用户名: 密码: 验证码:
水稻粒宽和粒重QTL GW5的精细定位及其功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)作为全球最重要的粮食作物之一,随着耕地的减少和人口的增长,提高其产量对于解决未来粮食安全问题具有十分重要的战略意义。水稻粒形(包括粒长、粒宽、长宽比与粒厚)是稻米最重要的外观品质指标之一,影响稻米的产量和加工品质。粒形是受多基因控制的复杂数量性状,目前大部分对于粒形的研究仅局限于利用初级定位群体进行QTL分析。本研究利用具有粳稻(宽粒)品种Asominori遗传背景、籼稻(窄粒)品种IR24供体片段的染色体片段置换系材料CSSL28(窄粒)与背景亲本Asominori回交构建F2次级分离群体,并以水稻谷粒和糙米的粒宽、粒长和长宽比为研究对象,进行遗传分析、初步定位和单基因分离。最终我们精细定位与克隆了控制水稻粒宽、长宽比和千粒重的QTL GW5,并进行了GW5的初步功能分析,同时还比较了目标置换系CSSL28与背景亲本Aosminori在产量性状及其水稻颖壳细胞形态学等相关性状的差异。主要结果如下:
     Asominori与CSSL28的粒形差异显著(P<0.01),其中CSSL28稻谷的粒宽与长宽比分别为Asominori的83.6%与126.6%,糙米分别为91.6%与123.7%,而其他农艺性状(如株高、株形和穗形等)无显著性差异;在产量相关性状,置换系CSSL28与背景亲本Asominori的分蘖数、结实率无显著性差异,而CSSL28的单株粒重、单穗粒重和千粒重显著低于Asominori (P<0.01)。颖壳细胞形态学分析表明,CSSL28与Asominori之间粒宽的差异是由其颖壳外围薄壁细胞数目的差别引起,并且CSSL28籽粒果柄横切面的维管束面积明显低于Asominori; Asominori开花后5-20天的灌浆速率高于CSSL28,同时前者垩白性状指标在籽粒成熟后偏高;另外,加工品质分析表明,Asominori的糙米率(P<0.01)与精米率(P<0.05)显著高于CSSL28。
     利用CSSL28与背景亲本Asominori回交构建F2次级群体,将控制水稻粒宽和长宽比的QTL分解为单基因GW5,宽粒表型受单隐性核基因控制;水稻籽粒表型和分子标记分析表明,由于F2群体粒形性状受籼粳杂种部分不育位点S31(t)影响,窄粒单株/宽粒单株比例偏离3:1分离;我们利用包含2,180个宽粒单株的F2次级群体和自行设计的SSR、CAPS与InDel标记,将GW5最终定位在第5染色体短臂位于标记Cw5与Cw6之间的一个交换重组热点区域,距两标记的物理距离分别为10kb和11kb左右,且标记Indel1、Indel2与GW5共分离。21kb范围序列与转录本分析表明,ORFl与ORF3在两亲本中核苷酸和转录水平未发生明显的变化,而宽粒材料Asomincri相对于窄粒材料CSSL28和IR24主要存在1.2kb基因组片段的缺失,通过软件预测发现该缺失区域内存在开放阅读框ORF2,我们把该ORF定为GW5的候选基因。同时,对46个栽培品种和12个野生稻资源的该区段序列分析发现,宽粒材料1.2kb基因组片段均缺失,而野生稻和窄粒品种则含有这一区段,据此推测该缺失区域内的ORF2是GW5的候选基因,且GW5可能与水稻的驯化相关。
     RT-PCR分析表明,GW5基因仅在窄粒的材料中表达;亚细胞定位与酵母双杂交结果显示,GW5定位于细胞核中并可能参与蛋白的泛素降解途径;然而,利用2.5kb包含ORF2的基因组和过量表达ORF2并未使转基因的Asomincri籽粒变窄,该结果表明通过预测得到的ORF2并不完整;我们通过RACE并结合Southern blot技术获得了部分GW5的cDNA。
Rice is the most important staple food crop and a primary food source for about half of the world's population. As farmland is decreasing and the global population increasing, there is an urgent need to secure grain production. The grain shape, including grain length, grain width, length/width ratio and grain thickness, is one of important apperence qualities in rice, which may have an effect on both grain yield and milling quality. The grain shape is a complex quantative trait controlled by multiple genes, and most of the grain-based researches are limited to the use of the primary populations targeted QTL at present. In this study, we have gotten a chromosome segement substitution line with narrow grain, CSSL28, derived from Asominori (wide cultivar)/IR24 (narrow cultivar) with Asominori as the recurrent parent. The mapping population was constructed from the cross between CSSL28 and parental line, Asominori. Traits of grain length, grain width and length/width ratio were used for characterization, genetic anaylsis, primary mapping and high resolution mapping QTL anaylsis. We identied and preliminarily characterized the QTL GW5 underlying grain width, length/width ratio and grain wight, and also investigated the differences of yield components and cell morphological between CSSL28 and Asominori. The main conclusions are as follows:
     The significant differences existed in grain shape between Asominori and CSSL28 (P<0.01). CSSL28 shows 83.6%and 126.6%in width and length/width ratio of paddy rice, 91.6%and 123.7%in brown rice grain, which were compared with these of Asominori respectively. But, none of other agronomic traits show significant difference, such as plant height, plant and panical shape, etc. For factors influencing rice yeild, there are also no significant differences between the substitution lines and background parent in tiller number, seed setting rate up, but in grain weight per plant, grain weight per panicle and 1,000-grain weight(P<0.01). Cytological analysis showed that the number of external parenchyma cells in rice hull caused the grain width differences between Asominori and CSSL28, and the vascular cross-sectional area in carpopodium of CSSL28 was significantly lower than that of Asominori. Meanwhile, the grain filling rate of Asominori was higher than the CSSL28 in 5-20 days after flowering, and the former has a higher percentage of grains with chalkiness. Moreover, the brown rice rate (P<0.01) and milled rice rate (P<0.05) in Asominori were significantly higher than that in CSSL28.
