用户名: 密码: 验证码:
大跨桥结构监测系统的模态识别和误差分析及损伤识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨桥梁的结构健康监测用其有限测点上脉动反应的高信噪比数据识别损伤。本文系统地研究了大跨桥结构损伤识别的多个环节,主要创新点有:
     (1)用时域NExT-ERA法识别结构模态参数,完善了其理论,并通过a)定义并使用一个新的相关估计的公式,b)利用稳定图中不同系统阶次识别的模态参数的算术平均,提高模态识别精度并形成了改进的NExT-ERA法。推导了从白噪声激励下含测量白噪声的结构反应时程进行模态识别时的有限采样误差。
     (2)定义并用等价奇异值和等价向量推导了稀疏模态、小阻尼比时大维数Hankel阵的奇异值和奇异向量与模态参数的对应关系,简化了已有误差公式,推导改进NExT-ERA中模态参数有限采样误差受测量时长、采样频率、信噪比和奇异值等影响的规律。据此提出稳定图法和奇值法选择识别的高精度模态。
     (3)提出一个用完备的振型构造的单元模态应变能指标,不但能定位梁式结构的多处损伤,还能指示抗弯刚度分量折减的损伤程度。针对西堠门悬索桥可能发生的损伤,比较了基于完备振型的该指标、坐标模态保证准则和模态柔度差以及基于响应的小波包组分能量变化率识别损伤的能力。
     (4)比较了三种模态扩展方法,以将有限测点上的不完备振型扩展到全部自由度,并用扩展振型构造不完备模态应变能指标;直接用不完备振型构造不完备模态柔度差指标,研究了两者的损伤识别能力;然后研究了用改进的遗传算法优化传感器布点,使前述不完备损伤指标对结构可能的损伤最灵敏,又提出使扩展模态误差最小的传感器布点方法,验证了最优布点下不完备损伤指标的识别能力。上述工作是对损伤识别各个环节中方法的系统研究。
     (5)对西堠门桥的全桥纯杆单元模型和用正交异性板配合子结构法建立的简化板壳单元表示加劲梁的全桥模型,分别模拟其有限测点上含噪声的脉动反应时程。用上述方法综合研究了两个不完备指标对杆系模型不同位置和程度的刚度分量折减的损伤识别和误差,以及对简化板壳单元模型加劲梁上不同裂缝和锈蚀损伤的识别和误差。同时验证了选择高精度模态方法的有效性和重要性。
For structural health monitoring of long-span bridges, ambient responses with high Signal-Noise Ratio (SNR) measured on limited Degrees-Of-Freedom (DOFs) are used to detect damage. Several aspects of structural damage detection are deeply and systematically studied in this dissertation, and main innovation points are listed as follows:
     (1) The Natural Excitation Technique and Eigensystem Realization Algorithm (NExT-ERA) in the time domain are used and improved to identify structural modal parameters. NExT-ERA with two improvements including: a) defining and using a new-developed correlation estimation formula, b) arithmetically averaging modal parameters identified by different system orders related to the stabilization diagram, is proposed to enhance accuracy of modal parameters and named improved NExT-ERA. Finite sampling errors of modal parameters identified from structural ambient responses to Gaussian White Noises (GWN) excitations and contaminated by measuring GWN, are derived.
     (2) In improved NExT-ERA, a relationship between singular values and vectors of large-size Hankel matrixes and modal parameters is established by using author-defined equivalent singular values and vectors, on the premise that the modes are sparse and the damping ratios are low. Some existing error formulars are simplified after aplplying this relationship, and then the rules of finite sampling errors influenced by limited measuring time length, sampling rate, SNR, and singular values et al, are derived and analyzed. A stabilization diagram method and an equivalent singular value method are proposed for selecting high accuracy modes from the identified ones.
     (3) A new element modal strain energy index is defined basing on the complete modes at all DOFs and used to indicate both locations and extents of multiple damage from reductions in related bending stiffnesses for beam-system structures. For assumed cases of damage in the stiffening girder of the Xihoumen Suspension Bridge, damage detection capacities of this index, the Coordinate Modal Assurance Criterion (COMAC) and modal flexibility change constructed from complete modes, and Sum of Change Ratio (SCR) of wavelet packet component energy of responses, are studied and compared.
