用户名: 密码: 验证码:
基于MTS-NetSLab系统的多跨桥抗震混合试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合试验源于子结构拟动力试验,是一种集物理试验与数值模拟于一体的先进抗震试验方法,可以对结构进行类似于有限元的精细化计算分析,借助于互联网技术可以形成功能强大的“网络协同混合试验方法”,此方法是目前国际土木工程学术界的热点前沿课题,国内外多个研究机构已经对此进行了相应的基础性研究。
     基于实验室现有的试验资源和计算资源,本文针对混合试验方法的基本理论及其在多跨桥中的应用展开研究,主要内容如下:
     1.与传统的子结构拟动力试验方法相比较,指出混合试验方法的最大优势在于模型中集成了多个非线性试验单元,从而可以对结构进行更为精细化的整体分析而非单独的构件分析,并且可以基于互联网技术将异地分布的多个结构实验室连接起来协作进行大比例或足尺结构试验,从而共同开展更为复杂结构的抗震试验研究。
     2.针对土木工程中广泛应用的MTS结构试验系统,基于FlexTest GT控制器及MTS 793系列控制软件,提出了一种基于内部命令控制的混合试验方法,利用VB_COM接口程序控制输入输出,实现对GT控制器的控制,进一步开发了三个程序:站监测程序、正弦波加载程序和斜坡加载程序,并将斜坡加载程序嵌入NetSLab-Tester中,通过建立一个Master-Slaver网络进行了MTS与NetSLab之间的对接集成。在实验室局域网范围内进行了一根悬臂钢柱的验证试验,试验结果表明:该方法简化了试验连接并提高了速度,为混合试验研究提供了一种新方法,但对试验系统硬件和软件提出较高的要求,并且Master-Slaver网络可以有效地起到保护系统操作计算机的目的。
     3.针对多跨桥混合试验中一个柱试验单元,设计了4个钢筋混凝土短柱模型,基于M. J. N. Priestley et al抗剪承载力设计方法进行了FRP加固计算,并进行了各种材料的力学性能测试。为预先了解试件力学特性,基于ANSYS和OpenSees两种软件建立了未加固短柱和加固短柱的数值有限元模型,分别进行了单调荷载、拟静力荷载和地震荷载作用下的非线性数值模拟。计算结果表明:FRP加固的主要作用在于提高延性,而对承载力提高幅度较小。
     4.利用上述设计的短柱试件进行了未加固短柱和加固短柱的抗震拟静力试验,试验结果表明:FRP加固钢筋混凝土短柱在小测移范围内基本不改变刚度,更主要的作用是提高构件的延性,使剪切破坏向弯曲破坏转化。研究多跨桥混合试验中的数值积分算法及加载控制方法:研究ACD-Newmark组合算法和一种限值保护下外位移加载控制方法,进一步实现了连续斜坡逼近加载技术。以一个多跨桥模型结构为例,试验单元为CFRP加固短柱模型,在实验室局域网范围内进行了弹性阶段、塑性局部破坏以及局部破坏后二次加载三种工况下的验证试验,试验结果表明:合适的误差限及延迟时间是确保加载精度和缩短试验时间的有效手段;在产生塑性变形、局部破坏之后,在一定位移范围内,试件具有稳定的二阶退化刚度,刚度值约降为未破坏时的1/3,与拟静力试验结果一致,试验结果为后续互联网协同混合试验中数值单元的设置提供参考。
     5.为适应目前的单自由度网络协同混合试验系统,设计了针对多跨桥抗震试验相应的两种简化方案,并进行了NetSLab软件的网络环境测试。测试结果表明:网络通讯时间占整个试验时间比例很小,目前的国内及国际网络基本能够满足混合试验要求。依据Santa Monica原型桥梁的简化模型,三校协作基于国内网络进行了四跨三柱桥梁在小震、中震和大震作用下的混合试验;依据Russion River原型桥梁的简化模型,四校协作基于国际网络进行了六跨五柱桥梁在小震、中震和大震作用下的混合试验;针对网络环境和试验时间分配的分析结果表明:大部分试验时间花费在逼近加载及等待作动器响应平稳这两项上,目前的网络环境基本能够适合慢速网络混合试验的要求。
     6.本文进行的两个多跨桥的混合试验是国内首次多站点网络协同示范性试验,并可以作为标准试验平台进行扩展。试验结果表明:网络协同混合试验方法实现了设备共享,为大型复杂桥梁结构抗震试验提供了一种可行的研究途径。
Hybrid testing is an advanced testing method originated from substructure pseudo-dynamic testing, which integrates physical testing and numerical simulation. It can carry out a precise analysis similar to FEM, and can establish a strong functional networked collaborative hybrid testing method based on internet. This method is the hot topic in international academic circles of civil engineering, and several research institutions at home and abroad have carried out basic research.