     Based on secondary F2 populations derived from the backcross of CSSL28 and Asominori, the QTL GW5 controlling both the grain width and length/width ratio was dissected into a single gene despite the nontraditional Mendelian segregation ratio between the plant with slender grains and wide ones in the F2 population. Meanwhile, the ratios of genotypes of SSR marker and frequency distribution of grain width in BC4F2 indicated that the indica-japonica hybrid partial sterility gene S31(t), being linked with GW5, was the reason of the observed distortion of segregation in the BC4F2 population. For genetic anaylsis, the phenotype of narrow grain in CSSL28 was controlled by a dominant nuclear gene. Then, the GW5 was further mapped between CAPS makers Cw5 and Cw6 on chromosome 5, within a 21kb recombination hotspot region of BAC clone (OJ1097_A12), using the 2,180 segregants showing the wide grain phenotype in BC4F2 population and markers developed in our laboratory. The result of sequencing indicated that the genome of Asominori habored a 1.2kb deletion compared with that in CSSL28. Within targeted region, two opening reading frams(ORFI and ORF3) was predicted in Asominori, but three ones (ORF1, ORF2 and ORF3) in CSSL28. In another words, ORF2 was located in the deleted region. Also, there is no difference exsited in the coding region of ORFI and ORF3. Thus, we teneatively designated the ORF2 as the GW5 gene. Genotyping analyses in 46 rice cultivars and 12 wild rices showed that the deletion prevailed in wide grain rice cultivars and defined a domestication related rice gene.
     The expression of GW5 in narrow cultivar was confirmed using the RT-PCR analysis. The protein was predicted to contain a nuclear localization signal (NLS) and an arginine rich domain. Transient expression in onion epidermal cells showed the GW5-GFP fusion protein is exclusively localized to nuclear. The yeast two-hybrid showed that the GW5 may physically interact with polyubiquitin and played an important role in the ubiquitin proteasome pathway. However, the 2.5kb fragement covering the ORF2 and the over-expression of ORF2 could not restore the narrow phenotype in Asominori. These results suggensted the ORF2 was incompleted for GW5, and the partial cDNA was isolated using RACE, which was detected with Southern blot.
引文
敖雁,徐辰武,莫惠栋.籼型杂种稻米品质性状的数量遗传分析.遗传学报,2000,27(8):706-712
    曹立勇,占小登,庄杰云等.水稻产量性状的QTL定位与上位性分析.中国农业科学,2003,36(11):1241-1247
    陈冰蠕,石英尧,崔金腾等.利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL.作物学报,2008,34(8):1299-1307
    程本义,沈伟峰,杨仕华.中国南方水稻品种的粒重及其与主要性状间的关系.杂交水稻,2007,22(2):73-77
    程方民,胡东维,丁元树.人工控温条件下稻米垩白形成变化及胚乳扫描结构观察.中国水稻科学,2000,14(2):83-87
    陈能,罗玉坤,朱智伟等.优质食用稻米的理化指标与食味的相关性研究.中国水稻科学,1997,11(2):70-76
    陈建国,朱军.籼粳交稻米品质性状的遗传相关分析.湖北大学学报自然科学版,1998,3:87-89
    柏新付,蔡永萍,聂凡.脱落酸与稻麦籽粒灌浆的关系.植物生理学通讯,1989(3):40-41
    戴玉玲,张蜀秋,杨世杰.细胞分裂素对大豆种子发育时期同化物卸出及胚代谢的影响.作物学报,1998,24(5):613-617
    丁颖.中国栽培稻种的起源及其演变.农业学报,1957,8(3):243-260
    符福鸿,王丰.杂交水稻谷粒性状的遗传分析.作物学报,1994,20(1):39-45
    高振宇,曾大力,崔霞等.水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析.中国科学,2003,33(6):481-487
    何予卿,邢永忠,葛小佳等.水稻米饭延伸指数相关性状的基因定位研究.分子植物育种,2003,1(5/6):613-619
    郭二男,潘增,王才林等.粳稻的腹白研究.作物学报,1983,9(1):31-38
    郭咏梅,穆平,刘家富等.水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位.作物学报,2007,33(1):50-56
    郭晶心,刘耀光.水稻籼粳杂交F2群体中分子标记的异常分离及染色体定位.分子植物育种,2003,1(3):331-336
    姜恭好,徐才国,李香花.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1):63-72
    吉志军,尤娟,王龙俊等.不同基因型水稻稻米加工品质和外观品质的生态型差异.南京农业大学学报,2005,28(4):16-20
    李强,万建民.SSRHunter一个本地化的SSR位点搜索软件的开发.遗传,2005,27:808-810
    林洪宣,闵绍楷,熊振民等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学,1995,28(4):1-7
    林荔辉,吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342
    李成荃.杂交粳稻品质性状的遗传研究.杂交水稻,1988,4:32-35
    李建雄,余四斌,徐才国等.“汕优63”的产量及其构成因子的数量性状基因位点分析.作物学报,2000,26(6):892-898
    李欣,顾铭洪,潘学彪.常见水稻品种稻米品质的研究.江苏农学院学报,1987,8(1):1-8
    李泽福,夏加发,苏泽胜等.水稻产量及其相关性状的数量性状基因座分析.南京农业大学学报,2002,25(2):1-6
    刘华清,吴为人,段远霖等.水稻小穗特征基因FZP的图位克隆.遗传学报,2003,30(9):811-816
    刘卫今.水稻糙米粒宽性状的QTL定位研究.湖北农业科学,2008,47(2):1-7
    泷田正.水稻籽粒大小的遗传及其与诸性状的关系.国外农学-水稻,1987,1:18-20
    泷田正.水稻粒形特性与育种.农业技术,1990,44(6):39-42
    罗玉坤,朱智伟,陈能等.中国主要稻米的粒型及其品质特性.中国水稻科学,2004,18(2):135-139
    莫惠栋.我国稻米品质的改良.中国农业科学,1993a,26(4):8-14
    穆平,张洪亮,姜德峰等.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,2005,38(9):1725-1733
    祁祖白,李宝健,杨文广等.水稻籽粒外观品质及脂肪的遗传研究.遗传学报,1983,10(6):452-458
    芮重庆,赵安常.籼稻粒重及粒形性状F1遗传特性的双列分析.中国农业科学,1983,5:14-20
    汤圣祥,江云珠,李双盛等.早稻胚乳淀粉体扫描电镜观察.作物学报,1999,25(2):269-271
    石春海,申宗坦.早籼稻谷性状遗传效应的分析.浙江农业大学学报,1994,20(4):405-410
    石春海,申宗坦.早籼粒形的遗传和改良.中国水稻科学,1995,9(1):27-32
    石春海,朱军.水稻植株农艺性状与稻米碾磨品质的遗传相关性分析.浙江农业大学学报,1997,23(3):331-337
    谭耀鹏,李兰芝,李平等.利用DH群体定位水稻谷粒外观性状的QTL.分子植物育种,2005,3(3):314-322
    谭禄宾.云南元江普通野生稻渗入系的构建及野栽分化性状的基因定位.中国农业大学硕士学位论文,2004
    唐丁,郭龙彪,曾大力等.两例水稻极端异常分离现象的遗传分析.遗传,2006,28(10):1259-1264
    汪斌,兰涛,吴为人.应用微卫星图谱定位稻米性状的QTL.福建农业学报,2003,18(1):11-15
    万向元,刘世家,王春明等.利用CSSLs群体研究稻米粒型QTL的表达稳定性.遗传学报,2004,31(11):1275-1283