     (4) Three modal expansion methods are compared and used to expand incomplete modes at limited DOFs to complete DOFs, and then the expanded modes are used to construct‘incomplete’modal strain energy damage indexes. The incomplete modal flexibility change index is directly constructed from incomplete modes. Damage detection with the two incomplete indexes is studied in Xihoumen suspension Bridge. Optimizing Sensor Locations (OSL) based on an improved Genetic Algorithm to make the two incomplete indexes most sensitive to possible damage is discussed, in addition, a Minimum Modal Variance (MMV) method for OSL is proposed. Damage detection based on the two incomplete indexes measured at optimized sensor locations is verified. All the work above is a systematical study of methods in aspects of damage detection.
     (5) Noise-contaminated ambient responses at limited DOFs of a beam-system finite element model and a plate-system finite element model with equivalent orthotropic plates and substructure method, are simulated. Capacities and errors of the above methods and the two incomplete indexes for detection of stiffness reductions in beam-system model and simulated cracking and corrosions in plate-system model are studied and discussed, respectively. Methods of selecting high accuracy modes are also verified to be effective and important.
引文
[1]秦权.桥梁结构的健康监测.中国公路学报, 2000, 13(2): 37-42.
    [2]欧进萍.重大工程结构的智能监测与健康诊断.工程力学, 2002, (S): 44-53.
    [3]交通运输部. 2007年公路水路交通行业发展统计公报[R].北京:中华人民共和国交通运输部, 2008.4.
    [4]秦权,孙晓燕,杨小刚.大跨缆索支承桥的损伤识别和剩余承载力评定[R].南京:全国健康监测会议, 2005.9.
    [5] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future. Journal of Engineering Mechanics, ASCE, 1997, 123(9): 897-971.
    [6] Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges. Engineering Structures, 2005, 27: 1715-1725.
    [7]张启伟.大型桥梁健康监测概念与监测系统设计.同济大学学报, 2001, 29(1):66-69.
    [8] Doebling S W, Farrar C R, Prime M B, et al. Damage identification and health monitoring of structure and mechanical systems from changes in their vibration characteristics: a literature review [R]. USA: Los Alamos National Laboratory Report, LA-13070-MS, 1996.
    [9] Sohn H, Farrar C R, Hemez F M, et al. A review of structural health monitoring literature: 1996-2001. USA: Los Alamos National Laboratory Report, LA-13070-MS, 2003.
    [10] Aktan A E, Catbas F N, Grimmelsman K A, et al. Issues in infrastructure health monitoring for management. Journal of Engineering Mechanics, 2000, 126(7): 711-724.
    [11] Sohn H, Dzwonczyk M, Straser E G, et al. An experimental study of temperature effect on modal parameters of the Alamos Canyon Bridge. Earthquake Engineering and Structural Dynamics, 1999, 28: 879–897.
    [12] Rytter A. Vibration Based Inspection of Civil Engineering Structures [D]. Denmark: Department of Building Technology and Structure Engineering, Aalborg University, 1993.
    [13] Adams R D, Walton D, Flitcroft J E , et al. Vibration testing as a nondestructive test tool for composite materials. In: Composite Reliability, ASTM STP 580. Philadephia: American Society for Testing Materials, 1975: 159-175.
    [14] Friswell M, Mottershead J E. Finite element model updating in structural dynamics. Dordrecht: Kluwer Acadamic Publishers, 1995.
    [15] Adams R D, Cawley P, Pye C J, et al. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 1978, 20(2):93-100.
    [16] Cawley P, Adams R D. The location of defects in structures from measurements of naturalfrequencies. Journal of Strain Analysis, 1979, 14(2):49-57.
    [17] Sutbbs N, Borome T H, Osegueda R. Nondestructive construction error detection in large space structures, AIAA Journal, 1990, 28(1): 146-152.