     Based on the experimental resources and numerical resources of the present laboratories, the basic theory of hybrid testing method and it’s applications in RC multi-span bridge are researched, the main research contents are described as following:
     1. Comparied with traditional subsructure pseudo-dynamic testing method, the greatest advantage of hybrid testing is that several nonlinear experimental elements are integrated, which can carry out integral analysis not component analysis. Several distributed laboratories are connected and carried out the large-scall even full-scall test cooperatively based on internet, then the more complex tests can be carried out collaboratively.
     2. Aiming at MTS structural testing system used in civil engineering widely, based on the hardware of FlexTest GT control box and software of MTS 793, an internal command control method for hybrid testing is put forward. VB_COM program is used to control the input and output, and then the control of GT is implemented. Three programs that named Monitor Station program, SinCycle Test program and RampControl Test program are developed respectively. The RampControl Test program is embed in NetSLab-Tester, and the connection between MTS and NetSLab is established based on a master-slaver network. A verification test with a cantilever steel column is carried out, and the testing results show that the connection is simplified and the speed is improved. The internal command control provides a new method for hybrid testing, but needs high requirement of hardware and software, and the system PC can be protected effectively by master-slaver network.
     3. Aiming at a column experimental element in hybrid testing of multi-span bridge, four reinforced concrete short columns are designed, and FRP strengthening calculation based on M. J. N. Priestley shear bearing capacity model are carried out. The mechanical properties testing of different materials are tested. The finite element simulation of unstrengthening and strengthening short column based on ANSYS and OpenSees are researched and nonlinear analysis of monotonic loading, quasi-static loading and seismic loading are carried out for investigating the specimens’s mechanical properties beforehand. The numerical results show that the main effect of FRP strengthening is improving ductility not bearing capacity.
     4. The seismic quasi-static testing of unstrengthening and strengthening short columns are carried out respectively. The testing results show that the stiffness of FRP strengthening short columns has little improvement under small displacement. The primary function of FRP strengthening is increasing ductility and making the failure from shearing mode to bending mode.
     The numerical integral algorithms and loading control methods of hybrid testing are researched. An accumulated central difference method and Newmark combined algorithms, an external displacement loading control method under limit value protecting are researched, and a continuous ramp approach loading technique is implemented. Take a mulati-span bridge model structure for example, a CFRP strengthening short column is setted an experimental element, a verified hybrid testing is carried out at the stage of elastic behavior, plastic partial damage and post partial damage. The results show that a suitable diaplacemnet limit value and delay time are the effective means for satisfing the loading precision and decreasing the time. The specimen has stable 2nd order degradation stiffness at the range of some displacement, and the stiffness falls to be 1/3 of the initial value, which has consistence with the results from quasi-static testing. This work further provides a reference for settting of numerical elements in networked collaborative hybrid testing.
     5. In order to adapt the SDOF networked hybrid testing system, two simplified seismic testing scheme of multi-span bridge are designed. The networked environment test of NetSlab is carried out, the test results show that the proportion of communication time in the total testing time was very small, and the hybrid testing demand could be satisfied basically. Based on the simplified model of Santa Monica prototype bridge, associating with three universities, the hybrid testing of four spans three columns bridge structure in the action of small earthquake, medium earthquake and large earthquake is carried out based on domestic networked. Based on the simplified model of Russion River prototype bridge, associating with four universities, the hybrid testing of six spans five columns bridge structure in the action of small earthquake, medium earthquake, large earthquake is carried out based on international network. The networked environment and elapsed time are analyzed in detail, corresponding improvement measures are proposed. The analysis results show that the most testing time is spended on approach loading and waitting for stability of actuator, and the slow hybrid testing demand could be satisfied basically by the present network environment.