    王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全.中国农业科技导报.2000,3:8-11
    王余龙.水稻籽粒有关性状与粒重关系的初步探讨.作物学报,1995,21(5):573-578
    王忠,李卫芳,顾蕴洁等.水稻胚乳的发育及其养分输入的途径.作物学报,1995,21(5):520-527
    王忠,顾蕴洁,陈刚等.稻米的品质和影响因素.分子植物育种,2003,1(2):231-241
    翁建峰,万向元,郭涛等.利用CSSL群体研究稻米加工品质相关QTL表达的稳定性.中国农业科学,2007,40(10):2128-2135
    吴家胜,周鸿凯,陈国波等.水稻单穗重和千粒重的QTL定位.中国水稻科学,2008,22(2):143-147
    武小金.稻米蒸煮品质性状的遗传研究.湖南农学院学报,1989,15(4):6-9
    邢永忠,谈移芳,徐才国等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001,43(8):840-845
    熊振民,孔繁林.水稻粒重的超亲遗传及其在育种中的应用.浙江农业大学学报,1982,8(1):17-25
    徐辰武,莫惠栋,张爱红等.籼-粳杂种稻米品质性状的遗传控制.遗传学报,1995,22(3):192-198
    徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002,16(1):6-10
    徐是雄,徐雪宾.稻的形态与解剖.北京:农业出版社,1984
    徐云碧,朱立煌.分子数量遗传学.北京:中国农业科技出版社,1994
    徐云碧,申宗坦,陈英等.水稻籼粳杂种F2群体中RFLP标记的异常分离及其染色体分布.植物学报,1995,37(2):91-96
    严长杰,梁国华,陈峰等.利用籼粳回交群体分析水稻粒形性状相关QTLs.遗传学报,2003,30(8):711-716
    叶少平,张启军,李杰勤等.用(培矮64s/Nipponbare) F2群体对水稻产量构成性状的QTL定位分析.作物学报,2005,31(12):1620-1627
    余守武,樊叶杨,杨长登等.水稻第1染色体断臂长和粒宽QTL的精细定位.中国水稻科学,2008,22(5):465-471
    杨建昌,王志琴,朱庆森等.ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-347
    杨联松,白一松,张培江等.谷粒形状与稻米品质相关性研究.杂交水稻,2001,16(4):48-50
    易泽林,王光明.外源ABA对稻米外观品质的影响分析.西南农业大学学报,2006,28(4):587-590
    余守武,樊叶杨,杨长登等.水稻第1染色体短臂粒长和粒宽QTL的精细定位.中国水稻科学,2008,22(5):465-471
    赵芳明,朱海涛,丁效华等.基于SSSL的水稻重要性状QTL的鉴定及稳定性分析.中国农业科学,2007,40(3):447-456
    赵秀琴,朱苓华,徐建龙等.灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位.作物学 报,2007,33(9):1536-1542
    赵勇,刘俊伟,李绍波等.水稻苗期生长特性的遗传剖析.中国农业科学,2005,38(4):643-649
    张光恒,张国平,钱前等.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,2004,18(1):16-22
    张坚勇.水稻品质性状的稳定性分析.南京农业大学博士学位论文,2003
    张名位,郭宝江,彭仲明.籼型黑米稻粒形性状与其中某些矿质元素含量的遗传相关性.作物学报,2003,29(2):305-310
    中华人民共和国国家标准.优质稻谷GB/T17891-1999.北京:中国标准出版社,1999
    中华人民共和国农业部行业标准.食用稻品种品质NY/T593-2002.北京:中国标准出版社,2002
    朱军.数量遗传.遗传学.北京:中国农业出版社,2002
    庄楚雄,张桂权,梅曼彤等.栽培稻F1杂种花粉不育基因座S-a的分子定位.遗传学报,1999,26(3):213-218
    庄楚雄,梅曼彤,张桂权等.用RAPD标记对栽培稻F1杂种花粉不育基因座S-b定位.遗传学报,2002,29(8):700-705
    严长杰,严松,张正球等.一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位.科学通报,2005,50(24):2757-2762
    Abdul MC, Luo M, Celia M, et al. Fertilization-independent seed development in Arabidopsis thaliana. PNAS,1997,94:4223-4228
    Adams S, Vinkenoog R, Spielman M, et al. Parent of origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development,2000,127:2493-2502
    Aida Y, Tsunematsu H, Doi K, et al. Development of a series of introgression lines of japonica in the background of indica rice. Rice Genetics Newsletter,1997,14:41-43
    Aluko G, Martinez C, Tohme J. QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O.glaberrima. TheorAppl Genet,2004,109:630-639
    Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. PNAS,1996,93(26): 15503-15507
    Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745
    Ashikari M, Wu JZ, Yano M, et al. Rice gibberellin insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein. PNAS,1999,96:10284-10289
    Assaad FF, Huet Y, Mayer U, et al. The cytokinesis gene KEULE encodes a Secl protein that binds the syntaxin KNOLLE. J Cell Biol,2001,152:531-543
    Banerjee A, Sharma R, Banerjee UC. The nitrile-degrading enzymes:current status and future prospects. Appl Microbiol Biotechnol,2002,60:33-44
    BarrOco RM, Peres A, Droua AM, et al. The cyclin-dependent kinase inhibitor Oryza; KRPl plays an important role in seed development of rice. Plant Physiology,2006,142:1053-1064
    Becraft PW, Kang SH, Suh SG. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiology,2001,127:486-496
    Bellare P, Small EC, Huang XH, et al. A role for ubiquitin in the spliceosome assembly pathway. Nature structural & molecular biology,2008,15(5):444-451
    Bennett J, Steinback KE, Arntzen CJ. Chloroplast phosphoproteins:regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. PNAS,1980,77:5253-5257
    Bentsink L, Jowett J, Hanhart CJ, et al. Cloning of DOGl, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS,2006,103(45):17042-17047
    Bonfil C. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in quercus rugosa and Q. laurina (Fagaceae). American Journal of Botany,1998,85:79-87
    Borkovee V, Prochazka S. Pre-anthesis interaction of cytokinins and ABA in the transport of 14C-sucrose to the ear of winter wheat(Triticum aestivum L). Agr Crop Sci,1992,169(4):229-235
    Braybrook SA, Stone SL, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. PNAS,2006,103: 3468-3473
    Broich SL, Palmer RG. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica, 1980,29:23-32
    Brondani C, Range PHN, Brondani RPV, et al. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice(Oryza sativa L.) using microsatellite markers. Theor Appl Genet,2002,104:1192-1203
    Browning KS. The plant translational apparatus. Plant Mol Biol,1996,32:107-144
    Burke JM, Tang S, Knapp SJ, et al. Genetic analysis of sunflower domestication. Genetics,2002,161: 1257-1267
