用户名: 密码: 验证码:
大白菜和甘蓝型油菜AP2/ERF家族转录因子的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物一生面临很多的生物和非生物胁迫,严重影响植物的生长发育,从而影响作物的产量。很多基因被这些胁迫诱导表达,以增强植物对逆境的抗性。转录因子是其中重要的一类调控基因,通过与顺式元件相互作用调节植物对各种环境胁迫的适应。AP2/ERF家族是植物中重要的一类转录因子,包含一个高度保守的AP2-DNA结合域,其基因编码的产物具有广泛的功能。
     植物基因组分析是研究基因功能和基因进化的有效手段,目前植物基因功能解析很大程度上依赖模式植物拟南芥的研究信息。拟南芥、大白菜和油菜同属于十字花科,亲缘关系较为密切,因此可以利用拟南芥基因组研究的基因资源和生物信息资源,开展大白菜和油菜的功能基因组研究。本研究分析了大白菜和油菜一类重要的转录因子AP2/ERF,对于研究大白菜和油菜的逆境抗性、开花机制和果实发育等有重要的意义。
     1、通过对大白菜EST数据库分析,使用拟南芥AP2/ERF家族转录因子氨基酸序列信息为探针,得到62个AP2/ERF家族基因。基于这些大白菜AP2/ERF家族转录因子的氨基酸序列,可以分为四个亚族(ERF、DREB、RAV和AP2),而且上述亚族的分类与拟南芥非常相似。进一步对大白菜AP2/ERF家族转录因子进行了一系列的生物信息学分析:cDNA和氨基酸序列、组成、理化性质、进化树、保守域序列和功能域。通过对EST数据进一步分析研究大白菜AP2/ERF家族转录因子的表达。研究发现,上述62个AP2/ERF转录因子家族成员在根中丰度最高,达到33%,接着是叶和种子,丰度均为21%。芽、花和长果角中的丰度相对较低,分别为:6%、8%和11%。大白菜AP2/ERF家族转录因子基因表达量最高的出现在根中,为BraERF-B2-5基因。
     2、利用油菜UniGene数据库,通过电子克隆从一个UniGene中分离得到三个AP2/ERF转录因子(BnaERF1、BnaERF2和BnaERF3)。BnaERF1、BnaERF2和BnaERF3属于AP2/ERF家族转录因子ERF-B2亚族,是亲水性蛋白,蛋白质三级结构与AtERF1相似。蛋白质无序化分析发现,油菜BnaERF1、BnaERF2和BnaERF3无序化程度小于拟南芥AtERF1.通过PCR和RT-PCR方法分别从甘蓝型油菜“沪油15”的DNA和cDNA中扩增了上述基因,初步分析BnaERF2没有内含子,BnaERF1和BnaERF3有内含子。另外,通过EST丰度分析显示,该类转录因子表达最高峰在种子中,其次为花,在芽、茎和分生组织中没有检测到表达。
     3、以拟南芥AP2/ERF-B3亚族转录因子保守序列为信息探针,分离得到2个油菜AP2/ERF-B3亚族的转录因子BnaERFB3-1和BnaERFB3-2.通过PCR和RT-PCR方法从甘蓝型油菜“沪油15”的DNA和cDNA中克隆了上述基因。序列分析显示,克隆的BnaERFB3-1-Hy15和BnaERFB3-2-Hy15转录因子都没有内含子,BnaERFB3-1-Hy15和BnaERFB3-2-Hy15是亲水性蛋白,蛋白质三级结构与AtERF5相似。BnaERFB3-1-Hy15和BnaERFB3-2-Hyl5蛋白无序化程度大于拟南芥AtERF5。EST丰度显示,BnaERFB3-1表达集中在种子中,而BnaERFB3-2表达集中在根中。另外,将上述基因分别构建入酵母表达载体和植物双元表达载体。
     4、以拟南芥AP2/ERF-B4亚族转录因子保守序列为探针,分离得到一个UniGene (Bna.17538),进一步序列拼接得到一个油菜AP2/ERF-B4亚族转录因子BnaERFB4-1。分析结果显示BnaERFB4-1是亲水性蛋白,蛋白质三级结构与拟南芥RAP2.6L非常相似,蛋白质无序化程度大于拟南芥RAP2.6L.通过PCR和RT-PCR方法分别从甘蓝型油菜“沪油15”DNA和cDNA中分离了BnaERFB4-1基因。序列测定证实BnaERFB4-1-Hy15基因存在一个内含子。将BnaERFB4-1-Hy15基因通过Bam HI和Sac I酶切后分别插入酵母表达载体YK3302和植物双元表达载体pYF1404,构建了BnaERFB4-1-Hy15基因的酵母体内结合和植物转化载体。
     5、以拟南芥CBF家族转录因子保守序列为信息探针,搜索油菜UniGene数据库,得到二个UniGene:Bna.2193和Bna.2260,序列拼接得到2个cDNA序列(BnaCBF-1和BnaCBF-2).通过PCR和RT-PCR方法分别从甘蓝型油菜“沪油15”DNA和cDNA中克隆了上述基因。序列分析显示,“沪油15”的BnaCBF-1-Hy15和BnaCBF-2-Hy15基因都没有内含子。BnaCBF-1-Hy15和BnaCBF-2-Hy15转录因子属于AP2/ERF家族中的DREB-A1亚族,是亲水性蛋白,在蛋白质的三级结构上与AtCBF1相似。
Plants are exposed to many types of abiotic stress and biotic stress during their life-cycle, such as drought, salinity, and high and low temperatures, which have adverse effects on growth and the productivity of crop plants. A variety of plant genes are induced by a single or multiple stresses, and their products are thought to function in stress tolerance and in the regulation of gene expression and signal transduction in stress responses. Transcription factors have critical roles in the regulation of gene expression. Various transcription factors and cis-acting elements in the stress-responsive promoters function in plant adaptation to environmental stress. AP2/ERF is a family of transcription factors containing the highly conserved ethylene-responsive-element-binding AP2 DNA-binding domain. The AP2/ERF family genes are involved in response to drought, high salt content, temperature change, disease resistance, and the flowering control pathway, and have been analyzed by a combination of genetic and molecular approaches.
