用户名: 密码: 验证码:
枳PtrICE1、PtrHOS1和PtrLOS2基因克隆及PtrICE1遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘的周期性冻害在世界范围内时有发生,造成了巨大的经济损失。采用转基因技术将抗寒基因导入柑橘栽培品种中表达是缩短育种周期,快速获得柑橘抗寒品种的有效途径之一。但是目前有关柑橘抗寒基因克隆的研究很少,这种情况严重限制了柑橘抗寒分子育种的进展。
     本研究从柑橘的抗寒近缘种枳(Poncirus trifoliata (L.) Raf.)中克隆出了柑橘冷响应基因表达调控途径中的3个关键基因PtrICE1、PtrHOS1和PtrLOS2,同时对它们进行了详细的生物信息学分析,研究了它们在不同环境胁迫下在枳中的时空表达模式。通过转基因技术鉴定了其中一个编码上游转录因子的基因PtrICE1的功能,证明了在模式植物烟草中超量表达PtrICE1能够提高转基因烟草的抗寒性。然后克隆出了PtrICE1的上游启动子序列,并且通过转基因技术初步证明该启动子具有一定的冷响应和机械损伤响应活性。本研究为最终通过转基因技术获得抗寒性强的柑橘栽培品种提供了新的基因资源和理论基础。本研究获得的主要结果如下:
     1.从枳中克隆出了一个bHLH (basic Helix-Loop-Helix)家族基因PtrICE1,该基因长1933 bp,包含一个1464 bp的开放阅读框(ORF),编码487个氨基酸,蛋白质分子量为53.6 kDa,等电点为5.30。PtrICE1蛋白与其它植物ICE1家族蛋白的氨基酸序列一致性很高,并且具有保守的SUMO (small ubiquitin-related modifier)结合结构域、bHLH结构域和C-末端区域。系统进化树的分析结果表明,植物ICE1家族蛋白可分为双子叶植物类和单子叶植物类两大类,PtrICE1属于双子叶植物类。
     2.在正常的生长条件下,PtrICE1在枳根、茎、叶中都有一定程度的表达。冷处理之后,枳叶和茎中PtrICE1表达先上调后下调,在根中表达先下调后上调。ABA处理之后,枳叶、茎、根中PtrICE1表达都是先上调后下调。这些结果说明冷处理和ABA处理都能影响枳不同器官中PtrICE1的表达。
     3.构建了PtrICE1的超量表达载体pMVICE1,并通过根癌农杆菌介导的叶盘法将pMVICE1导入模式植物烟草中,使PtrICE1在烟草中超量表达。通过PCR检测获得了17个阳性T0代转基因烟草植株。T0代转基因烟草的生长速度比野生型烟草慢,开花时间比野生型烟草推迟10d左右,开花以后两者的表型差异不大。
     4.T0代转基因烟草果实成熟后收集种子,经Km抗性筛选后获得阳性T1代转基因烟草。通过比较T1代转基因和野生型烟草在冷处理后的相对电导率、成活率以及表型后发现,与野生型烟草相比,T1代转基因烟草的相对电导率更低,成活率更高,并且常温处理之后能够恢复生长,说明转基因烟草的抗寒性比野生型更强,因此我们认为在植物中超量表达PtrICE1能够提高植物的抗寒性。
     5.本研究克隆出了PtrICE1基因的DNA序列。通过比较PtrICE1编码区的DNA和cDNA序列发现,PtrICE1含有四个外显子和三个内含子。采用pMD18-T载体介导的接头PCR方法克隆了PtrICE1基因的上游启动子序列,并采用PLACE程序对PtrICE1启动子上可能存在的顺式作用元件进行了分析,结果找到一些与植物抗逆性相关的顺式作用元件,其中包括冷响应元件(CRT/DRE、MYC)、光响应元件(GT1、GATA)、脱水和ABA响应元件(ABRE、MYB)和各种激素响应元件(ARF、ASF、GARE、WBOX等)。
     6.本研究构建了能够检测PtrICE1启动子活性的表达载体pBIPROICE1:GUS.通过根癌农杆菌介导的叶盘法将pBIPROICE1:GUS导入模式植物烟草中,并通过PCR检测获得了阳性的To代转基因烟草。To代转基因烟草叶片的GUS组织化学染色结果表明,野生型烟草叶片未出现蓝色斑点,而未经冷处理时转基因烟草叶片表面只出现了少量的蓝色斑点,但在叶片切口处染色较深。4℃冷处理之后,转基因烟草叶片上蓝色斑点的数量增加,且在叶片伤口处染色较深,说明PtrICE1启动子具有冷响应和机械损伤响应活性。
     7.从枳中克隆出了PtrHOS1基因,该基因长3434 bp,包含一个2922 bp的开放阅读框,编码974个氨基酸,蛋白质分子量为110.2 kDa,等电点为5.55。PtrHOS1蛋白与其它植物HOS1类似蛋白的氨基酸序列一致性很高,并且在PtrHOS1蛋白的N末端含有一个高度保守的环指结构域(RING finger domain)。植物HOS1类似蛋白可分为双子叶植物类和单子叶植物类两大类,PtrHOS1属于双子叶植物类。在正常的生长条件下,PtrHOS1在枳根、茎、叶中表达强烈,冷处理和ABA处理之后,在枳的根、茎、叶中PtrHOS1的表达都出现了暂时的下调,说明在枳的根、茎、叶中PtrHOS1的表达都受冷处理和ABA处理的下调调控。
     8.从枳中克隆出了PtrLOS2基因,该基因长1662 bp,包含一个1338 bp的开放阅读框,编码445个氨基酸,蛋白质分子量为47.79 kDa,等电点为5.54。PtrLOS2蛋白与拟南芥LOS2蛋白及其它植物烯醇酶的氨基酸序列一致性很高(超过86%),说明PtrLOS2很可能编码一种烯醇酶。PtrLOS2含有两个高度保守的结构域,它们分别是DNA结合结构域和转录抑制结构域。在正常的生长条件下,PtrLOS2在枳根、茎、叶中都有表达,枳根和茎中PtrLOS2的表达量要高于叶中。从总体上来说,经过冷处理后,枳叶片和茎中PtrLOS2的表达是先上调后下调,而在根中PtrLOS2的表达是下调的。ABA处理之后,枳叶片中PtrLOS2的表达总体上是上调的,而在茎和根中PtrLOS2的表达是先下调后再上调。这些结果说明冷处理和ABA处理都能影响枳不同器官中PtrLOS2的表达。
Periodic freezing injury occurred frequently in the worldwide, which brings about gigantic economic losses. Introduced cold tolerance genes into citrus through transgenic technique can shortened the breeding cycle, and obtain the cold tolerant citrus cultivars quickly. However, there were few cold tolerance genes had been cloned and identified from citrus, which limiting the development of breeding cold hardy citrus cultivars through genetic engineering.