    Cao X, Jacobsen SE. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. PNAS,2002a,99:16491-16498
    Cai HW, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet,2002,104:1217-1228
    Chang TT, Li CC. Genetics Breeding, In Luh. Rice production and utilizzatien, AVI press,1980,87-127
    Chang TT. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica,1976,25:435-441
    Cheng CY, Motohashi R, Ohtsubo E. Polyphyletic origin of cultivated rice:based on the interspersion pattern of SINEs. Mol Biol Evol,2003,20:67-75
    Cheng WH, Taliercio EW, Chourey PS. The miniaturel seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. The Plant Cell, 1996,8:971-983
    Chen M, Presting G, Barbazuk WB, et al. An intergrated physical and genetic map of the rice genome. The Plant Cell,2002,14(3):537-545
    Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). TheorAppl Cenet,1997,95:553-567
    Cheng FM, Zhong LJ, Wang F, et al. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem,2005,90:39-46
    Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell,2002,110:33-42
    Clark RM, Wagler TN, Quijada P, et al. A distant upstream enhancer at the maize domestication gene tbl has pleiotropic effects on plant and inflorescent architecture. Nature,2006,38:594-597
    Cong B, Liu J, Tanksley SD. Natural alleles at a tomato fruit size quantitative trait locus differs by heterochronic regulatory mutations. PNAS,2002,99:13606-13611
    Cong B, Tanksley SD. FW2.2 and cell cycle control in developing tomato fruit:a possible example of gene co-option in the evolution of a novel organ. Plant Molecular Biology,2006,62:867-880
    Coomes DA, Grubb PJ. Colonization, tolerance, competition and seed size variation within functional groups. Trends in Ecology & Evolution,2003,18:283-291
    Craig KL, Tyers M. The F-box:a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol,1999,72(3):299-328
    Cui KH, Peng SB, Xing YZ, et al. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. TheorAppl Genet,2003,106:649-658
    Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Gene Dev,2004, 14:188-195
    Dellaporta SL, Wood T, Hicks TB. A plant DNA mini preparation:version Ⅱ. Plant Mol Bioi Rep,1983, 1:19-21
    Delseny M, Salses J, Cooke R, et al. Rice genomics:present and future. Plant Physiol Biochem,2001, 39:323-334
    Deng XW, Caspar T, Quai PH. Copl:A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes & Development,1991,5(7):1172-1182
    Disch S, Anastasiou E, Sharma VK, et al. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Current Biology,2006,16:272-279
    Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature,1997,386:485-488
    Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. The Plant Cell,1998, 10:1075-1082
    Doganlar S, Frary A, Tanksley SD. The genetic basis of seed-weight variation:tomato as a model system. TheorAppl Genet,2000,100:1267-1273
    Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice(Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genetics Newsletter, 1997,14:39-41
    Doi K, Izawa T, Fuse T, et al. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independent of Hdl. Genes Development,2004, 18:926-936
    Ehness R, Roitsch T. Co-ordinated induction of mRNA for extracellular invertase and a glucose transporter in chenopodium ruburm by cytokinins. Plant Journal,1997,11:539-548
    Evans LT. Storage capacity as a linitation on grain yield. IRRI. Rice Breeding. Los Banos, Philippines: Intl. Rice Res.Inst,1972,499-511
    Salath, Carlos, Anton, et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature,2001,29:435-440
    Schruff M C, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development,2006,133: 251-261
    Shannon JC, Knlevel DP, Chourey PS, et al. Carbohydrate metabolism in the pedicel and endosperm of miniature maize kernels. Plant Physiology,1993,108:42
    Smith BD. The initial domestication of cucurbita pepo in the Americas 10,000 years ago. Science,1997, 276:932-934
    Somrith B, Chang TT, Jackson BR. Genetics analysis of traits related to grain characteristics and quality in two crosses of rice. IRRI Research Paper Series,1979,35:1-14
    Stone SL, Anderson EM, Mullen RT, et al. ARCl is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. The Plant Cell, 2003,15(4):885-898
    Thomson M, Tai T, McClung A, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and Oryza sativa cultivar Jefferson. TheorAppl Genet,2003,107:479-493
    Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. TheorAppl Genet, 2006,112(6):1164-1171
    Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol,2000,43:189-201
    Frary An, Nesbitt C, Frary Am, et al.fw2.2:A quantitative trait locus key to evolution of tomato fruit size. Science,2000,289:85-88
    Fridman E, Carrari F, Liu YS, et al. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science,2004,305:1786-1789