     6. The above two multi-span bridge hybrid testing are the first demonstrative multiple sites collaborative testing domestic, which can be extended as a standardization test platform. The testing results show that the networked collaborative hybrid testing method realizes the equipment sharing and provides a reference for seismic testing of complex bridge structure.
引文
1谢礼立. 2008年汶川特大地震的教训.中国工程科学, 2009, 11(6): 28~35
    2中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96).北京:中国建筑工业出版社, 1997
    3邱法维.结构抗震实验方法进展.土木工程学报, 2004, 37(10): 19~27
    4黄浩华.地震模拟振动台的设计与应用技术.北京:地震出版社, 2008
    5邱法维,钱嫁茹,陈志鹏.结构抗震实验方法.北京:科学出版社, 2000
    6 M. Hakuno, M. Shidowara, T. Hara. Dynamic Deestructive Test of a Cantilevers Beam, Controlled by an Analog Computer. Journal of Structural and Construction Engineering. 1969, 171(10): 768~779
    7 M. Nakashima, H. Takai. Use of Substructure Techniques in Pseudodynamic Testing. BRI Research Paper, No.111, March, 1985
    8邱法维,国明超,李暄.采用微机开发的拟动力实验.地震工程与工程振动, 1994, 14(3): 91~96
    9欧进萍,邱法维.耗能-隔震柔性底层钢管混凝土-钢筋混凝土组合框架的实验研究.地震工程与工程振动, 1995, 15(2): 29~43
    10邱法维,吕西林,卢文生.结构拟动力实验方法及其应用研究.土木工程防灾国家重点实验室课题总结报告. 1996
    11范力,赵斌,吕西林.拟动力试验中几个问题的讨论.结构工程师. 2006, 22(5): 50~53
    12 Y. Yamazaki, M. Nakashima, T. Kaminosono. Correlation between Shaking Table and Pseudodynamic Test on Steel Structural Models, Journal of Structural and Construction Engineering. 1986, 119(58): 1189~1190
    13 Y. Yamazaki, M. Nakashima, T. Kaminosono. Correlation between Shaking Table and Pseudodynamic Responses, Journal of Structural and Construction Engineering. 1986, 364(30): 23~32
    14 K. Ohtani, N. Ogawa, T. Katayama et al.. Project E-Defense 3-D Full-Scale Earthquake Testing Facility. Proceeding of the Joint NCREE/JRC Workshop International Collaboration on Earthquake Disaster Mitigation Research. Taipei, Taiwan, 2003: 223~234
    15 A. M. Reinhorn, M. V. Sivaselvan, Z. Liang, et al.. Large scale real time dynamichybrid testing technique-shake table substructure testing. Advances in Experimental Structural Engineering. 2005: 457~464
    16 X.Y. Shao, A. M. Reinhorn, S. Mettupalayam. Real Time Dynamic Hybrid Testing Using Force-based Substructuring. The Eighth US National Conference on Earthquake Engineering, San Francisco, California, April 18~22, 2006
    17 A. Igarashi, H. Iemura, H. Tanaka. Development of Substructure Hybrid Shake Table Test Method and Application to Verification Tests of Vibration Control Devices. China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai, China, 2002, 12.