     In this research, three important genes in cold responsive gene expression pathway were cloned from citrus cold hardy relative trifoliate orange (Poncirus trifoliata (L.) Raf.), which were named PtrICE1, PtrHOS1 and PtrLOS2 respectively. These genes were analyzed in detail by bioinformatics. The space-time expression patterns of these genes after different stress treatments were also detected in this research. In addtion, the function of PtrICE1 which encodes an upstream transcription factor was identified through transgenic technique. Overexpressed PtrICE1 in tabacco could improve the cold tolerance of transgenic tabacco seedings. Moreover, the upstream promoter sequence of PtrICE1 was also cloned from trifoliate orange, and the cold and wounding responsive activity of PtrICE1 promoter was proved through transgenic technique. This research provided novel genes and theoretic bases for obtaining cold hardy citrus cultivated varieties through genetic engineering and transgenic technique. The main results of this research were as follows:
     1. A bHLH (basic Helix-Loop-Helix) family gene PtrICE1 was cloned from trifoliate orange. The length of PtrICE1 was 1933 bp with an open reading frame of 1464 bp, encoding a protein of 487 amino acids with a molecular weight of 53.6 kDa and a theoretical isoelectric point of 5.30. PtrICE1 protein shared high identity with other plants ICE1 family proteins and had conserved SUMO (small ubiquitin-related modifier) protein conjugation motif, bHLH domain and C-terminal region. The analysis results of phylogenetic tree revealed that the plants ICE1 famliy proteins could be divided to dicotyledonous plant group and monocotyledonous plant group. PtrICE1 protein belonged to dicotyledonous plant group.
     2. The PtrICE1 was constitutively expressed in leaves, stems and roots of trifoliate orange under normal growth condition. After cold treatments, the PtrICE1 expression in leaves and stems was up-regulated first and down-regulated afterwards. However, the PtrICE1 expression in roots was down-regulated first and up-regulated afterwards after cold treatments. After ABA treatments, the PtrICE1 expression in leaves, stems and roots was up-regulated first and down-regulated afterwards. These results suggested that the PtrICE1 expression in different organs of trifoliate orange was influenced by cold and ABA treatments.
     3. The overexpression vector pMVICE1 of PtrICE1 was constructed and transformed to tabacco through Agrobacterium tumefaciens mediated leaf-disc method. The transgentic tabacco seedings overexpressed PtrICE1 were detected by PCR and 17 positive T0 generation transgentic tabacco seedings were obtained in this research. The T0 generation transgentic tabacco growed slower and flower later (delayed about 10 d) than wild type tabacco. After flowering, there were no obvious phenotype difference between T0 generation transgentic and wild type tabacco seedings.