    Fujioka S, Kato T, Ohki S, et al. Suppression of the heterotrimeric G protein cause abnomal morphology, including dwarfism, in rice. PNAS,1999,96:7575-7580
    Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-deficient mutants of rice:The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiology,2007, 144:2009-2023
    Fuller DQ. Contrasting patterns in crop domestication and domestication rates:recent archaeobotanical insights from the old world. Ann Bot (Lond),2007,100:903-924
    Fullerton SM, Carvalho AB, Clark AG. Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol,2001,18:1139-1142
    Gal S, Pisan B, Hohn T, et al. Genomic homologous recombination in planta. EMBO J,1991,10: 1571-1578
    Gao YM, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. TheorAppl Genet,2007,115:325-333
    Garcia D, Choi Y, Fischer RL. Imprinting and seed development. The Plant Cell,2004,16:203-213
    Garris AJ, Tai TH, Coburn J, et al. Genetic structure and diversity in Oryza sativa L. Genetics,2005,169: 1631-1638
    Gehring M, Huh JH, Hsieh TF, et al. Demeter DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell,2006,124:495-506
    Gerton JL, DeRisi J, Shroff R, et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. PNAS,2000,97:11383-11390
    Gomez JM. Bigger is not always better:conflicting selective pressures on seed size in Quercus ilex. Evolution Int J Org Evolution,2004,58:71-80
    Gong M, Yang ZH, Cao ZX. Involvement of calmodulin in pollen germination and pollen tube growth.
    Acta PhytophysiolSin,1994,20(3):240-247
    Gravois KA, McNew RW. Combining ability and heterosis in United States southern long-grain rice. Crop Science,1993,33:83-86
    Grossniklaus U, Spillane C, Page DR, et al. Genomic imprinting and seed development:Endosperm formation with and without sex. Curr Opin Plant Biol,2001,4:21-27
    Halpin C, Knight ME, Foxon GA, et al. Manipulation of lignin quality by down regulation of cinnamyl alcohol dehydrogenase. Plant Journal,1994,6:339-350
    Harlan J. Crops and Man. Madison, WI:American Society of Agronomy/Crop Science Society of America,1992
    Harms K, Woehner RV, Schulz B, et al. Isolation and characterization of P-type H+-ATPase genes from potato. Plant Molcular Biology,1994,26:979-988
    Harushima Y, Nakagahra M, Yano M, et al. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics,2001,159(2):883-892
    Hasunuma K, Funadera K. GTP-binding protein(s) in green plants, Lemna paucicostata. Biochem Biophys Res Commun,1987,143(3):908-912
    He GM, Luo XJ, Sun CQ, et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research,2006,16: 618-626
    Hemerly AS, Ferrelra P. cdc2a expression in Arabidopsis is linked with competence for cell division. The Plant Cell,1993,5:1711-1723
    Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem,1998,67:425-479
    Hewitt N. Seed size and shade-tolerance:a comparative analysis of North American temperate trees. Oecologia,1998,114:432-440
    Hittalmani S, Shashidhar HE, Bagali PG, et al. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica,2002,125:207-214
    Hittalmani S, Huang N, Venuprasad BCR, et al. Identification of QTL for growth and grain yield related traits in rice across nine locations of Asia. Theor Appl Genet,2003,107:679-690
    Hua JP, Xing YZ, Xu CG, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895
    Huang N, Parco A, Mew T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Molecular Breeding.1997,3:105-113
    Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev,2001:11,547-553
    Isemura T, Kaga A, Konishi S, et al. Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot (Lond),2007,100: 1053-1071
    Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiology,2003,133:1083-1090
    Jeddeloh JA, Bender J, Richards EJ. The DNA methylation locus DDMl is required for maintenance of gene silencing in Arabidopsis. Genes & Development,1998,12:1714-1725
    Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a WI2/SNF2-like protein. Nature Genet,1999,22:94-97
    Jeffreys AJ, Neumann R. The rise and fall of a human recombination hot spot. Nature genetics,2009,41: 625-629
    Jensen-Seaman MI, Furey TS, Payseur BA, et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Research,2004,14:528-538
    Johnson CS, Kolevski B, Smyth Da. Transparent testa glabar2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell,2002,14:1359-1375
    Jones HD, Smith SJ, Desikan R, et al. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone. The Plant Cell,1998,10:245-254
    Jurado E, Westoby M. Seedling growth in relation to seed size among species of arid Australia. The Journal of Ecology,1992,80:407-416
    Justin DF, Karri MH, Bikram SG. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics,2000,154:823-835
    Kang HG, Park SH, Matsuoka M, et al. White core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant Journal,2005,42:901-911