    [18] Salawu O S. Detection of structural damage through changes in frequencies: a review. Engineering Structures, 1997, 19(9):718-723.
    [19] Ruotolo R, Surace C. Damage assessment of multiple cracked beams: results and experimental validation. Journal of Sound and Vibration, 1997, 206(4): 567–588.
    [20] Williams E J, Messina A. Applications of the multiple damage location assurance criterion. Ireland: Proceedings of the International Conference on Damage Assessment of Structures, 1999, 256–264.
    [21] Fox C H J. The location of defects in stuctures: a comparison of the use of natural frequency and mode shape data. USA: Proc. of 10th International Modal Analysis Conference, 1992, 522-528.
    [22] Farrar C R, Baker W E, Bell T M, et al. Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande [R]. USA: Los Alamos National Laboratory report, LA-12767-MS, 1994.
    [23] Aktan A E, Lee K L, Chuntavan C, et al. Modal testing for structural identification and condition assessment of constructed facilities. Proc. of 12th IMAC, 1994, 462-468.
    [24] Lam H F, Ko J M, Wong C W. Localization of damage structural conncections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration, 1998, 210(1):91-115.
    [25] Allemang R J, Brown D L. A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference. Orlando, 1982:110-116.
    [26] West W M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. In: Proceedings of Air Force Conference on Aircraft Structural Integrity. Los Angeles, 1984:1-6.
    [27] Lieven N A J, Ewins D J. Spatial correlation of mode shapes, the coordinate modal assurance criterion (COMAC). In: Proceedings of the 6th International Modal Analysis Conference. Florida, 1988, (1):690-695.
    [28] Li D B, Zhuge H C, Wang B. The principle and techniques of experimental strain modal analysis. L as Vegas: Proc. of 7th IMAC, 1989: 1285-1289.
    [29]李德葆,陆秋海,秦权.承弯结构的曲率模态分析.清华大学学报(自然科学版), 2002, 42(2):224-227.
    [30]秦权,张卫国.悬索桥的损伤识别.清华大学学报(自然科学版), 1998, 28(12): 44-47.
    [31] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2): 321-332.
    [32] Chance J, Tomlinson G R, Worden K. A simplified approach to the numerical and experiment modeling of the dynamics of a cracked beam. In: Proc. of the 12th IMAC, 1994, 778-785.
    [33] Wu D, Law S S. Damage localization in plate structures from flexibility and its derivatives. Smart Structures and Materials: Proc. of SPIE, 2004, 5391: 449-460.
    [34] Doebling S W, Farrar C R, Goodman R S. Effects of measurement statistics on the detection of damage in the Alamosa Canyon Bridge. In: Proceedings of the 15th International Modal Analysis Conference. Orlando, 1997:918-929.
    [35] Pandey A K, Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 1994, 169 (1): 3-17.
    [36] Pandey A K, Biswas M. Experimental verification of flexibility difference method for locating damage in structures. Journal of Sound and Vibration, 1995, 184(2):311-328.
    [37] Raghavendrachar M, Aktan A E. Flexibility of multi-reference impact testing for bridge diagnostics. Journal of Structural Engineering, 1992, 18(8): 2186-2203.
    [38] Toksoy T, Aktan A E. Bridge-condition assessment by modal flexibility. Experimental Mechanics, 1994; 34(3):271-278.
    [39] Zhang Z and Aktan A E. Application of modal flexibility and its derivatives in structural identification. Research in Nondestructive Evaluation, 1998, 10: 43-61.
    [40] Catbas F N, Brown D L, Aktan A E. Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. Journal of Structure Engineering, 2006, 132(11): 1699-1712.
    [41] Zhao J, Dewolf J T. Sensitivity study for vibration parameters used in damage detection, Journal of Structural Engineering, 1999, 125(4): 410-416.
    [42] Lu Q, Ren G X, Zhao Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures. Journal of Sound and Vibration, 2002, 253(5): 1101-1114.
    [43] Wu D, Law S S. Damage localization in plate structures from uniform load surface curvature. Journal of Sound and Vibration, 2004, 276: 227-244.