     4. T0 generation transgentic tabacco seeds were collected to produce T1 generation transgentic tabacco seedings by Km resistance selection. After cold treatments, the T1 generation transgentic tabacco seedings have lower relative electrical conductivity and higher survival rate compared to the wild type. Moreover, the growth of T1 generation transgentic tabacco could recover after normal temperature treatment. These results suggested that the transgentic tabacco seedings had stronger cold tolerance than wild type. Thus, we concluded that overexpressed PtrICE1 in plants could improve plants cold tolerance.
     5. The PtrICE1 DNA sequence was also cloned in this research. Four exons and three introns were found in PtrICE1 DNA sequence. The PtrICE1 promoter sequence was cloned by pMD18-T mediated adapter PCR. Several potential stress tolerance related cis-elements were predicted to be involved in the PtrICE1 promoter using the PLACE Program, including cold responsive elements (CRT/DRE, MYC), light responsive elements (GT1, GATA), dehydration and ABA responsive elements (ABRE, MYB) and several auxin responsive elements (ARF, ASF, GARE, WBOX).
     6. The pBIPROICE1:GUS expression vector used to detected the PtrICE1 promoter activity was constructed in this research. The pBIPROICE1:GUS vector was transformed to tabacco through Agrobacterium tumefaciens mediated leaf-disc method and obtained positive T0 generation transgentic tabacco seedings by PCR. The results of GUS histochemical staining revealed that the leaves of wild type tabacco could not be blue stained. Before cold treatment, a little of blue spots were observed in the leaves of T0 generation transgentic tabacco but the cut of which were deep blue stained. After cold treatments, more blue spots were observed in the leaves of T0 generation transgentic tabacco and the cut of which was also deep blue stained. These results suggested that the PtrICE1 promoter has cold and wounding responsive activities.
     7. The PtrHOSl gene was cloned from trifoliate orange. The length of PtrHOSl was 3434 bp with an open reading frame of 2922 bp, encoding a protein of 974 amino acids with a molecular weight of 110.2 kDa and a theoretical isoelectric point of 5.55. The amino acid sequence of PtrHOS1 protein shared high identity with that of other plants HOS1-like proteins and had a conserved RING finger domain in its N terminal. The plants HOS1-like proteins could be divided to dicotyledonous plant group and monocotyledonous plant group. PtrHOS1 protein belonged to dicotyledonous plant group. The PtrHOS1 was constitutively expressed at high level in leaves, stems and roots of trifoliate orange under normal growth condition. After cold and ABA treatments, the PtrHOS1 expression had several declined periods in leaves, stems and roots, which suggested that the PtrHOS1 expression in different organs of trifoliate orange were down-regulated both by cold and ABA.
     8. The PtrLOS2 gene was cloned from trifoliate orange. The PtrLOS2 cDNA is 1662 bp in length with a 1338 bp open reading frame, encoding a deduced 445 amino acid residue protein with a predicted molecular mass of 47.79 kDa and an isoelectric point of 5.54. The amino acid sequence of the PtrLOS2 protein shared high identity (over 86%) with Arabidopsis LOS2 protein and other plants enolase, which suggested that the PtrLOS2 probably encodes an enolase. Moreover, PtrLOS2 protein had a conserved DNA-binding and a repression domain. PtrLOS2 was constitutively expressed in leaves, stems and roots of trifoliate orange under normal growth condition. In addition, PtrLOS2 expression in roots and stems was much higher than that in leaves under normal growth condition. As a whole, the expression of PtrLOS2 was up-regulated first and down-regulated afterwards in leaves and stems, but down-regulated in roots after cold treatments. After ABA treatment, the expression of PtrLOS2 was up-regulated in leaves. However, PtrLOS2 expression in stems and roots was down-regulated first and up-regulated afterwards. These results suggested that the PtrLOS2 expression in different organs of trifoliate orange was influenced by cold and ABA treatments.
引文
1.常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性.植物研究,1997,17:65-71
    2.陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响.华南农业大学学报,1999,20:54-58
    3.邓彦斌,姜彦成,刘健.新疆10种黎科植物叶片和同化枝的旱生和盐生结构的研究.植物生态学报,1998,22:164-170
    4.费松林,方精云,樊拥军,赵坤,刘雪皎,崔克明.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系.植物学报,1999,41:1002-1009
    5.费云标,孙龙华,黄涛,舒念红,高素琴,简令成.沙冬青高活性抗冻蛋白的发现.植物学报,1994,36:649-650
    6.龚明.低温下水稻叶片中蛋白质及游离氨基酸的变化.植物生理学通讯,1989,4:18-22
    7.郭确,潘瑞炽.ABA对水稻幼苗抗冷性的影响.植物生理学报,1984,10:295-302.