     Analysis of plant genomes can also facilitate the study of genome and gene evolution. Until relatively recently, gene functional dissection of plant has depended largely on molecular characterization of individual genes from various species. Companied with complete genome sequences, technologies of bioinformatic analysis have advanced so that the information stored in the various genomes of plants can be explored to search information that regulate plant growth and development. Brassica rapa, B. napus and Arabidopsis thaliana are members of the crucifereae and the protein coding sequences are conserved among the three species. In this study, we cloned and analyzed an important plant transcription factor family, AP2/ERF from Chinese cabbage, oilseed and compared them with the model plant species, Arabidopsis. Since AP2/ERF gene family are involved in regulating stress responses and flowering, and relatively few genes of this gene family from Chinese cabbage and oilseed have been characterized in detail, these bioinformatic analyses will help scientists to make use of information from other species to study those plants stress resistance and flowering and fruit development, such as orthorlogous relationship of a particular stress response gene.
     1. Starting from a large database of B. rapa expressed sequence tags (ESTs),62 putative AP2/ERF family genes were identified by in silico cloning using the amino acid sequence of A. thaliana as a probe. Based on the number of AP2/ERF domains and functions of the genes, the AP2/ERF transcription factors from B. rapa were classified into four subfamilies as ERF, DREB, RAV and AP2. Nearly all the genes were similar to those defined earlier as AP2/ERF from A. thaliana. The following properties and attributes were predicted and analyzed:cDNA and deduced amino acid sequence, composition, physical and chemical characterization, phylogenetic tree, conserved domain sequences, and function domain. Using large-scale transcriptome analysis and available EST information as a source of expression data for digital expression profiling, differentially expressed genes were identified among diverse plant tissues. Roots contained the largest number of transcripts of the AP2/ERF family genes, followed by leaves and seeds. Only a few of the 62 AP2/ERF family genes were expressed in all tissues:most were expressed only in some tissues but not in others. Some AP2/ERF family genes were constitutive and expressed in all the six kinds of tissues investigated namely seeds, siliques, buds, flowers, leaves, and roots. The maximum expression was that of BraERF-B2-5, and it was recorded from seed tissue.
     2. Three AP2/ERF family transcriptional regulators (BnaERFl, BnaERF2 and BnaERF3) were isolated from B. napus by in silico cloning method using the conserved domain amino acid sequence of A. thaliana ERF as probe. Then, BnaERFl, BnaERF2 and BnaERF3 genes were isolated from B. napus L. Huyoul5 by RT-PCR and PCR using cDNA and DNA as template.
     3. Two AP2/ERF family transcriptional regulators (BnaERFB3-1 and BnaERFB3-2) were isolated from B. napus by in silico cloning method using the conserved domain amino acid sequence of A. thaliana AP2/ERF-B3 subfamily as probe. Based on the sequences of BnaERFB3-1 and BnaERFB3-2, we isolated the BnaERFB3-1-Hy15 gene and BnaERFB3-2-Hy15 gene from winter and spring type B. napus L. cv Huyoul5 by RT-PCR and PCR using cDNA and DNA as template. No intron localized on the two genes from Huyou15, respectively. BnaERFB3-1-Hy15 and BnaERFB3-2-Hy15 were hydrophilic protein. The two proteins and AtERF5 have similar three-dimension structure. The disordered residues of protein BnaERFB3-1-Hy15 and BnaERFB3-2-Hy15 were higher than that of AtERF5. BnaERFB3-1 was mainly expression in seed, while BnaERFB3-2 was mainly expression in root. Moreover, those genes were successfully constructed into the recombinant plasmids of plant expression vector and yeast expression vector.
     4. One AP2/ERF family transcriptional regulators (Named BnaERFB4-1) was isolated from B. napus by in silico cloning method using the conserved domain amino acid sequence of A. thaliana ERF-B4 subfamily as probe. BnaERFB4-1 was hydrophilic protein. The protein and RAP2.6L have similar three-dimension structure. The disordered residues of protein BnaERFB4-1 was higher than that of RAP2.6L. We isolated the BnaERFB4-1 gene from winter and spring type B. napus L. cv Huyou15 by RT-PCR and PCR using cDNA and DNA as template. DNA sequencing and analyzing indicated that there only three amino acid residues difference between BnaERFB4-1-Hy15 and BnaERFB4-1. Moreover, the gene was ligated into expression vectors, respectively. It was successful to construct the recombinant plasmids of plant expression vector and yeast expression vector.