    18 S. K. Lee, E. C. Parka, K. W. Mina, et al.. Real-time Substructuring Technique for the Shaking Table Test of Upper Substructures. Engineering Structures, 2006, doi:10.1016
    19 E. Kausel. New seismic testing method I: fundamental concepts. Journal of Engineering Mechanics, 1998,5: 565~570
    20 E. Kausel. New seismic testing method II: proof for MDOF system. Journal of Engineering Mechanics, 1998,5: 571~575
    21赵鹏飞,王亚勇,程绍革.一种新型的结构抗震试验方法.工程抗震与加固改造. 2005, 27(6): 41~44
    22杨现东.振动台子结构试验的数值仿真分析.哈尔滨工业大学工学硕士论文. 2007
    23 S. Z. Tian, X. Y. Wang, K. Song, et al.. Testing Method on Substructure Techniques for Shaking Table. ANCER Annual Meeting, Korea, 2005
    24 P. B. Shing, S. A. Mahin. Rate of Loading Effects on Pseudodynamic Test. Journal of Structural Engineering, Vol. 114, No. 1988, 2403~2420
    25 M. Nakashima, et al.. Development of Real-time Pseudodynamic Testing, Earthquake Engineering and Structural Dynamics. 1992, 21(1): 79~92
    26 B. Wu, G. S. Xu. Numerical Behavior of Operator-splitting Method for Real-time Substructure Testing. The First International Conference on Advances in Experimental Structural Engineering, Nagoya, Japan, July, 2005
    27 B. Wu, Q. Y. Wang, P. B. Shing, et al.. Equivalent Force Control Method for Generalized Real-time Substructure Testing with Implicit Integration. Earthquake Engineering and Structural Dynamics, 2007, 36: 1127~1149
    28吴斌,王向英,王倩颖.电液伺服加载系统的滑动模态控制及其在实时子结构试验中的应用.第四届中国结构控制年会, 2004年10月13-16日,中国大连
    29 B.Wu, H. E. Bao, J. P. Ou, et al.. Stability and Accuracy Analysis of Central Difference Method for Real-time Substructure Testing. Earthquake Engineering and Structural Dynamics, 2005, 34: 705~718
    30 B. Wu, H. E. Bao. Stability Analysis of Central Difference Method for Real-time Substructure Testing of SDOF and MDOF Structure. Proceedings of the Third International Conference on Earthquake Engineering, Nanjing, China, October 19~20, 2004
    31 B. Wu, G. S. Xu, Q. Y. Wang, et al.. Operator-splitting Method for Real-time Substructure Testing. Earthquake Engineering and Structural Dynamics. 2006, 35 (3): 293~314
    32 B. Wu, L. X. Deng, X. D. Yang. Stability of Central Difference Method for Dynamic Real-time Substructure Testing. Earthquake Engineering and Structural Dynamics, 2009, 38: 1649~1663.
    33王倩颖,吴斌,欧进萍.考虑作动器时滞及其补偿的实时子结构试验稳定性分析.工程力学. 2007, 24(2): 9~14
    34李进,王焕定,张永山,等.高阶单步实时动力子结构实验技术研究.地震工程与工程振动, 2005, 25 (1): 97~101
    35 T. Horiuchi, M. Inoue, T. Konno. Development of a Real-time Hybrid Experimental System Using A Shaking Table. Proc. 12th World Conf. Earthquake Engineering, Auckland, New Zealand, 2000, Paper No. 0843
    36 A. Igarashi, H. Iemura, H. Tanaka. Development of Substructure Hybrid Shake Table Test Method and Application to Verification Tests of Vibration Control Devices. China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai, China, Dec., 2002
    37 K. J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, 1995
    38 A. P. Darby, A. Blakeborough, M. S. Williams. Improved Control Algorithm for Real-time Substructure Testing. Earthquake Engineering and Structural Dynamics, 2001, 30: 431~448
    39 J. Pauschke, T. L. Anderson, S. N. Goldstein, et al.. Construction status of the George E. Brown, Jr. Network for Earthquake Engineering Simulation. Proceeding of the Seventh U.S. National Conference on Earthquake Engineering(7 NCEE). Boston, MA, July 21-25, 2002
    40 B. Spencer, C. Kesselman, I. Foster, et al.. Project Execute Plan (NSF 00-7 Program Solicitation for NEES System Integration For the period August 1, 2001-September 30, 2004). Report of NEESgrid. USA, 2004
    41 NEES. Introduction to NEESgrid. Technical report of NEESgrid-2004-13. National Center for Supercomputing Applications. USA, 2004