    8.何天富.柑橘学.北京:中国农业出版社,1999,525-547
    9.黄家权.抗寒基因的克隆及根癌农杆菌介导的ICE1基因转化柑橘的研究. [博士学位论文].武汉:华中农业大学图书馆,2005
    10.黄小云,向邓云,谈锋.自然降温过程中草珊瑚抗寒性研究—水分、渗透调节物的动态变化与低温半致死温度的关系.重庆师范学院学报(自然科学版),2002,19:66-69
    11.简令成,孙德兰,施国雄,曾秋涛.不同柑桔种类叶片组织的细胞结构与抗寒性的关系.园艺学报,1986,13:163-168
    12.简令成.生物膜与植物寒害和抗寒性的关系.植物学通报,1983,1:17-27
    13.简令成.40年植物抗寒机理的细胞生物学研究的一个简单总结.植物学通报,1999,16:15-29
    14.李俊明,张敬贤,崔四平,魏建昆,张海明,耿庆汉.膜脂组成和膜结合酶活性与玉米幼苗抗冷性的关系.华北农学报,1992,7:50-53
    15.李美如,刘鸿先,王以柔,曾韶西,郭俊彦.钙对水稻抗冷性的影响.植物生理学报,1996a,22:379-384
    16.李美如,刘鸿先,王以柔,曾韶西.水稻幼苗冷锻炼过程中钙的效应.植物学报,1996b,38:735-737
    17.李正理,张新英.植物解剖学.北京:高等教育出版社,1983:261-266
    18.林元震,张志毅,刘纯鑫,郭海,朱保庆,陈晓阳.甜杨抗冻转录因子ICEl基因的in silico克隆及其分析.分子植物育种,2007,5:424-430
    19.罗新义,冯昌军,李红,沙伟.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报.中国草地,2004,26:79-81
    20.马德华,卢育华,庞金安.低温对黄瓜幼苗膜脂过氧化的影响.园艺学报,1998,25: 61-64
    21.苗芳,张篙午,王长发,刘党校.低温小麦种质叶片结构及某些生理特性.应用生态学报.2006,17:408-412
    22.彭昌操,孙中海.低温锻炼期间柑桔原生质体SOD和CAT酶活性的变化.华中农业大学学报,2000,19:384-387
    23.彭金光,孙玉宏,师瑞红,谢国生.西瓜幼苗10℃和15℃低温处理下相关生理指标的比较分析.武汉植物学研究,2006,24:441-445
    24.彭良志.对2008年柑桔冻害的思考和冻害果园管理建议.中国果业信息,2008,25: 1-3
    25.彭伟秀,杨建民,张芹,蒋品.不同抗寒性的杏品种叶片组织结构比较.河北林果研究,2001,6:145-147
    26.彭艳华,刘成运, 卢大炎,叶婉成.低温胁迫下凤眼莲叶片的适应—脱落酸和可溶性蛋白质含量升高.武汉植物学研究,1992,10:123-127
    27.孙德岭,方文惠,张宝珍,李素文. 温度变化对番茄幼苗抗寒性的影响.华北农学报,1999,14:75-78
    28.孙孟键、李本湘.植物耐寒性及防寒.见:刘祖棋,王洪春.北京:学术书刊出版社,1989,3-15
    29.孙中海,章文才,区胜祥,马湘涛.柑橘抗寒性与其膜脂肪酸组分的关系研究.武汉植物学研究,1990,8:79-86
    30.孙中海,章文才.柑橘叶片各种磷脂含量与抗寒性的关系.果树科学,1990a,7:135-140
    31.孙中海,章文才.用生物膜组分鉴定柑桔的抗寒性.中国柑桔,1990b,19:5-8
    32.陶建军.柑橘CBF类似基因的克隆与分析.[硕士学位论文].武汉:华中农业大学图书馆,2006
    33.万清林.草莓抗寒特性分析.北方园艺,1989:33-36
    34.王海河,林奇英,谢联辉,吴祖建.黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响.植物病理学报,2001,2:43-49
    35.王洪春.生物膜结构功能和渗透调节.上海:上海科技出版社,1987,9-13
    36.王连敏,王立志,张国民,李忠杰,王春艳.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响.中国农业气象,1999,20:28-31
    37.王淑杰,王家民,李亚东,马秀华.可溶性蛋白、可溶性糖含量和葡萄抗寒性关系的研究.北方园艺,1996,107:13-14
    38.王松华,周阮宝.三叶期前水稻幼苗抗寒生理研究.安徽农业技术师范学院学报,1998,12:15.18
    39.武维华,张蜀秋,袁明,张军,王学臣.植物生理学.北京:科学出版社,2003:188-189,429-450,456
    40.向殿军,满丽莉,殷奎德.拟南芥ICE1基因转化水稻的进一步研究.生物技术通报,2008,6:87-90
    41.许凯扬,叶万辉,沈浩,李静.低温胁迫下喜旱莲子草幼苗膜脂过氧化及保护酶活性的变化.生态科学,2006,25:139-142
    42.严寒静,谈锋.桅子叶片生理特性与抗寒性的关系.植物资源与环境学报,2005,14:21-24
    43.杨亚军,郑雷英,王新超.低温对茶树叶片膜脂脂肪酸和蛋白质的影响.亚热带植物科学,2005,34:5-9
    44.尹明安,崔鸿文,樊代明,郭立.胡萝卜抗冻蛋白基因克隆及植物表达载体构建.西北农林科技大学(自然科学版),2001,29:6-10
    45.张玮,谢锦忠,吴继林,林海青.低温驯化对部分丛生竹种叶片膜脂脂肪酸的影响.林业科学研究,2009,22:139-143
    46.张瑜,向殿军,殷奎德.农杆菌介导的大花蕙兰转ICE1基因.中国农学通报,2008,24:40-43
    47.张子学,张蕊,隋益虎,崔广荣,张从宇.温度胁迫对辣椒部分生理特性的影响.安徽科技学院学报,2007,21:1-6
    48.章文才,江爱良.中国柑橘冻害研究.北京:农业出版社,1983,1-17
    49.章文才.果树的抗寒性及抗寒育种.果树科学,1986,2:1-12
    50.赵玲玲.苹果MdSAMDC2和WICE1基因的功能鉴定以及抗逆性研究. [博士学位论文].山东农业大学图书馆,2007
    51.郑银英,崔百明,常明进,彭明.转拟南芥ICE1基因增强烟草抗寒性的研究.西北植物学报,2009,29:75-79
    52. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15:63-78
    53. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell,1997,9:1859-1868
    54. Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. JBiol Chem,2006,281:37636-37645
    55. Anderson J V, Li Q B, Haskell D W, Guy C L. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol, 1994,104:1359-1370
    56. Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C, Thomashow M F. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 1996,93:13404-13409
    57. Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol Plantarum,1992,85:235-241