     5. Two CBF family transcriptional regulators were isolated from B. napus by in silico cloning method using the conserved domain amino acid sequence of AtCBF1 as probe. Based on the sequences of BnaCBF-1 and BnaCBF-2 from Bna.2193 and Bna.2260, the BnaCBF-1-Hy15 and BnaCBF-2-Hy15 genes were isolated from B. napus L. cv Huyou15 by RT-PCR and PCR using cDNA and DNA as template. No intron localized on the two genes from Huyou15, respectively. BnaCBF-1-Hy15 and BnaCBF-2-Hy15 were part of the DREB-A1 subfamily, and were hydrophilic protein. The two proteins and AtCBF1 have similar three-dimension structure.
引文
蔡小宁,杨平,贲爱玲,等.盐芥ThHKT1基因的克隆[J].江苏农业科学,2006,6:21-24
    陈郁.基因芯片数据分析及在植物基因组研究中的应用[J].氨基酸和生物资源,2008,30(1):33-36
    傅寿仲,戚存扣,浦惠明,等.中国油菜栽培科学技术的发展[J].中国油料作物学报,2006,28(1):86-91
    官春云.油菜的转基因育种[J].中国油料作物学报,2005,27(1):97-103.
    侯雷平,李梅兰.T-DNA标签在植物基因克隆和功能分析中的应用[J].西北植物学报,2006,26(5):1066-1070
    李关荣,鲁成,夏庆友,等.cDNA末端快速技术(RACE)的优化与改良[J].生命科学研究,2003,7(3):189-197
    林元震,张志毅,刘纯鑫,等.甜杨抗冻转录因子ICE1基因的in silico克隆及其分析[J].分子植物育种,2007a,5(3):424-430
    林元震,张志毅,林善枝,等.运用基因组和EST数据库进行电子克隆分离杨树功能基因的策略[J].分子植物育种,2007b,5(4):583-587
    刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45:1465-1474
    刘宜生.中国大白菜[M].北京,中国农业出版社,1998
    荣海燕.生物技术在大白菜育种上的应用[J].湖北农业科学,2006,45(5):674-676
    沈法富,尹承佾.植物基因克隆的方法和策略[J].大自然探索,1997,16(1):42-47
    舒群芳,赵路.植物基因克隆的策略和方法[J].植物学通报,1999,16(1):80-85
    宋顺华,郑晓鹰,徐家炳,等.大白菜种质资源的遗传多样性分析[J].华北农学报,2006,21(3):86-90
    孙艳琼,段红平.植物基因克隆方法在作物上的应用[J].广西农业科学,2005,36(3):275-279
    唐克轩,开国银,张磊,等.RACE的研究及其在植物基因克隆上的应用[J].复旦学报,2002,41(6):704-709
    王汉中.入世后的中国油菜产业[J].中国油料作物学报,2002,24(2):82-86.
    王汉中.中国油菜品种改良的中长期发展战略[J].中国油料作物学报,2004,26(3):98-101.
    王汉中.中国油料产业发展的现状、问题与对策[J].中国油料作物学报,2005,27(4):100-105.
    王汉中.我国油菜产需形势分析及产业发展对策[J].中国油料作物学报,2007,29(1): 101-105.
    毛健民,李俐俐.植物基因分离的图位克隆技术[J].生物学通报,2002,37(4):32-33
    王少峡,王振英,彭永康.DREB转录因子及其在植物抗逆中的作用[J].植物生理学通讯,2004,40:7-13
    闫其涛,逯慧,毛万霞,等.植物基因分离的图位克隆技术[J].分子植物育种,2005,3(4):585-590
    甄伟,陈溪,孙思洋,等.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展,2000,10(12):1104-1108
    Adams KL, Qiu YL, Stoutemyer M, et al. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene Loss and transfer to the nucleus during angiosperm evolution [J]. Proc Natl Acad Sci, USA 2002,99:9905-9912
    Agarwal PK, Agarwal P, Reddy MK, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J]. Plant Cell Rep,2006,25:1263-1274
    Allen MD, Yamasaki K, Ohme TM. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J]. EMBO J, 1998,17:5484-5496
    Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs [J]. Nucleic Acids Res,1997,25:3389-3402
    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature,2000,408:796-815
    Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms [J]. Cold Spring Harb Symp Quant Biol,2003,68:115-124
    Bergthorsson U, Adams KL, Thomason B, et al. Widespread horizontal transfer of mitochondrial genes in flowering plants [J]. Nature,2003,424:197-201
    Berrocal LM, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum [J]. Mol Plant Microbe Interact,2004,17:763-770
    Benedict C, Skinner JS, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp [J]. Plant Cell Environ,2006,29:1259-1272
    Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J]. Plant Cell,2004,16:1667-1678
    Blanchard JL, Schmidt GW. Pervasive migration of organellar DNA to the nucleus in plants [J]. J Mol Evol,1995,41:397-406
    Bowers JE, Chapman BA, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J]. Nature,2003,422:433-438
    Bray EA. Plant responses to water deficit [J]. Trends Plant Sci,1997,2:48-54
    Brunaud V, Balzergue S, Dubreucq B, et al. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites [J]. EMBO reports,2002,12:1152-1157
    Cavell A C, Lydiate D J, Parkin I A, et al. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome [J]. Genome,1998,41:62-69
    Chen WJ, Zhu T. Networks of transcription factors with roles in environmental stress response [J]. Trends Plant Sci,2004,9:591-596
    Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs [J]. Nucleic Acids Res,2003,31:3497-3500
    Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants [J]. J Exp Bot,2004,55:225-236
    Cho HS, Cao J, Ren JP, et al. Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis crylC gene [J]. Plant Cell Rep,2001,20:1-7
    Combet C, Blanchet C, Geourjon C. NPS:Network Protein Sequence Analysis [J]. TIBS,2000,25: 147-150
    Cong L, Chai TY, Zhang YX. Characterization of the novel gene BjDREBIB encoding a DRE-binding transcription factor from Brassica juncea L [J]. Biochem Biophys Res Commun,2008,371:702-706
    Crooks GE, Hon G, Chandonia JM, et al. WebLogo:A sequence logo generator [J]. Genome Res, 2004,14:1188-1190
    Cusack BP, Wolfe KH. When gene marriages don't work out:divorce by subfunctionalization [J]. Trends Genet,2007,23:270-272
    Cutler S, Somerville C. Cloning in silico [J]. Curr Biol,1997,7:R108-R111
    Darwin C. Letter to J. D. Hooker. In F Darwin, AC Seward, eds, More letters of Charles Darwin, Vol 2. John Murray, London 1903
    Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate [J]. PLoS Biol,2005,3:e314
    Devos KM. Updating the'crop circle' [J]. Curr Opin Plant Biol,2005,8:155-162
    Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression [J]. Plant J,2003,33:751-763
    Durand D, Hoberman R. Diagnosing duplications--can it be done? [J] Trends Genet,2006,22: 156-164
    Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth [J]. Plant Cell,1996,8:155-168
    Fei Z, Tang X, Alba RM, et al. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening [J]. Plant J,2004,40:47-59
    Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs:thermal RACE [J]. Methods Enzymol,1993,218:340-356
    Fink A L. Natively unfolded proteins. Curr Opin Struct Biol,2005,15:35-41
    Force A, Lynch M, Pickett FB, et al. Preservation of duplicate genes by complementary, degenerative mutations [J]. Genetics,1999,151:1531-1545
    Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J]. Plant Cell,2002,14:1675-1690
    Freeling M, Thomas BC. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity [J]. Genome Res,2006,16:805-814
    Fu XY, Zhang Z, Peng RH, et al. Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L [J]. Biotechnol Lett, 2007,29:1293-1299
    Gao G, Zhong Y, Guo A, et al. DRTF:a database of rice transcription factors [J]. Bioinformatics, 2006,22:1286-1287
    Gao MJ, Allard G, Byass L, et al. Regulation and characterization of four CBF transcription factors from Brassica napus [J]. Plant Mol Biol,2002,49:459-471
    Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy:The proteomics server for in-depth protein knowledge and analysis [J]. Nucleic Acids Res,2003,31:3784-3788
    Gilbert W, de Souza SJ, Long M. Origin of genes [J]. Proc Natl Acad Sci, USA 1997,94: 7698-7703
    Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs) [J]. Biotechnol Annu Rev,2000,5:25-44
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome(Oryza sativa L. ssp. japonica) [J]. Science,2002,296:92-100
    Goldgur Y, Rom S, Ghirlando R, et al. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress-and salt stress-regulated plant-specific protein, from unfolded to folded state [J]. Plant Physiol,2007,143:617-628.
    Grierson D, Slater A. Gene expression in ripening tomato fruit [J]. CRC Crit Rev Plant Sci,1985, 3:113-132
    Gu Z, Steinmetz LM, Gu X, et al. Role of duplicate genes in genetic robustness against null mutations [J]. Nature,2003,421:63-66
    Guo A, He K, Liu D, et al. DATF:a database of Arabidopsis transcription factors [J]. Bioinformatics,2005,21:2568-2569
    Guo AY, Chen X, Gao G, et al. PlantTFDB:a comprehensive plant transcription factor database [J]. Nucleic Acids Res,2008,36:D966-D969
    Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors [J]. Curr Opin Plant Biol,2004,7:465-471
    Han SY, Zhang SG, Wang Q, et al. Construction of Dehydration-responsive Element (DRE) Reporter for the Screening of DRE-binding Transcription Factors from Tree Plant Populus simonii [J]. J Agri Biotech,2007,15:446-450
    Hancock JM. Gene factories, microfunctionalization and the evolution of gene families [J]. Trends Genet,2005,21:591-595
    He P, Chintamanani S, Chen Z, et al. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine [J]. Plant J,2004,37:589-602
    Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome:intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals [J]. Mol Gen Genet, 1989,217:185-194
    Holland PW. Introduction:gene duplication in development and evolution [J]. Semin Cell Dev Biol,1999,10:515-516
    Huang X, Madan A. CAP3:A DNA sequence assembly program [J]. Genome Res.1999,9: 868-877
    Hughes AL. The evolution of functionally novel proteins after gene duplication [J]. Proc Biol Sci, 1994,256:119-124
    Hughes AL, Friedman R. Gene duplication and the properties of biological networks [J]. J Mol Evol,2005,61:758-764
    Hurley I, Hale ME, Prince VE. Duplication events and the evolution of segmental identity [J]. Evol Dev,2005,7:556-567
    Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice [J]. Plant Cell Physiol,2006,47:141-153
    Jaglo KR, Gilmour SJ, Zarka DG, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J]. Science,1998,280:104-106
    Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/ dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species [J]. Plant Physiol,2001,127:910-917
    Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature,2007,449:463-467
    Jofuku K D, den Boer B G, Van Montagu M, et al. Control of arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell,1994,6:1211-1225
    Jun S1, Kwon SY, Paek KY, et al. Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage [J]. Plant Cell Rep,1995,14:620-625
    Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol,1999,17: 287-291
    Kazuko YS, Kazuo S. Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses [J]. Annu Rev Plant Biol,2006,57:781-803
    Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress [J]. FEBS Lett,2001,498:187-189
    Krakauer DC, Nowak MA. Evolutionary preservation of redundant duplicated genes [J]. Semin Cell Dev Biol,1999,10:555-559
    Kubo N, Takano M, Nishiguchi M, et al. Mitochondrial sequence migrated downstream to a nuclear V-ATPase B gene is transcribed but non-functional [J]. Gene,2001,271:193-201
    Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132