    Kinoshita T. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice GenetNewsl,1995,12:24-93
    Keightley PD, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Research,1993,62:195-203
    Kelley WL. The DnaJ domain family and the recruitment of chaperone power. TIBS,1998,23:222-227
    Ken I. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiology,2003,133:1083-1090
    Kim JY, Mahe A, Brangeon J, et al. Maize vacuolar invertase, IVR2, is induced by water stress organ/tissue specificity and diurnal modulation of expression. Plant Physiology,2000,124:71-84
    Kinoshita T, Yadegari R, Harada JJ, et al. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. The Plant Cell,1999,11:1945-1952
    Kiyosue T, Ohad N, Yadegari R, et al. Control of fertilization-independent endosperm development by the MEDEA Polycomb gene in Arabidopsis. PNAS,1999,96:4186-4191
    Kohler C, Hennig L, Bouveret R, et al. Arabidopsis MSIl is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J,2003,22 (18):4804-4814
    Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiology.2002, 43(10):1096-1105
    Kong A, Gudbjartsson DF, Sainz J, et al. A high-resolution recombination map of the human genome. Nature Genet,2002,31:241-247
    Konishi S, Izawa T, Lin SY, et al. An SNP caused loss of seed shattering during rice domestication. Science,2006,312:1392-1396
    KOhler C, Hennig L, Bouveret R, et al. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group comples and required for seed development. The EMBO Journal,2003,22(18):4804-4814
    KOhler C, Hennig L, Spillane C, et al. The polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes& Development. 2003,17:1540-1553
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newsl,1999,16:104-106
    Kubo T, Takano-kai N, Yoshimura A. RFLP mapping of genes for long kernel and awn on chromosome 3 in rice. Rice Genet Newsl,2001,18:26-28
    Kuo YC, Liu C. Genetic studies on larger kernel size of rice. I. Inheritance of heading date, plant height, panicle number and spikelet number. Journal of Agriculture Research in China,1986,35:1-10
    Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits RFLP linkage maps. Genetics,1989,121:185-199
    Lehninger AL, Nelson DL, Cox MM. Principles of Biochemistry Ⅱ,1982,663
    Leishman MR, Westoby M. The role of seed size in seedling establishment in dry soil conditions experimental evidence from semiarid species. The Journal of Ecology,1994,82:249-258
    Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science,2006,311:1936-1939
    Li JM, Thomson M, McCouch SR. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics,2004,168:2187-2195
    Li JM, Xiao JH, McCouch SR. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O.glaberrima S.) rice. Genome,2004,47:697-704
    Li JX, Yu SB, Xu CG, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. TheorAppl Genet,2000,101: 248-254
    Li SB, Qian Q, Fu ZM, et al. Short paniclel encodes a putative PTR family transporter and determines rice panicle size. The Plant Journal, DOI:10.1111/j.1365-313X.2009.03799.x
    Lin SY, Ikehashi H, Yanagihara S, et al. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L.). TheorAppl Genet, 1992,84(7):812-818
    Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice. Nature,2003,422,618-621
    Li YH, Zheng LY, Corke F, et al. Control of final seed and organ size by the DAI gene family in Arabidopsis thaliana. Genes& Development,2008,22:1331-1336
    Li ZF, Wan JM, Xia JF, et al. Mapping quantitative trait underlying appearance quality of rice grain (Oryza sativa L.). Acta Genetica Sinica,2003,30(3):251-259
    Li ZK, Shannon RM, WiUiam D, et al. Epistasis for three grain yield components in rice (Oryza sativa L). Genetics,1997,145:453-465
    Li L, Wang XF, Stole V, et al. Genome wide transcription analyses in rice using tilling microarray. Nature Genetics,2006,38:124-130
    Lin HX, Qian HR, Zhuang JY, et al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). TheorAppl Genet,1996,92:920-927
    Litt M, Luty JA. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene.Am J Hum Genet,1989,44:399-401
    Liu JP, Eck JV, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shape tomato fruit. PNAS,2002,99(20):13302-13306
    Lo SF, Yang SY, Chen KT, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell,2008,20:2603-2618
    Lui H, Wang H, Delong C, et al. The Arabidopsis cdc2a-interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin-dependent kinase activity in vitro. The Plant Journal, 2000,21(4):379-385
    Luo LJ, Li ZK, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components. Genetics,2001,158:1755-1771
    Lyttle TW. Segregation distorters. Annu Rev Genet,1991,25:511-557
    Mambelli S, Setter TL. Inhibition of maize endosperm cell division and endoreduplication by exogenously applied abscisic acid. Physiologia Plantarum,1993,104:266-272.
    Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell,2006,18:3252-3274
    Matsuoka M, Ashikari M. A quantitative trait locus regulating rice grain width. Nature Genetics,2007, 39:583-584
    McKenzie KS, Rutger JN. Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice. Crop Science,1983,23:306-313
    McCouch SR, Teytelman L, Xu YB, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research,2002,9:199-207
    Miflin BJ, Lea PJ. Ammonia assimilation. In:The Biochemistry of Plants, Vol.5, ed. Miflin BJ, New York:Academic Press,1980,169-202
    Moncada P, Martinez CP, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa× Oryza rufipogon BC2F2 population evaluated in an upland environment. TheorAppl Genet,2001,102:41-52
    Moon J, Parry G, Estele M. The ubiquitin proteasome pathway and plant development, The Plant Cell, 2004,16 (12):3181-3195
    Murata Y. Limit and possibility of the highest rice yield seen from photosynthesis. Nogyo Gijutsu,1965, 20:451-456
    Myers PN, Settr TL, Madison JT, et al. Abscisic acid inhibition of endosperm cell division in cultured maize kernels. Plant physiology,1990,94:1330-1336
    Nagato K, Ebata M. Studies on white-core rice kernel II on the physical properties of the kernel. Proc Crop Sci Soc Jpn,1959,28:46-50
    Nayar NM. Origin and cytogenetics of rice.Adv Genet,1973,17:153-292
    Neer EJ. Heterotrimerie G proteins:organizers of transmembrrah signals. Cell,1995,80:249-257
    Oaks A. A re-evaluation of nitrogen assimiliation in root. Bioscience,1992,42:103-110
    Ohad N, Yadegari R, Margossian L, et al. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. The Plant Cell,1999,11:407-415
    Orsi CH, Tanksley SD. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genetics,2009,5(1):e1000347
    Peterhans A, Schlupmann H, Basse C, et al. Intrachromosomal recombination in plants. EMBO J,1990, 9:3437-3445
    Petes TD, Malone RE, Symington LS. The molecular and cellular biology of the yeast saccharomyces. Clod Spring Harbor Laboratory Press,1991,407-521
    Petes TD, Merker JD. Context dependence of meiotic recombination hotspots in yeast:The relationship between recombination activity of a reporter construct and base composition. Genetics,2002,162: 2049-2052
    Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem,2001,70(1):503-533
    Pickart CM, Eddins MJ. Ubiquitin structures functions mechanisms. Biochem Biophys Acta,2004,1695: 55-72
    Rabiei B, Valizadeh M, Ghareyazie B, et al. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica,2004,137:325-332
    Raju GM, Srinivas T. Effect of physical, physiological, and chemical factors on the expression of chalkiness in rice. Cereal Chem,1991,68(2):210-211
    Redon ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet,1998,96:957-963
    Ren ZH, Gao JP, Li LG, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature,2005,37:1141-1146
    Riefler M, Novak O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell,2006,18:40-54
    Riou KC, Menges M, Healy JMS, et al. Sugar control of the plant cell cycle:differential regulation of Arabidopsis D-type cyclin gene expression. Molcular Cell Biology,2000,20(13):4513-4521
    Sakamoto T, Morinaka Y, Ohnishi T, et al. Erect leves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechology,2006,24:105-109
    Sanguinetti CJ, Dias NE, Simpson AJG. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:915-919
    Schnable PS, Hsia AP, Nikolau BJ. Genetic recombination in plants. Current Opinion Plant Biology, 19981:123-129
    Second G. Origin of the genetic diversity of cultivated rice:study of the polymorphism scored at 40 isozyme loci. Jpn J Genet,1982,57:25-57
    Septiningsih EM, Prasetiyono J, Lubis E, et al. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet,2003,107:1419-1432
    Shomura A, Izawa T, Ebana K. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet,2008,40:1023-1028
    Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet,1990,67:25-33
    Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics,2007,39(5):623-630
    Sridhar VV, Kapoor A, Zhang K, et al. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature,2007,447:735-738
    Stern RA, Shargal A, Flaishman MA. Thidiazuron increases fruit size of'Spadona'and'Coscia'pear (Pyrus communis L). J Hortic Sci Biotechnol,2003,78 (1):51-55
    Swoboda P, Hohn B, Gal S. Somatic homologous recombination in planta:the recombination frequency is dependent on the alleleic state of recombining sequences and may be influenced by genomic position effects. Mol Gen Genet,1993,237:33-40
    Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. PNAS,2001,98(14):7922-7927
    Takeuchi Y, Lin SY, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet,2003,107: 1174-1180
    Takite T. Breeding for grain shape in rice. Agriculture Science,1989,44(6):39-42
    Tanabe S, Ashikari M, Fujikoka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length. The Plant Cell,2005,17:776-790
    Tan YF, Xing YZ, Li JX, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet,2000,101:823-829
    Temnykh S, Park W, Ayres N, et al. Mapping and genome organization of micosatellite sequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    Temnykh S, DeCklerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential. Genome Research,2001,11:1441-1452
    Thiel T, Kota R, Grosse I, et al. SNP2CAPS:a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research,2004,32:e5
    Thomson MJ, Tai TH, McClung AM, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet,2003,107:479-493
    Tian F, Li DJ, Fu Q, et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice(Oryza sativa L.) background and characterization of introgressed segments associated with yield related traits. Theor Appl Genet,2006,112:570-580
    Tomita M. The Gametic Lethal Gene gal:Activated only in the Presence of the Semidwarfing Gene d60 in Rice. In:Rice Genetics III. Manila:IRRI,1996,396-403
    Truernit E, Schmid J, Epple P, et al. The sink-specific and stress regulated Arabidopsis.STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding elicitors and pathogen challenge. The Plant Cell,1996,8:2169-2182
    Tsunematsu H, Yoshimura A, Harushima Y, et al. RFLP framework map using recombinant inbred lines in rice. Breeding Science,1996,46:279-284
    Ueda T, Sato T, Hidema J, et al. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase.Genetics,2005,171:1941-1950