    58. Badawi M, Reddy Y V, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol,2008,49:1237-1249
    59. Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor 15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol,1994,24:701-713
    60. Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N. The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotech, 2006,23:169-177
    61. Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F. The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell,2002,14: 1391-1403
    62. Bhatnagar-Mathur P, Devi M J, Serraj R, Yamaguchi-Shinozaki K, Vadez V, Sharma K K. Evaluation of transgenic groundnut lines under water limited conditions. Int Arch Newsl,2004,24:33-34
    63. Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Plant Mol Biol,1992,43:83-116
    64. Bray E A. Molecular responses to water deficit. Plant Physiol,1993,103:1035-1040
    65. Breusegem F V, Slooten L, Stassart J M, Moens T, Botterman J, Montagu M V, Inze D. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant and Cell Physiol,1999,40:515-523
    66. Cai Q, Moore G A, Guy C L. An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol,1995,29:11-23
    67. Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel K M, Koornneef M, Echeverria M, Delseny M. Regulation of Arabidopsis thaliana Em genes:Role of ABI5. Plant J,2002,30:373-83
    68. Champ K I, Febres V J, Moore G A. The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plantarum,2007,129:529-541
    69. Chen H H, Li H. Biochemical changes in tuber-bearing solanum species in relation to frost hardiness during cold acclimation. Plant Physiol,1980,66:416-421
    70. Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M and Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev,2003,17:1043-1054
    71. Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot,2004,55:225-236
    72. Choi D W, Rodriguez E M, Close T J. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol,2002,129:1781-1787
    73. Choi H, Hong J, Ha J, Kang J, Kim S. ABFs, a family of ABA-responsive element binding factors. J Biol Chem,2000,275:1723-1730
    74. Ciereszko I, Johansson H, Kleczkowski L A. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J,2001,354:67-72
    75. Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA,2006,103:8281-8286
    76. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L. encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J,2003,33:751-763
    77. Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor:relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett,2000,473:47-52
    78. Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,2000,12:599-609
    79. Finkelstein R, Gampala S, Rock C. Abscisic acid signaling in seeds and seedlings. Plant Cell,2002,14:S15-S45
    80. Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell,2002,14:1675-1690
    81. Foyer C H, Descourvieres P, Kunert K J. Protection against oxygen radical:an important defense mechanism studies in transgenic plants. Plant Cell Environ,1994, 17:507-523
    82. Fu J M, Huang B R. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot, 2001,45:105-114
    83. Fujii H, Verslues P E, Zhu J K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell,2007,19:485-494
    84. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell,2005,17:3470-3488
    85. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol,2009,50:2123-2132.