    [44]董聪,丁辉,高嵩.结构损伤识别和定位的基本原理与方法.中国铁道科学, 1999, 20(3):89-94.
    [45] Kim J T, Stubbs N. Model-uncertainty impact and damage-detection accuracy in plate girder. Journal of Structural Engineering, 1995, 121(10): 1409-1417.
    [46] Stubbs N, Kim J T. Damage localization in structures without baseline modal parameters. American Institute of Aeronautics and Astronautics Journal, 1996, 34(8): 1644-1649.
    [47] Stubbs N, Park S, Sikorsky C, et al. A global non-destructive damage assessment methodology for civil engineering structures. International Journal of Systems Science,2000, 31(11):1361-1373.
    [48] Kim J T, Stubbs N. Improved damage identification method based on modal information. Jounal of Sound and Vibration, 2002, 252(2):223-238.
    [49] Choi S, Stubbs N. Damage identification in structures using the time-domain response. Journal of Sound and Vibration, 2004, 275(3-5):577-590.
    [50] Zhang L, Quiong W, Link M. A structural damage identification approach based on element modal strain energy. Belgium: Proc. of ISMA23, Noise and Vibration Engineering, Leuven, 1998.
    [51] Barroso L R, Rodriguez R. Damage detection utilizing the damage index method to a Benchmark structure. Journal of Engineering Mechanics, ASCE, 2004, 130(2):142-151.
    [52]徐龙河,钱稼茹,纪晓东. Benchmark模型结构两阶段损伤诊断.清华大学学报:自然科学版, 2005, 45(12):1592-1595.
    [53] Shi Z Y, Law S S, Zhang L M. Structural damage localization from modal strain energy change. Journal of Sound and Vibration, 1998, 218(5):825-844.
    [54] Law S S, Shi Z Y, Zhang L M. Structural damage detection from incomplete and noisy modal test data. Journal of Engineering Mechanics, ASCE, 1998, 124(11):1280-1288.
    [55] Shi Z Y, Law S S, Zhang L M. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics, ASCE, 2000, 126(12):1216-1223.
    [56] Shi Z Y, Law S S, Zhang L M. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, ASCE, 2002, 128(5):521-529.
    [57] Li H J, Yang H Zh, Hu S J. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, 2006, 132(9): 941-951.
    [58] Hu S J, Wang S Q, Li H J. Cross-modal strain energy method for estimating damage serverity. Journal of Engineering Mechanics, 2006, 132(4): 429-437.
    [59] Bernal D. Load vectors for damage localization. Journal of Engineering Mechanics, ASCE, 2002, 128(1): 7-14.
    [60] Bernal D, Gunes B. Flexibility based approach for damage characterization: benchmark application. Journal of Engineering Mechanics, ASCE, 2004, 130(1): 61-70.
    [61] Bernal D. Flexibility-based damage localization from stochastic realization results. Journal of Engineering Mechanics, 2006, 132(6): 651-658.
    [62] Gao Y, Spencer B F. Damage localization under ambient vibration using changes in flexibility. Earthquake Engineering and Engineering Vibration, 2002, 1(1): 136-145.
    [63] Gao Y, Spencer B F. Online damage diagnosis for civil infrastructure employing a flexibility-based approach. Smart Materials and Structures, 2006, 15: 9-19.
    [64] Gao Y, Spencer B F, Bernal D. Experimental verification of the flexibility-based damage locating vector method. Journal of Engineering Mechanics, 2007, 133(10): 1043-1049.
    [65] Duan Z D, Yan G R, Ou J P, et al. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measuired DOFs. Structural Control and Health Monitoring, 2007, 14(2):186-196.
    [66]纪晓东.大型复杂钢结构损伤诊断研究[博士学位论文].北京:清华大学, 2007.
    [67] Park Y S, Park H S, Lee S S. Weighted-error-matrix application to detect stiffness damage by dynamic-characteristic measurement. The International Journal of Analytical and Experimental Modal Analysis, 1988, 3(3): 101-107.