    Unger C, Hardegger M, Lienhard S, et al. A cDNA cloning of carrot(Daucus carota) soluble acid beta fructofuranosidases and comparison with the cell wall isoenzyme. Plant Physiology,1994,104: 1351-1357
    Vailhe BMA, Besle JM, Maillot MP, et al. Effect of down regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. JSci Food Agric,1998,76: 505-514
    Van der Horst A, De Vries-Smits AMM, Brenkman AB, et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol,2006; 8:1064-1073
    Vielle-Calzada JP, Thomas J, Spillane C, et al. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes& Development,1999,13:2971-2982
    Wadsworth GJ, Redinbaugh MG, Scandalios JG. A procedure for the small scale isolaton of plant RNA suitable for RNA blot analysis. Analytical Biochemistry,1988,172:279-283
    Wan XY, Wan JM, Weng JF, et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. TheorAppl Genet,2005,110:1334-1346
    Wan XY, Wan JM, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. TheorAppl Genet,2006,112:1258-1270
    Wan XY, Weng JF, Zhai HQ, et al. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on Chromosome 5. Genetics,2008,179:2239-2252
    Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet,1999,99:1255-1264
    Wang ET, Wang JJ, Zhu XD, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics,2008,40:1370-1374
    Wang XQ, Ullah H, Jones AM, et al. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science,2001,292:2070-2072
    Werner T, Motyka V, Laucou V, et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell,2003,15:2532-2550
    Woodson WR, Park KY, Drory A, et al. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiology,1992,99:526-532
    Wolffe AP, Maizke MA. Epigenetics:regulation through repression. Science,1999,286(5439):481-486
    Wu CY, Trieu A, Radhakrishnan P, et al. Brassinosteroids regulate grain filling in rice. The Plant Cell, 2008,20:2130-2145
    Wu JZ, Mizuno M, Hayashi-Tsugane M, et al. Technical advance physical map and recombination frequency of six rice chromosomes. Plant Journal,2003,36:720-730
    Wu JZ, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. The Plant Cell,2002,14:525-535
    Xiao H, Jiang N, Schaffner E, et al. A retrotransposon mediated gene duplication underlies morphological variation of tomato fruit. Science,2008,319,1527-1530
    Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. TheorAppl Genet,1996,92: 230-244
    Xiao WY, Brown RC, Lemmon BE, et al. Regulation of seed size by hypomethlation of maternal and partenal genomes. Plant physiol,2006,142:1160-1168
    Xie XB, Song MH, Jin FX, et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near isogenic lines derived from a cross between Oryza sative and Oryza rufipogon. TheorAppl Genet,2006,9:885-894
    Xing YZ, Tan YF, Zhang QF, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. TheorAppl Genet, 2002,105:248-257
    Xing YZ, Tan YF, Xu CG, et al. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Botanica Sinica,2001,43:840-845
    Xu JL, Lafitte HR, Gao YM, et al. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. TheorAppl Genet,2005,111:1642-1650
    Xu JL, Yu SB, Luo LJ, et al. Molecular dissection of the primary sink size and its related traits in rice. Plant Breeding,2004,123:43-50
    Yamakawa H, Hirose T, Kuroda M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol,2007,144: 258-277
    Yamamoto T, Kubiki Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd-1, Hd-2and Hd-3, controlling heading date of rice, as single Mendelian factors. TheorAppl Genet.1998,97(1-2): 37-42
    Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. The Plant Cell,2000,12:1591-1606
    Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1. PNAS,2003,100(10):6263-6268
    Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell,2000, 12:2473-2483
    Yang J, Peng S, Visperas RM, et al. Grainfilling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol, 1984,35:155-189
    Yasuhara H, Muraoka M, Shogaki H, et al. TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY2 cells is a MORI homologue. Plant Cell Physiol,2002,43,595-603
    Ying Z, Wu Y, Avigne W, et al. Sugar responses of maize invertase genes are altered by cytokinins: whole plant implications for sugar sensing in a developmental context. In:Proceedings of the international conference on assimilate transport and partitioning. Newcastle,1999,197
    Yoon DB, Kang KH. Kim H, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativajaponica cultivar Hwaseongbyeo. TheorAppl Genet,2006,112:1052-1062
    Yoshida S, Ikegami M, Kuze J, et al. QTL analysis for plant and grain characters of sake-brewing rice using double haploid population. Breeding Science,2002,52:309-317
    You AQ, Lu XG, Jin HJ, et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics,2006,172:1287-1300
    Yu A, Zhao CF, Fan Y, et al. Comparison of human genetic and sequence-based physical maps. Nature, 2001,409:951-953
    Yu SB, Li JX, Xu CG, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS,1997,94:9226-9231
    Zaina S, Mapelli S, Reggial R. Auxin and GTPase activity in membranes from aerobic and anaerobic rice coleoptile. Journal of Plant Physiology,1991,138:760-762
    Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. PNAS,1993,90:10972-10976
    Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    Zhang D, Zaugg K, Mak T, et al. A role for the deubiquitinating enzyme USP28 in control of the DNA damage response. Cell,2006,126:529-542
    Zhao ZG, Wang CM, Jiang L, et al. Identification of a new hybrid sterility gene in rice(Oryza sativa L.). Euphytica,2006,151:331-337
    Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Chen LS, Ruan SG, Zhu J, et al. Advanced topics in biomathematics. Proceedings of international conference on mathematical biology. World Scientific Publishing Co., Singapore,1998,321-330
    Zhu QH, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol,2005,67:49-265
    Zhuang JY, Lin XH, Lu J, et al. Analysis of QTL environment interaction for yield components and plant height in rice. TheorAppl Genet,1997,95:799-808
    Zhuang JY, Fan YY, Rao ZM, et al. Analysis on additive effects and additive by additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002,105:1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700