    86. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozakiet K. ABA-dependent multisite phosphorylation regulates the avtivity of a transcription activator AREB1. Proc Natl Acad Sci USA,2006,103: 1988-1993
    87. Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene, 2009,429,98-103
    88. Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol,2002,49: 459-471
    89. Gao S Q, Chen M, Xia L Q, Xiu H J, Xu Z S, Li L C, Zhao C P, Cheng X G, Ma Y Z. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt,and freezing stresses in transgenic wheat. Plant Cell Rep,2009,28:301-311
    90. Georges F, Saleem M, Cutler A J. Design and cloneing of a synthesis gene for the flounder antifreeze protein and its expression in plant cells. Gene,1990,91:159-165
    91. Giallongo A, Feo S, Moore R, Croce C M, Showe L C. Molecular cloning and nucleotide sequence of a full-length cDNA for human enolase. Proc Natl Acad Sci USA,1986,83:6741-6745
    92. Gibson S, Arondel V. Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana. Plant Physiol,1994,106:1615-1621
    93. Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol,2000,124: 1854-1865
    94. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J,1998,16: 433-442
    95. Griffith M, Ala P, Yang D S C, Hon W C, Moffatt B A. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol,1992,100:593-596
    96. Grill E, Himmelbach A. ABA signal transduction. Curr Opin Plant Biol,1998,1: 412-418
    97. Guiltinan M J, Marcotte W R, Quatrano R S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science,1990,250:267-271
    98. Guy C L. Cold acclimation and freeze tolerance:role of protein metabolism. Ann Rev Plant Physiol Mol Biol,1990,41:187-223
    99. Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA,1985,82:3673-3677
    100.Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol,2002,130:639-648
    101.Heim M A, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey P C. The basic helix-loop-helix transcription factor family in plants:a genome-wild study of protein structure and functional diversity. Mol Biol Evol,2003,20:735-747
    102.Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol,1991,17:1013-1021
    103.Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA,1999,96: 15348-15353
    104.Holmberg N, Farres J, Bailey J E, Kallio P T. Targeted expression of a synthetic codon optimized gene, encoding the antifreeze protein, leads to accumulation of Antifreeze activity in the apoplasts of transgenic tobacco. Gene,2001,275:115-124
    105.Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol,2002a,129:1086-1094
    106.Hsieh T H, Lee J, Charng Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002b,130:618-626
    107.Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. J Exp Bot,1996,47:291-305
    108.Ishitani M, Xiong L, Lee H, Stevenson B, Zhu J K. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell,1998,10:1151-1161
    109.Ishizaki-Nishizawa O, Fujii J, Azuma M. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific yanobacterial desaturase. Nat Biotechnol,1996,14:1003-1006
    110.Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREBl/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiol,2006,47:141-153
    111.Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol,1997,15:1287-1293
    112.Jackson A F, Seppelt R 0. The accmulation of Prasiolacrispa during winter in Antartica. Physiol Plantarum,1995,94:25-30
    113.Jaglo K R, Gilmour S J, Zarka D G, Schabenberger 0, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998,280:104-106
    114.Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol,2001,127:910-917
    115.Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci,2002,7: 106-111
    116.Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol,1996,30: 679-684
    117.Joazeiro C A P, Weissman A M. RING finger proteins:mediators of ubiquitin ligase activity. Cell,2000,102:549-552
    118.Kanaoka M M, Pillitteri L J, Fujii H, Yoshida Y, Bogenschutz N L, Takabayashi J, Zhu J K, Torii K U. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell,2008,20: 1775-1785
    119.Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech,1999,17:287-291
    120.Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer.Plant Cell Physiol, 2004,45:346-350
    121.Kim J C, Lee S H, Cheng Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel coldinducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J,2001,25:247-259
    122.Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol,2004,161:1171-1176
    123.Kodama H, Hanada T, Horguchi G, Nishimura M, Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast-3 fatty acid desaturases in transgenic tobacoo.Plant Physiol,1994,105:601-605
    124.Kratsch H A, Wise R R. The Ultrasturcture of chilling stress. Plant, Cell and Environ, 2000,23:337-350
    125.Kuhn J M, Boisson-Dernier A, Dizon M B, Maktabi M H, Schroeder J I. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abhl on AtPP2CA mRNA. Plant Physiol,2006,140: 127-139
    126.Kurkela S, Franck M. Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol,1990,15:137-144
    127.Kusano T, Berberich T, Harada M. A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet,1995,248:507-517.