    Leitch LJ, Bennett MD. Polyploidy in angiosperms [J]. Trends Plant Sci,1997,2:470-476
    Leister D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene [J]. Trends Genet,2004,20:116-122
    Li F, Wu X, Tsang E, et al. Transcriptional profiling of imbibed Brassica napus seed [J]. Genomics,2005,86:718-730
    Lin X, Kaul S, Rounsley S, et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana [J]. Nature,1999,402:761-768
    Liu JG, Zhang Z, Qin QL, et al. Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L [J]. Biotechnol Lett,2007,29:165-173
    Liu Y, Zhao TJ, Liu JM, et al. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box [J]. FEBS Lett,2006,580:1303-1038
    Lorenzo O, Piqueras R, Sanchez-Serrano JJ, et al. Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense [J]. Plant Cell,2003,15:165-178
    Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes [J]. Science, 2000,290:1151-1155
    Maere S, De Bodt S, Raes J, et al. Modeling gene and genome duplications in eukaryotes [J]. Proc Natl Acad Sci, USA 2005,102:5454-5459
    Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors:evolution of the AP2 DNA binding domain in plants [J]. Plant Cell,2004,16:2265-2277
    Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events [J]. Genome Res,2006,16:510-519
    Martin W, Stoebe B, Goremykin V, et al. Gene transfer to the nucleus and the evolution of chloroplasts [J]. Nature,1998; 393,162-165
    Martin W, Rujan T, Richly E, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus [J]. Proc Natl Acad Sci, USA,2002,99:12246-12251
    Mazet F, Shimeld SM. Gene duplication and divergence in the early evolution of vertebrates [J]. Curr Opin Genet Dev,2002,12:393-396
    Meyer A, Schartl M. Gene and genome duplications in vertebrates:the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions [J]. Curr Opin Cell Biol,1999,11: 699-704
    Meyer A, Van de Peer Y. From 2R to 3R:evidence for a fish-specific genome duplication (FSGD) [J]. Bioessays,2005,27:937-945
    Meyerowitz EM, Pruitt RE. Arabidopsis thaliana and Plant Molecular Genetics [J]. Science,1985, 229:1214-1218
    Millen RS, Olmstead RG, Adams KL, et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus [J]. Plant Cell,2001,13:645-658
    Min BW, Cho YN, Song MJ, et al. Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker [J]. Plant Cell Rep,2007,26:337-344
    Moore RC, Purugganan MD. The early stages of duplicate gene evolution [J]. Proc Natl Acad Sci, USA 2003,100:15682-15687
    Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes [J]. Curr Opin Plant Biol,2005,8:122-128
    Moose SP, Sisco PH. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity [J]. Genes& Development,1996,10:3018-3027
    Muangprom A, Osborn TC. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene [J]. Theor Appl Genet,2004,108:1378-1384
    Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol,2006,140:411-432
    Nanjo T, Futamura N, Nishiguchi M, et al. Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves [J]. Plant Cell Physiol,2004,45:1738-1748
    Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome:frequent DNA sequence acquisition and loss during the evolution of flowering plants [J]. Mol Genet Genomics,2002,268:434-445
    Ober D. Seeing double:gene duplication and diversification in plant secondary metabolism [J]. Trends Plant Sci,2005,10:444-449
    Ohno S. Evolution by Gene Duplication [M]. Springer-Verlag Heidelberg, Germany,1970
    Ohno S. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999 [J]. Semin Cell Dev Biol,1999,10:517-522
    Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis [J]. Proc Natl Acad Sci, USA 1997,94: 7076-7081
    Okumura S, Sawada M, Park YW, et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts [J]. Transgenic Res,2006,15:,637-46
    Pandey A, Lewitter F. Nucleotide sequence databases:a gold mine for biologists [J]. Trends Biochem Sci,1999,24:276-280
    Parkin I, Lydiate D, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5 [J]. Genome,2002,45:356-366
    Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. FoldIndex:a simple tool to predict whether a given protein sequence is intrinsically unfolded [J]. Bioinformatics,2005,21:3435-3438
    Piskur J. Origin of the duplicated regions in the yeast genomes [J]. Trends Genet,2001,17: 302-303
    Qin QL, Liu JG, Zhang Z, et al. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor RdreBl in Oryza sativa L [J]. Mol Breeding,2007,19: 329-340
    Raemdonck D, Pesquet E, Cloquet S, et al. Molecular changes associated with the setting up of secondary growth in aspen [J]. J Exp Bot,2005,56:2211-2227
    Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization [J]. BMC Evol Biol,2005,5:28
    Richards E, Reichardt M, Rogers S. Preparation of plant DNA using CTAB [J]. Curr protoc mol Biol,1998,233-237
    Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors [J]. Biol Chem,1998,379:633-646
    Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes [J]. Science,2000,290:2105-2110
    Rizzon C, Ponger L, Gaut BS. Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice [J]. PLoS Comput Biol,2006,2:e115