    42 P. Tom. NEESgrid System Overview, Version2.1, October 30, 2002. Technical Report of NEESgrid. National Center for Supercomputing Applications. USA, 2002
    43 J. Futrelle. Storage Technologies for the NEESgrid Curated Data Repositoty. Technical report of NEESgrid-2002-06. National Center for Supercomputing Applications. USA, 2002
    44 C. Kesselman, R. Butler, I. Foster, et al.. NEESgrid System Architecture Version1.1. Technical report of NEESgrid. National Center for Supercomputing Applications. USA, 2002
    45 S. A. Mahin. White Paper: Towards a Vision for the NEES Collaboratory. Reports of NEES Consortium Development Project. Consortium of Universities for Research in Earthquake Engineering. USA, 2002
    46 NEES. The MOST Experiment, July 30, 2003. Technical Report of NEESgrid, USA, 2003
    47 N. Nakata, G. Q. Yang, F. S. Billie. System Requirements for Mini-MOST Experiment. Technical Report of NEESgrid. National Center for Supercomputing Applications. USA, 2003
    48 B. F. Spencer, A. Elnashai, N. Nakata, et al.. Mini-MOST Experiment: Earthquake Engineering on the Grid. Technical report of NEESgrid-2004-41. National Center for Supercomputing Applications, USA, 2002
    49 M. Gilberto, S. Bozidar, H. Jason, et al.. Fast Hybrid Simulation with Geographically Distributed Substructures. Advances in Experimen-tal Structural Engineering. Nagoya, Japan, 2005: 449~456
    50 B. F. Spencer, A. S. Elnashai, O. S. Kwon, et al.. UI-SimCor: A Framework for Hybrid Simulation. Technical report of NEESit-2007-04. USA, 2007
    51 A. Schellenberg, S. A. Mahin, G. L. Fenves. A Software Framework for Hybrid Simulation of Large Structural Systems. Technical report of NEESit-2007-12. USA, 2007
    52 E. A. Johnson. NTCPclient Toolbox for MATLAB. Technical Report NEESgrid-2004-36. USA, 2004
    53 S. Andreas, S. A. Mahin, G. L. Fenves. Application of an experimental software framework for international hybrid simulation. The 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 12-13, 2006
    54 Y. S. Yang, K. C. Tsai, K. J. Wang et al.. ISEE: A Platform for Internet-based Simulation for Earthquake Engineering. The International Conference in Commemoration of 5th Anniversary of the 1999 Chi-Chi Earthquake. Taipei. Taiwan, 2004
    55 K. C. Tsai, S. H. Hsieh, Y. S. Yang, et al.. Network Platform for Structural Experiment and Analysis (I). Report NCREE-03-021. National Center for Research on Earthquake Engineering. Taiwan, 2003
    56 S. H. Hsieh, K. C. Tsai, Y. S. Yang. A Collaboration Platform for Internet-based Pseudo-Dynamic Experiments with Real-time Web-based Data Sharing. Symposium on Natural Disasters Reduction. HongKang, 2004
    57 S. J. Wang, K. J. Wang, Y. S. Yang, et al.. Networked Pseudo-dynamic Testing PartⅠ: Database Approach. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004, Paper No. 1910
    58 S. J. Wang, K. J. Wang, Y. S. Yang, et al.. Networked Pseudo-dynamic Testing PartⅡ: Application Protocol Approach. Proceedings of the 13th World Conference on Earthquake Engineering,Vancouver, Canada, 2004, Paper No. 1548
    59 C. W. Hsu, Y. S. Yang, K. J. Wang, et al.. Development of Software Tools for Internet-based Simulation for Earthquake Engineering. Proceedings of the Sixth National Conference on Structural Engineering. Kenting, Taiwan, 2002
    60 K. J. Wang, S. J. Wang, Y. S. Yang, et al.. Networked Collaborative Pseudo-Dynamic Testing Architecture. The Second International Conference on Structural Stability and Dynamics, Singapore, 2002: 325~330
    61 Y. Y. Chang, Y. S. Yang, S. J. Wang, et al.. Hybrid Testing of a Multi-span Bridge. Proceedings of the first international conference on Advances in Experimental Structural Engineering (AESE). Nagoya, Japan, July 19-21, 2005.