    128.Lang P, Zhang C K, Ebel R C, Dane F, Dozier W A. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene,2005,359, 111-118
    129.Ledent V, Vervoort M. The basic helix-loop-helixprotein family:comparative genomics and phylogenetic analysis. Genome Res,2001,11:754-770
    130.Lee B, Henderson D A, Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell,2005,17:3155-3175
    131.Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays. Plant Sci,2000,159:75-85.
    132.Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J K. LOS2, a genetic locus required for cold responsive transcription encodes a bi-functional enolase. EMBO J, 2002,21,2692-2702
    133.Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev,2001,15: 912-924
    134.Lee T M, Lur H S, Chu C. Role of abscisic acid in chilling tolerance of rice(Oryza sativa L.) seedlings:Ⅱ. Modulation of free polyamine levels. Plant Sci,1997,126: 1-10
    135.Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222
    136.Liu L, Duan L, Zhang J, Zhang Z, Mi G, Ren H. Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptomeregulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci Hortic,2010,124: 29-33
    137.Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998,10:1391-1406
    138.Lopez-Molina L, Chua N H. A null mutation in a bZIP factor confers ABA insensitivity in Arabidopsis thaliana. Plant Cell Physiol,2000,41:541-547
    139.Lupas A. Coiled coils:new structures and new functions. Trends Biochem Sci,1996, 21:375-382
    140.Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol,1970,45:386-389
    141.Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. Dwarf and delayed flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J,2004,37:720-729
    142.Mantyla E, Lang V, Palva E T. Role of abscisic acid in drought induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol,1995,107:141-148
    143.Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J,2004,38:982-993
    144.Mckersie B D Murnaghan J, Bowley S R. Manipulating freezing tolerance in transgenic plants. Acta Physiol Plantarum,1997,19:17-19
    145.Mckersie B D, Chen Y, Beus M, Bowley S R, Bowler C, Inze D, Halluin K, Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic Alfalfa (Medicago satlva L.). Plant Physiol,1993,103:1155-1163
    146.Medina J, Bargues M, Terol J, Alonso M P, Salinas J. The Arabdopsis CBF gene family is composed of three genes encoding AP2 domain containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol,1999,119:463-470
    147.Meng S, Dane F, Si Y, Ebel R, Zhang C. Gene expression analysis of cold treated versus cold acclimated Poncirus trifoliata. Euphytica,2008,164:209-219
    148.Miura K, Jin J B, Lee J, Yoo C Y, Stirm V, Miura T, Ashworth EN, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.2007, Plant Cell,19:1403-1414
    149.Mundy J, Yamaguchi-shinozaki K, Chua N H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA,1990,87:1406-1410
    150.Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen spieces production. Plant Cell,2002,14:3089-3099
    151.Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol,2009,149: 88-95
    152.Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol Biol,2000,42:657-665
    153.Nambara E, Suzuki M, Abrams S, McCarty D R, Kamiya Y, McCourt P. A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics,2002, 161:1247-1255
    154.Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J,2003,34:137-148
    155.Nemhauser J L, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell,2006,126: 467-475
    156.Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves:Possible involvement of NtWRKYs and autorepression. JBiol Chem,2004,279:55355-55361
    157.Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol,1993, 21:641-653
    158.Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA,2004,101:3985-3990
    159.Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol,2005,138:341-351
    160.Ouellet F, Vazquea-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Letter,1998,423: 324-328
    161.Palta J P, Whitaker B D, Weiss L S. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solarium speeies. Plant Physiol,1993,103:793-803
    162.Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome,2004,47:493-500
    163.Pillitteri L J, Sloan D B, Bogenschutz N L, Torii K U. Termination of asymmetric cell division and differentiation of stomata. Nature,2007,445:501-505
    164.Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol,1997,114:1369-1376
    165.Price A H, Taylor A, Ripley S J, Griffiths A, Trewavas A J. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell,1994,6:1301-1310
    166.Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol,2004,45: 1042-1052
    167.Ray R, Miller D M. Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol,1991,11:2154-2161
    168.Sahin-Cevik M, Moore G A. Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol Biol, 2006,62:83-97
    169.Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought-, cold-and high-salinity-stress conditions. Plant Physiol,2004,136:2734-2746
    170.Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun,2002,290:998-1009
    171.Saurin A J, Borden K L B, Boddy M N, Freemont P S. Does this have a familiar RING? Trends Biochem Sci,1996,21:208-214
    172.Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13:61-72