    Rohde A, Ruttink T, Hostyn V, et al. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar [J]. J Exp Bot,2007,58:4047-4060
    Rujan T, Martin W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies [J]. Trends Genet,2001,17:113-120
    Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol,1987,4:406-425
    Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochem Biophys Res Commun,2002,290:998-1009
    Sambrook J, Russell DW. Molecular Cloning; A laboratory Mannual [M]. Cold Spring Harbor laboratory Press, cold Spring Harbor, New York,2001
    Samonte RV, Eichler EE. Segmental duplications and the evolution of the primate genome [J]. Nat Rev Genet,2002,3:65-72
    Sankoff D. Gene and genome duplication. Curr Opin Genet Dev,2001,11:681-684
    Sato S, Nakamura Y, Kaneko T, et al. Complete structure of the chloroplast genome of Arabidopsis thaliana [J]. DNA Res,1999,6:283-290
    Savitch L V, Allard G, Seki M, et al. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus [J]. Plant Cell Physiol,2005,46:1525-1539
    Scannell DR, Byrne KP, Gordon JL, et al. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts [J]. Nature,2006,440:341-345
    Schaffer AA, Aravind L, Madden TL, et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements [J]. Nucleic Acids Res,2001,29:2994-3005
    Schlessinger A, Punta M, Rost B. Natively unstructured regions in proteins identified from contact predictions [J]. Bioinformatics,2007,23:2376-2384
    Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family [J]. Plant Physiol Biochem,2001,39:253-262
    Schneider TD, Stephens RM. Sequence Logos:A New Way to Display Consensus Sequences [J]. Nucleic Acids Res,1990,18:6097-6100
    Schwede T, Kopp J, Guex N, et al. SWISS-MODEL:An automated protein homology-modeling server [J]. Nucleic Acids Res,2003,31:3381-3385
    Scotto LE, Du G, Frohman MA.5'end cDNA amplification using classic RACE [J]. Nat Protoc, 2006,1:2555-2562
    Semon M, Wolfe KH. Consequences of genome duplication [J]. Curr Opin Genet Dev,2007,17: 505-512
    Seoighe C, Gehring C. Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome [J]. Trends Genet,2004,20:461-464
    Sergiy OG, Michail YL, Oxana VG. To be folded or to be unfolded? [J] Protein Sci,2004,13: 2871-2877
    Shigyo M, Hasebe M, Ito M. Molecular evolution of the AP2 subfamily [J]. Gene,2006,366: 256-265
    Shimeld SM. Gene function, gene networks and the fate of duplicated genes [J]. Semin Cell Dev Biol,1999,10:549-553
    Sidow A. Gen(om)e duplications in the evolution of early vertebrates [J]. Curr Opin Genet Dev, 1996,6:715-722
    Soltis DE, Ma H, Frohlich MW, et al. The floral genome:an evolutionary history of gene duplication and shifting patterns of gene expression [J]. Trends Plant Sci,2007,12: 358-367
    Steane DA. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae) [J]. DNA Res,2005,12:215-20
    Stellwag EJ. Hox gene duplication in fish. Semin Cell Dev Biol,1999,10:531-540
    Sterck L, Rombauts S, Vandepoele K, et al. How many genes are there in plants (... and why are they there)? [J] Curr Opin Plant Biol,2007,10:199-203
    Stockinger EJ, Gilmour SJ, Thomashow MR Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci, USA 1997,94:1035-1040
    Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2:implication of potential sequencing errors caused by large-unit repeats [J]. Proc Natl Acad Sci, USA 2001,98:5099-5103
    Sun CW, Callis J. Recent stable insertion of mitochondrial DNA into an Arabidopsis polyubiquitin gene by nonhomologous recombination [J]. Plant Cell,1993,5:97-107
    Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Bio Evo,2007,24:1596-1599
    Taylor JS, Van de Peer Y, Meyer A. Genome duplication, divergent resolution and speciation [J]. Trends Genet,2001,17:299-301
    Taylor JS, Braasch I, Frickey T, et al. Genome duplication, a trait shared by 22000 species of ray-finned fish [J]. Genome Res,2003,13:382-390
    Teshima KM, Innan H. Neofunctionalization of duplicated genes under the pressure of gene conversion [J]. Genetics,2008,178:1385-1398
    Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray) [J]. Science,2006,313:1596-1604
    Ueda M, Fujimoto M, Arimura S, et al. Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus [J]. Gene,2007; 402,51-56
    Unseld M, Marienfeld JR, Brandt P, et al. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides [J]. Nat Genet,1997,15:57-61
    Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? [J] Proteins,2000,41:415-427
    Velasco R, Zharkikh A, Troggio M, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety [J]. PLoS ONE,2007,2:e1326
    Volff JN, Schartl M. Evolution of signal transduction by gene and genome duplication in fish [J]. J Struct Funct Genomics,2003,3:139-150
    Wagner A. Birth and death of duplicated genes in completely sequenced eukaryotes [J]. Trends Genet,2001,17:237-239
    Walter J, Paulsen M. The potential role of gene duplications in the evolution of imprinting mechanisms [J]. Hum Mol Genet,2003,2:R215-220
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14
    Wang W, Zheng H, Yang S, et al. Origin and evolution of new exons in rodents [J]. Genome Res, 2005,15:1258-1264
    Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene,2007,394:13-24