    62 Y. T. Weng, Y. S. Yang, M. L. Lin, et al.. Seismic Design and Response Predictions of a 4-pier Bridge for Networked Hybrid Tests. http://exp.ncree.org/dscft/articles.html
    63 Y. Takashi, N. Kazutoshi, et al. International Collaborative Pesudo-dynamic Testing Method for Continuous Elevated Bridges by Using Internet. Advances in Experimental Structural Engineering. Nagoya, Japan, July 19-21, 2005: 371~376
    64 C. B. Yun, I. W. Lee, D. U. Park, et al... Remote Parallel Pseudo-dynamic Testing on Base-Isolated Bridge Using Internet. Proceeding of the 13th KKNN Symposium on Civil Engineering. Taipei, Taiwan, 2000: 87~92
    65 J. K. Kim. KOCED Collaboratory Program. Proceedings of the 2004 ANCER Annual Meeting: Network of Young Earthquake Engineering Researchers and Professionals. Hawaii. USA, 2004
    66 E. Watanabe, C. B. Yun, K. Sugiura, D.U. Park and N. Nagata. OnLine Interactive Testing between KAIST and Kyoto University. Proceeding of the 14th KKNN Symposium on Civil Engineering. Kyoto, Japan, 2001: 369~374
    67 EUROSEISMICNET, European Network for Seismic Risk Mitigation, http://www.forum.e-core.org
    68茹继平,肖岩.地震工程模拟网系统NEES计划及在我国实现远程协同结构试验的设想.建筑结构学报. 2002, 23(6): 91~94
    69 Y. Xiao, Q. Hu, Y. R. Guo, et al. Development of a Network Platform for Remote Hybrid Dynamic Testing. The 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada, August 1-6, 2004, Paper No. 3048
    70易伟建,刘一江,肖岩等.远程协同结构试验技术的构想和实施.现代结构试验及远程协同与资源共享专家研讨会论文资料集.长沙, 2002: 6~26
    71 H. Tanaka. A Computer-Actuator On-Line System for Non-Linear Earthquake Response Analysis of Structure. J.Inst. of Industrial Science. University of Tokyo. Tokyo, Japan, 1975, 27(12)
    72 H. M. Hilber, T. R. Hugher, R. L. Taylor. Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics. Earthquake Engineering and Structural Dynamics, 1977, 5(2): 283~292
    73 C. R. Thewalt, S. A. Mahin. Hybrid Solution Techniques for Generalized Pseudodynamic Testing. Report No.UCB/EERC-87/09, University of California, Berkeley, California.
    74 FlexTestTM IIm Program for pseudo-dynamic Testing, MTS System Corporation, 1999
    75邱法维,潘鹏,杜文博.结构拟动力实验软件TUT使用手册.北京. 2004
    76 S. N. Dermitzalds, S. A. Mahin. Development of Substructuring Techniques forOn-Line Computer Controlled Seismic Performance Testing. Report No.UCB/EERC-85-04, University of California, Berkeley, California.