    173.Shen Q, Zhang P, Ho T H. Modular nature of abscisic acid (ABA) response complexes:composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell,1996,8:1107-1119
    174.Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet,2003,106:923-930
    175.Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,2003,6: 410-417
    176.Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,2000,3:217-223
    177.Shinwari Z K, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun,1998,250:161-170
    178.Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P. Heat-stable antifreeze protein from grass. Nature,2000,406:256-263
    179.Skinner J S, Szucks P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger E J, Thomashow M F, Chen T H, Hayes P M. Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet,2006,112: 832-842
    180.Skinner J S, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger E J, Thomashow M F, Chen T H, Hayes P M. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol, 2005,59:533-551
    181. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist,1993,125:27-58
    182.Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,1997,94:1035-1040
    183.Straeten D, Rodrigues-Pousada R A, Goodman H M, Montagu M. Plant enolase: gene structure expression, and evolution. Plant Cell,1991,3:719-735
    184.Strobel D M, Sundberg M D. Stomatal density in leaves of various xerophytes preliminery studies. Minn Acad Sci,1984,49:7-9
    185.Subramanian A, Miller D M. Structural analysis of a-enolase. Mapping the functional domains involved in downregulation of the c-myc protooncogene. J Biol Chem,2000, 275,5958-5965
    186.Sui N, Li M, Zhao S J, Li F, Liang H, Meng Q W. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta,2007, 226:1097-1108
    187.Thomashow M F. Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol,1999,50,571-599
    188.Thomashow M F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol,2001,125:89-93
    189.Thomshow M F. Molecular genetics of cold acclimation in higher plants. A dv Genet, 1990,28:99-131
    190.Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell,2003,15:1749-1770
    191.Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner J S, Stockinger E J, Stanca A M, Pecchioni N. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet,2006,112:445-454
    192.Tyshenko M G, Doucet D, Davies P L, Walker V K. The antifreeze protein of the spruce budworm thermal hysteresis protein. Nat Biotechnol,1997,15:887-890
    193.Ulrich H D. Mutual interactions between the SUMO and ubiquitin systems:A plea of no contest. Trends Cell Biol,2005,15:525-532
    194.Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA,2000,97:11632-11637
    195.Urrutia M E, Duman J G, Knight C A. Plant themal hysteresis proteins. Biochim Biophy Acta,1992,1121:199-206
    196.Veisz O, Galiba G, Sutka J. Effect of abscisic acid on the cold hardiness of wheat seedlings. J Plant Physiol,1996,149:439-443
    197.Vogel J T, Zarka D G, Buskirk H A, Fowler S G, Thomashow M F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,2005,41:195-211
    198.Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T. A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea Batatas). Plant Cell Rep,2001,20:244-249
    199.White T C, Simmonds D, Donaldson P, Singh J. Regulation of BN115, low-temperature-responsive gene from winter Brassica napus. Plant Physiol,1994,11, 106:917-928
    200.Wingsle G, Hallgren J E. Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J Exp Bot,1993,44:463-470.
    201.Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science,1998,282:115-117
    202.Xiong L, Ishitani M, Lee H, Zhu J K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression. Plant Cell,2001,13:2063-2083
    203.Xiong L, Lee H, Ishitani M, Zhu J K. Regulation ofosmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. JBiol Chem,2002,277:8588-8596
    204.Yamaguchi-Shinozaki K, Shinozaki K. A novel Arabidopsis DNA binding protein contains the conserved motif of HMG-box proteins. Nucleic Acids Res,1992,20: 6737
    205.Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6:251-264
    206.Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803
    207.Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803
    208.Yelenosky G. Cold hardiness in Citrus. Hortic Rev,1985,7:201-238.
    209. Yokoi S, Higashi S I, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breeding,1998,4: 269-275
    210.Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol,2002,43:1473-1483
    211.Zarka D G, Vogel J T, Cook D, Thomashow M F. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol, 2003,133:910-918
    212.Zhang J Z, Creelman R A, Zhu J K. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol, 2004,135:615-621
    213.Zhang J, Cui S, Li J, Wei J, Kirkham M B. Protoplasmic factors, antioxidants responses, and chilling resistance in maize. Plant Physiol Biochem,1995,33: 567-575
    214.Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis. J Plant Physiol,2009,166:1296-1306
    215.Zhu J, Shi H, Lee B H, Damsz B, Cheng S, Stirm V, Zhu J K, Hasegawa P M, Bressan R A. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA,2004,101:9873-9878
    216.Zhu J, Verslues P E, Zheng X, Lee B H, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong C H, Zhu J K, Hasegawa P M, Bressan R A. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA,2005,102:9966-9971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700