    Wapinski I, Pfeffer A, Friedman N, et al. Natural history and evolutionary principles of gene duplication in fungi [J]. Nature,2007,449:54-61
    Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain [J]. Plant Cell,1995,7:388-389
    Wessler SR. Homing into the origin of the AP2 DNA binding domain [J]. Trends Plant Sci,2005, 10:54-56
    Wilkins M R, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods Mol Biol,1999,112:531-552
    Wilkinson DL, Harrison RG. Predicting the solubility of recombinant proteins in Escherichia coli [J]. BioTechnology,1991,9:443-448
    Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome [J]. Nature,1997,387:708-713
    Woo JC. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization [J]. Jap J Bot,1935,7:389-452
    Xiao H, Siddiqua M, Braybrook S, et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid [J]. Plant Cell Environ,2006,29:1410-1421
    Xiao H, Tattersall EA, Siddiqua MK, et al. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia [J]. Plant Cell Environ,2008,31:1-10
    Xiang FL, Wong WKR, Ma MC, et al. Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis crylAb and crylAc genes [J]. Plant Cell Rep,2000,19:251-256
    Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress [J]. Plant Cell,2002,14:165-183
    Xiong AS, Yao QH, Peng RH, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence [J]. Nucleic Acids Res,2004,32: e98
    Xiong AS, Yao QH, Peng RH, et al. PCR-based accurate synthesis of long DNA sequences [J]. Nat Protoc,2006,1:791-797
    Xu H, Wang X, Zhao H, et al. An intensive understanding of vacuum infiltration transformation of pakchoi(Brassica rapa ssp. chinensis) [J]. Plant Cell Rep,2008,27:1369-1376
    Yamaguchi SK, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell,1994,6: 251-264
    Yamaguchi SK, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annu Rev Plant Biol,2006,57:781-803
    Yang TW, Zhang LJ, Zhang TG, et al. Transcriptional regulation network of cold-responsive genes in higher plants [J]. Plant Sci,2005,169:987-995
    Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication [J]. Plant Physiol,2006, 142:820-830
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) [J]. Science,2002,296:79-92
    Yu J, Wang J, Lin W, et al. The Genomes of Oryza sativa:a history of duplications [J]. PLoS Biol, 2005,3:e38
    Yuan Q, Hill J, Hsiao J, et al. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion [J]. Mol Genet Genomics,2002,267:713-720
    Zang YX, Lim MH, Park BS, et al. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1 [J]. Mol Cells,2008,25:231-241
    Zhang FL, Takahata Y, Watanabe M, et al. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage(Brassica campestris L. ssp. pekinensis) [J]. Plant Cell Rep,2000,19:569-575
    Zhang X, Henriques R, Lin SS, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method [J]. Nat Protoc,2006,1:641-646
    Zhao TJ, Sun S, Liu Y, et al. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus [J]. J Biol Chem,2006,281:10752-10759
    Zhao TJ, Liu Y, Yan YB, et al. Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus [J]. FEBS Lett, 2007,581:3044-3050
    Zhu QH, Guo AY, Gao G, et al. DPTF:a database of poplar transcription factors [J]. Bioinformatics,2007,23:1307-1308
    Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs [J]. Nucleic Acids Res,1997,25:3389-3402
    Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice:genome-wide identification, organization and expression profiling during reproductive development and stress [J]. BMC Genomics,2007,8:242
    Brunner AM, Busov VB, Strauss SH. Poplar genome sequence:functional genomics in an ecologically dominant plant species [J]. Trends Plant Sci,2004,9:49-56
    Chen WJ, Zhu T. Networks of transcription factors with roles in environmental stress response [J]. Trends Plant Sci,2004,9:591-596
    Coyle DR, Nebeker TE, Hart ER, et al. Biology and management of insect pests in North American intensively-managed hardwood forest systems [J]. Annu Rev Entomology, 2005,50:1-29
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science,2002,296:92-100
    Gomez PJL, Riano PDM, Dreyer I, et al. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice [J]. BMC Genomics, 2007,8:260.
    Guo A, He K, Liu D, et al. DATF:a database of Arabidopsis transcription factors [J]. Bioinformatics,2005,21:2568-2569
    Jansson S, Douglas CJ. Populus:a model system for plant biology [J]. Annu Rev Plant Biol,2007, 58:435-458.
    Kalluri UC, Difazio SP, Brunner AM, et al. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa [J]. BMC Plant Biol,2007,7:59
    Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress [J]. FEBS Lett,2001,498:187-189
    Kreps JA, Wu Y, Chang HS, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress [J]. Plant Physiol,2002,130:2129-2141
    Leseberg CH, Li A, Kang H, et al. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa [J]. Gene,2006,378:84-94.
    Li X, Duan X, Jiang H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis [J]. Plant Physiol,2006,141:1167-1184
    Lijavetzky D, Carbonero P, Vicente CJ. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families [J]. BMC Evol Biol,2003,3:17.
    Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol,2006,140:411-432
    Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis [J]. Proc Natl Acad Sci, USA 1997,94: 7076-7081
    Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. Foldlndex:a simple tool to predict whether a given protein sequence is intrinsically unfolded [J]. Bioinformatics,2005,21:3435-3438
    Rabbani MA, Maruyama K, Abe H, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel blot analyses [J]. Plant Physiol,2003,133:1755-1767
    Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors [J]. Biol Chem,1998,379:633-646
    Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes [J]. Science,2000,290:2105-2110
    Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochem Biophys Res Commun,2002,290:998-1009
    Shigyo M, Hasebe M, Ito M. Molecular evolution of the AP2 subfamily [J]. Gene,2006,366: 256-265
    Taylor JS, Van de Peer Y, Meyer A. Genome duplication, divergent resolution and speciation [J]. Trends Genet,2001,17:299-301
    Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray) [J]. Science,2006,313:1596-1604
    Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? [J] Proteins,2000,41:415-427
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14
    Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene,2007,394:13-24
    Wessler SR. Homing into the origin of the AP2 DNA binding domain [J]. Trends Plant Sci,2005, 10:54-56
    Yamaguchi SK, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell,1994,6: 251-264
    Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication [J]. Plant Physiol,2006, 142:820-830
    Yin TM, DiFazio SP, Gunter LE, et al. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map [J]. Theor Appl Genet,2004,109:451-463
    Zhu QH, Guo AY, Gao G, et al. DPTF:a database of poplar transcription factors [J]. Bioinformatics,2007,23:1307-1308
    Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice:genome-wide identification, organization and expression profiling during reproductive development and stress [J]. BMC Genomics,2007,8:242
    Bornhoff BA, Harst M, Zyprian E, et al. Transgenic plants of Vitis vinifera cv. Seyval blanc [J]. Plant Cell Rep,2005,24:433-438
    Bowers JE, Chapman BA, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J]. Nature,2003,422:433-438
    Chen WJ, Zhu T. Networks of transcription factors with roles in environmental stress response [J]. Trends Plant Sci,2004,9:591-596
    Dhekney SA, Li ZT, Dutt M, et al. Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep,2008,27:865-872
    Doligez A, Audiot E, Baumes R, et al. QTLs for muscat flavor and monoterpenic odorant content in grapevine(Vitis vinifera L.) [J]. Mol breeding,2006,18:109-125
    Dutt M, Li ZT, Dhekney SA, et al. Transgenic plants from shoot apical meristems of Vitis vinifera L. "Thompson Seedless" via Agrobacterium-mediated transformation [J]. Plant Cell Rep, 2007,26:2101-2110
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science,2002,296:92-100
    Guo A, He K, Liu D, et al. DATF:a database of Arabidopsis transcription factors [J]. Bioinformatics,2005,21:2568-2569
    Guo AY, Chen X, Gao G, et al. PlantTFDB:a comprehensive plant transcription factor database [J]. Nucleic Acids Res,2008,36:D966-D969
    Iocco P, Franks T, Thomas MR. Genetic transformation of major wine grape cultivars of Vitis vinifera L [J]. Transgenic Res,2001,10:105-112
    Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature,2007,449:463-467
    Kellogg EA. What happens to genes in duplicated genomes [J]. Proc Natl Acad Sci, USA 2003, 100:4369-4371
    Kikkert JR, Striem MJ, Vidal JR,et al. Long term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (vitis sp.) Genotypes [J]. In Vitro Cellular and Developmental Biology-Plant,2005,41:232-239
    Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress [J]. FEBS Lett,2001,498:187-189
    Lawton RA. Evolutionary dynamics of duplicated genes in plants [J]. Mol Phylogenet Evol,2003, 29:396-409
    Magnani E, Sjolander K, Hake S. From endonucleases to transcription factors:evolution of the AP2 DNA binding domain in plants [J]. Plant Cell,2004,16:2265-2277
    Mezzetti B, Pandolfini T, Navacchi O, et al. Genetic transformation of Vitis vinifera via organogenesis [J]. BMC Biotechnol,2002,2:18
    Moore RC, Purugganan MD. The early stages of duplicate gene evolution [J]. Proc Natl Acad Sci, USA 2003,100:15682-15687
    Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol,2006,140:411-432
    Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. FoldIndex:a simple tool to predict whether a given protein sequence is intrinsically unfolded [J]. Bioinformatics,2005,21:3435-3438
    Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors [J]. Biol Chem,1998,379:633-646
    Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochem Biophys Res Commun,2002,290:998-1009
    Silva FG, Iandolino A, Al-Kayal F, et al. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development [J]. Plant Physiol,2005,139:574-597
    This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes [J]. Trends Genet,2006,22:511-519
    Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray) [J]. Science,2006,313:1596-1604
    Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? [J] Proteins,2000,41:415-427
    Velasco R, Zharkikh A, Troggio M, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety [J]. PLoS ONE,2007,2:e1326
    Vivier MA, Pretorius IS. Genetically tailored grapevines for the wine industry [J]. Trends Biotechnol,2002,20:472-478
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14
    Wang Q, Li P, Hanania U, et al. Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and tilizing cryopreserved cell suspensions [J]. Plant Science,2005,168:565-571
    Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene,2007,394:13-24
    Wessler SR. Homing into the origin of the AP2 DNA binding domain [J]. Trends Plant Sci,2005, 10:54-56
    Xiao H, Siddiqua M, Braybrook S, et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid [J]. Plant Cell Environ,2006,29:1410-1421
    Xiao H, Tattersall EA, Siddiqua MK, et al. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia [J]. Plant Cell Environ,2008,31:1-10
    Yamaguchi SK, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annu Rev Plant Biol,2006,57:781-803
    Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication [J]. Plant Physiol,2006, 142:820-830
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) [J]. Science,2002,296:79-92
    Yu J, Wang J, Lin W, et al. The Genomes of Oryza sativa:a history of duplications [J]. PLoS Biol, 2005,3:e38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700