    77 M. Nakashima, T. Akazawa, O. Sakaguchi. Intergration Method Capable of Controlling Experimental Experinental Error Growth in Substructure Pseudodynamic Test. Journal of Structural Construction Engineering. AIJ, 1993(454): 61~71
    78 D. Combescure, P. Pegon.α-Operator Splitting Time Integration Method Capable of Controlling Experimental Error Growth in Substructure Pseudodynamic Testing Error Propagation Analysis. Soil Dynamics and Earthquake Engineering. 1997, (16): 427~443
    79朱本全.底部大开间框剪组合墙房屋抗震性能和子结构拟动力试验法的研究.哈尔滨建筑大学博士学位论文. 1996
    80刘季,李暄,张培卿.大刚度结构力控制拟动力试验方法.地震工程与工程振动. 1996, 16(4): 55~59
    81李暄,刘季,田石柱.结构拟动力试验力控制实现技术.地震工程与工程振动. 1997, 17(1): 49~53
    82 M. Nakashima, H. Kato. Experimental Error Growth Behavior and Error Growth Control in On-line Computer Test Control Method. BRI Research Paper, No. 123, March 1987
    83 M. Nakashima, N. Masaoka. Real-Time On-Line Test for MDOF Systems, Earthquake Engineering and Structural Dynamic. 1999(28): 393~420
    84 Y. Xiao, Q. Hu, Y. R. Guo, et al.. Network Platform for Remote Structural Testing and Shared Use of Laboratories. Progress in Natural Science, 2005, 15(12): 1135~1142
    85郭玉荣,张国伟,肖岩,等.单自由度结构远程分析及拟动力试验平台.湖南大学学报. 2006, 33(2): 18~21
    86肖岩,胡庆,郭玉荣,等.结构拟动力远程协同试验网络平台的开发研究.建筑结构学报. 2005, 26(3): 122~129
    87郭玉荣,肖岩,胡庆,等. NetSLab-网络化结构实验室平台.湖南大学学报. 2006, 33(3)增刊: 10~17
    88范云蕾,郭玉荣,肖岩.远程拟动力试验平台的开发研究.建筑科学与工程学报. 2005, 22(4): 22~26
    89范云蕾.郭玉荣.肖岩,等.单层结构远程协同拟动力试验平台开发.地震工程与工程振动. 2007, 27(3): 77~82
    90 Y. Xiao, Y. R. Guo. A Network Platform for Remote Pseudo Dynamic Testing. The Third International Conference on Earthquake Engineering. Nanjing, China, October 19-20, 2004: 375~382
    91刘一江,谭凯,童桦.网络结构试验异地协同控制平台的开发与研究.湖南大学学报. 2005, 32(6): 97~102
    92刘一江,李轶,等.结构试验远程协同控制系统的设计与实现.实验室研究与探索. 2004, 23(9): 45~49
    93刘一江,谭凯,童桦.基于结构异地协同控制试验网络平台的开发与研究.实验技术与管理. 2006, 23(1): 45~49
    94何庆锋,易伟建,肖岩.远程协同试验中的数据库方法应用研究.湖南大学学报(自然科学版). 2006, 33(3): 47~51.
    95 Y. R. Guo, Y. Xiao, Q. Hu. Remote Cooperative Analysis of Nonlinear Seismic Response of Structures. The First International Conference on Construction IT (ICCI2004). Beijing, China, August 15-17, 2004: 437~443
    96范云蕾,董旭华,郭玉荣,等.基于NetSLab远程协同平台的桥梁抗震研究.湖南大学学报. 2006, 33(3)增刊: 27~33
    97张国伟,郭玉荣,肖岩,等.远程控制的钢管混凝土柱拟动力试验.湖南大学学报. 2006, 33(3)增刊: 34~39
    98 Y. Xiao, Q. Hu, Y. R. Guo, et al.. NetSlab: A Network Platform for General Distributed Testing. The 9th World Multi-Conference on Systemics, Cybernetics and Information (WMSCI). Orlando, Florida, USA, July 10-13, 2005
    99 Y. Xiao, Q. Hu, Y. R. Guo, et al.. Networked Structural Laboratories-NetSLab. Proceedings of the first international conference on Advances in Experimental Structural Engineering (AESE). Nagoya, Japan, July 19-21, 2005: 425~432
    100 Y. R. Guo, Y. L. Fan, Y. Xia, et al.. NetSLab Based Remote Hybrid Dynamic Testing Method for Single Story Structures. Proceedings of the 9th International Symposium on Structural Engineering for Young Experts (Advances in Structural Engineering-Theory and Application). Fuzhou & Xiamen, China , August 18-21, 2006: 1613~1619
    101 Y. R. Guo, Y. Xiao, Y. L. Fan, et al.. Development and Application of A Collaborative Hybrid Dynamic Testing Software Based on NetSLab. Proceedings of the 8th U. S. National Conference on Earthquake Engineering. San Francisco, April 18-22, 2006, Paper No.1198
    102 Y. L. Fan, Y. R. Guo, W. H. He, et al.. Remotely Collaborative Pseudo-DynamicTesting of Multistory Structures. Proceedings of the 2nd International Conference on Advances in Experimental Structural Engineering (AESE), Shanghai, China, December 4-6, 2007
    103王大鹏.基于NetSLab平台的拟动力远程协同试验技术研究.哈尔滨工业大学硕士学位论文. 2005
    104王大鹏.远程协同结构拟动力试验方法与技术研究.哈尔滨工业大学博士学位论文. 2009
    105 D. P. Wang, S. Z. Tian. Remote Collaborative Pseudo-dynamic Testing System Based on Acquisition Board Control. Progress in Natural Science, 2007, 17(12): 1487~1493
    106 Advantech Corporation. Advantech ActiveDAQ user manual (Version 1.6). http://www.advantech.com
    107研华(中国培训中心).数据采集系统应用与编程.研华“e时代自动化专家之路”系列丛书. http://www.advantech.com
    108 MTS Systems Corporation. Model 793.00 System Software: user information and software reference. USA: Eden Prairie, MN 55344-2290, 2001.
