万建伟.基于方位角和多普勒的机动目标无源定位跟踪可观测条件[J].国防科学技术大学学报, 2007, 29(1):54-58.
    [100]李强,郭福成,周一宇.单个卫星观测器对卫星仅测角被动跟踪的可观测性研究[J].宇航学报, 2007, 28(5): 1323-1330.
    [101]吴顺华,辛勤,万建伟.对卫星目标的仅测角天基单站无源定位可观测性分析[J].航空学报, 2009, 30(1): 104-108.
    [102]张守信.外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社, 1992.
    [103] Li X. Rong, Jilkov Vesselin P. A Survey of Maneuvering Target Tracking—Part Ii: Ballistic Target Models[A]. San Diego, CA, USA: Proceedings of SPIE Conference on Signal and Data Processing of Small Targets[C], 2001: 1-23.
    [104]李强,郭福成,周一宇.单星对卫星的仅测角被动定轨跟踪方法研究[J].国防科学技术大学学报, 2007, 29(2):70-75.
    [105] Lindgren A. G., Gong K. F. Position and Velocity Estimation Via Bearing Observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(4): 564-577.
    [106] Poirot J. L., Ghassan A. Position Location: Triangulation Versus Circulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(1): 48-53.
    [107] Baron R., Davis K. P., Hofmann C. P. Passive Direction Finding and Signal Location[J]. Microwave Journal, 1982, 25(9): 59-76.
    [108] Aidala Vincent J. Kalman Filter Behavior in Bearing-Only Tracking Applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15(1): 29-39.
    [109] Aidala Vincent J., Sherry Hammel. Utilization of Modified Polar Coordinates for Bearings-Only Tracking[J]. IEEE Transactions on Automatic Control, 1983, AC-28(3): 283-294.
    [110] Nardone S. C.,Allen Lingeren, Gong Kai F. Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[J]. IEEE Transactions on Automatic Control, 1984, AC-29(9): 775-787.
    [111] Webster R. J. An Exact Trajectory Solution From Doppler Shift Measurement[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, AES-18(2): 249-252.
    [112] Chen Y. T., Rudnicki S. W. Bearing-Only and Doppler-Bearing Tracking Using Instrumental Variables[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1076-1083.
    [113] Chen Y. T., Towers J. J. Sequential Location of a Radiating Source by Dopple-Shifted Frequency Mearsurements[J]. TEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1084-1089.
    [114]许耀伟,孙仲康.利用相位差变化率对固定辐射源的无源被动定位[J].系统工程与电子技术, 1999, 21(3):34-37.
    [115] Aidala V. J., Nardona S. C. Biased Estimation Properties of the Pseudolinear Tracking Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, 18(4): 432-441.
    [116] Song L. T., Speyer J. A Stochastic Analysis of a Modified Gain Extend Kalman Filter with Application to Estimation with Bearings Only Measurements[J]. IEEE Transaction on Automatic Control, 1985, AC-30(10): 940-949.
    [117] Galkowski P. G., Islam M. A. An Alternative Derivation of the Modified Gain Function of Song and Speyer[J]. IEEE Transaction on Automatic Control, 1991, 36(11): 1323-1326.
    [118] Guerci J. R.,R Goetz Dimodica J. A Method for Improving Extended Kalman Filter Performance for Angle-Only Passive Ranging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(4): 1090-1093.
    [119] Fagin S. L. Comments On "a Method for Improving Extended Kalman Filter Performance for Angle-Only Passive Ranging"[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1148-1150.
    [120] Julier Simon,Uhlmann Jeffrey,Durrant-Whyte Hugh F. A New Approach for Filtering Nonlinear Systems[A]. Seattle,WA: Proc. Am. Contr. Conf.[C], 1995: 1628~1632.
    [121] Julier Simon,Uhlmann Jeffrey,Durrant-Whyte Hugh F. A New Method for the Nonlinear Transformation of Means and Covariance in Filters and Estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477~482.
    [122] Julier Simon J., Uhlmann Jeffrey K. Reduced Sigma Point Filters for the Propagation of Means and Covariances through Nonlinear Transformations[A]. Anchorage, AK: Proceedings of the American Control Conference[C], 2002:887-892.
    [123] Julier Simon J., Uhlmann Jeffrey K. Unscented Filtering and Nonlinear Estimation[A]. Proceedings of the IEEE[C], 2004: 401-422.
    [124] Gordon N. J., Salmon D. J., Smith A. F. M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings-Radar & Signal Processing, 1993, 140(2): 107-113.
    [125] Arulampalam M. Sanjeev,Maskell Simon,Gordon Neil, et al. A Tutorial On Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
    [126] Kotecha J. H., Djuric P. M. Gaussian Particle Filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
    [127]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报, 2003, 31(7):970-973.
    [128] Abdallah Fahed,Gning Amadou,Bonnifait Philippe. Box Particle Filtering for Nonlinear State Estimation Using Interval Analysis[J]. Automatica, 2008, 44: 807-815.
    [129]王威,于志坚.航天器轨道确定——模型与算法[M].北京:国防工业出版社, 2007.
    [130] Jauffret C., Pillon D. Observability in Passive Target Motion Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1290-1300.
    [131]刘福声,罗鹏飞.统计信号处理[M].长沙:国防科学技术大学出版社, 1999.
    [132] Becker K. A General Approach to Tma Observability From Angle and Frequency Measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 487-494.
    [133]刘建成,王雪松,肖顺平, et al.基于Wigner-Hough变换的径向加速度估计[J].电子学报, 2005, 33(12): 2235-2238.
    [134]孙即祥.现代模式识别[M].长沙:国防科学技术大学出版社, 2002.
    [135]陈辉,苏海军.强干扰/信号背景下的Doa估计新方法[J].电子学报, 2006, 34(3): 530-534.
    [136]吴湘霖,俞卞章,李会方, et al.基于虚拟阵列的波达方向、载频和极化参数联合估计[J].电子信息学报, 2005, 27(12): 1887-1891.
    [137]龚享铱,皇甫堪,袁俊泉.基于相位干涉仪阵列二次相位差的波达角估计算法研究[J].电子学报, 2005, 33(3): 444-446.
    [138]周亚强,陈翥,皇甫堪等.噪扰条件下多基线相位干涉仪解模糊算法[J].电子与信息学报, 2005, 27(2):259-261.
    [139] Norgaard Magnus,Poulsen Niels K.,Ravn Ole. New Developments in State Estimation for Nonlinear Systems[J]. Automatica, 2000, 36: 1627-1638.
    [140] Schei T. S. A Finite-Difference Method for Linearization in Nonlinear Estimation Algorithms[J]. Automatica, 1997, 33(11): 2053~2058.
    [141] Dunik Jindrich,Simandl Miroslav,Straka Ondrej, et al. Performance Analysis of Derivative-Free Filters[A]. Seville, Spain: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference[C], 2005: 1941-1946.
    [142]柴霖,袁建平,罗建军等.非线性估计理论的最新进展[J].宇航学报, 2005, 26(3):380-384.
    [143] Bell Bradley M., Cathey Frederick W. The Iterated Kalman Filter Update as a Gauss-Newton Method[J]. IEEE Transactions on Automatic Control, 1993, 38(2): 294-297.
    [144] Lewis, F. L. Optimal Estimation[M]. New York: Wiley, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700