    109 MTS Systems Corporation. Model 793.10 Multipurpose Testware: user information and software reference. USA: Eden Prairie, MN 55344-2290, 2001.
    110 MTS Systems Corporation. Model 793.00 System Software (Visual Basic programming Libraries). USA: Eden Prairie, MN 55344-2290, 2001: 1~25
    111蔡新江.基于NetSLab平台及MTS系统接口的远程协同试验技术研究.哈尔滨工业大学硕士学位论文. 2006
    112 M. J. N. Priestley, R. Verma, Y. Xiao. Seismic shear strength of reinforced concrete columns. Journal of Structural Engineering (ASCE). 1994, 120(8): 2310~2329
    113滕锦光,陈建飞, S.T.史密斯,林立. FRP加固混凝土结构.中国建筑工业出版社, 2004
    114于清. FRP的特点及其在土木工程中的应用.哈尔滨建筑大学学报. 2000, 33(6): 26~30
    115 H. Toutanji. Stress-strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets. ACI Materials Journal. 1999, 96(3): 397~404
    116 H. Toutanji, Y. Deng. Strength and Durability Performance of Concrete axially Loaded Members Confined with FRP Composite Sheets. Composite: Pare B 33,2002: 255~261
    117 J. B. Mander, M. J. N. Priestley, R. Park. Theoretical Stress-strain Model for Confined Concrete. Journal of Structural Engineering, ASCE, 1988, 114(8): 1804~1825
    118吴刚. FRP加固混凝土结构的试验研究和理论分析,东南大学博士论文. 2002: 76~77.
    119 E. Hongnestad. A Study of Combined Bending and Axial Load in Reinforced Concrete Members. Bulletin 399, University of Illinois Engineering Experiment Station, Urbara, IL, 1951
    120混凝土基本力学性能研究组.混凝土的几个基本力学指标.钢筋混凝土结构研究报告选集.北京:中国建筑工业出版社, 1977: 21~36
    121 K. Miyauchi, S. Nishibayashi, S. Inoue. Estimation of Strengthening Effects with Carbon Fiber Sheet for Concrete Column. Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan, October, 1997(1): 217~224.
    122 D. C. Kent, R. Park. Flexural Members with Confined Concrete. ASCE, 1971. 97(ST7): 1969~1990
    123 I. D. Karsan, J. O. Jirsa. Behavior of concrete under compressive loading. Journal of Structural Division ASCE, 1969, 95(ST12).
    124 M. Menegotto, P. E. Pinto. Method of Analysis of Cyclically Loaded RC Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Normal Force and Bending. Preliminary Report IABSE 1973(13): 15~22.
    125 K. J. Willam, E. P. Warnke. Constitutive Models for the Triaxial Behavior of Concrete. IABSE Proceeding,1975,19: 1~30
    126李志成,黄小平,钱七虎.防护结构拟动力试验方法及其数值积分方法研究.爆炸与冲击. 1994, 14(1): 26~34
    127 Y. J. Park,H. S. Ang. Mechanistic Seismic Damage Model for Reinforced Concrete. ASCE Journal of Structural Engineering. 1985, 111(4):722~739
    128欧进萍,何政,吴斌等.钢筋混凝土结构的地震损伤控制设计.建筑结构学报, 2000, 21(1): 63~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700