    [68] Gysin H P. Critical application of the error matrix method for localization of finite element modeling inaccuracies. Proc. of 4th IMAC, 1986, 2: 1339-1351.
    [69] Ricles J M, Kosmatka J B. Damage detection in elastic structures using vibratory residual forces and weighted sensitivity. AIAA, 1992, 30(9): 2310-2316.
    [70] Baruh H, Ratan S. Damage detection in the flexible structures. Journal of Sound and Vibration, 1993, 166(1): 21-30.
    [71] Cao T T, Zimmerman D C. Application of load-dependent Ritz vectors in structural damage detection. Florida: In Proc. of the 15th IMAC, 1997, 1319–1324.
    [72] Sohn H, Law K H. A Bayesian probabilistic approach to damage detection for civil structures [D]. USA: Department of Civil and Environmental Engineering, Stanford University, 1999.
    [73] Baruch H, Bar Itzhack I Y. Optimum weighted orthogonalization of measured modes.American Institute of Aeronautics and Astronautics Journal, 1978, 16(4): 346-351.
    [74] Berman A, Nagy E J. Improvement of large analytical model using test data. American Institute of Aeronautics and Astronautics Journal, 1983, 21(8): 1168-1173.
    [75] Zimmerman D C, Kaouk M. Structural damage detection using a mimimum rank update theory. Journal of Vibration and Acoustics, 1994, 116(2): 222-231.
    [76] Kaouk M, Zimmerman D C, Simmermacher T W. Assessment of damage affecting all structural properties using experimental modal parameters. Journal of Vibration and Acoustics, 2000, 122(4): 456-463.
    [77] Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. American Institute of Aeronautics and Astronautics Journal, 1968, 6(12):2426-2429. [102] Nelson R B. Simplified calculation of eigenvector derivatives. American Institute of Aeronautics and Astronautics Journal, 1976, 14(9):1201-1205.
    [78] Hemez F M. Theoretical and experimental correlation between finite element model and modal tests in the context of large flexible space structures [D]. USA: Aerospace Engineering Sciences, University of Colorado, 1993.
    [79]崔飞.桥梁参数识别与承载能力评估[博士学位论文].上海:同济大学, 2000.
    [80] Zimmerman D C, Kaouk M. Eigenstructure assignment approach for structural damage detection. American Institute of Aeronautics and Astronautics Journal, 1992, 30(7):1848-1855.
    [81] Kim H M, Bartkowicz T J. A two-step structual damage detection approach with limited instrumentation. Journal of Vibration and Acoustic, 1997, 119(2):258-264.
    [82] Law S S, Shi Z Y, Zhang L M. Structural damage detection from incomplete and noisy modal test data. Journal of Engineering Mechanics, 1998, 124(11): 1280-1288.
    [83]张旭东,陆明泉.现代信号处理导论.北京:清华大学电子工程系, 2004.
    [84] Staszewski W J. Structural and mechanical damage detection using wavelets. The Shock and Vibration Digest, 1998, 30(6): 557–472.
    [85] Taha M M R, Noureldin A, Lucero J L et al. Wavelet transform for structural health monitoring: A compendium of uses and features. Structural Health Monitoring, 2006, 5(3): 267-295.
    [86] Ovanesova A V, Suarez L E. Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 2004, 26(1):39-49.
    [87] Hera A, Hou Z. Application of Wavelet approach for ASCE structural health monitoring benchmark studies. ASCE Journal of Engineering Mechanics, 2004, 130(1): 96–104.
    [88] Rucka M, Wilde K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. Journal of Sound and Vibration, 2006, 297: 536-550.
    [89]丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究.工程力学, 2006, 23(8):42-48.
    [90]韩建刚,任伟新等.基于小波变换的梁体识别.振动、测试与诊断, 2006, 26(1): 5-11.
    [91] Law S S, Li X Y et al. Structural damage detection from Wavelet Packet sensitivity. Engineering Structures, 2005, 27: 1339-1348.
    [92] Sun Z, Chang C C. Wavelet Packet based structural health monitoring and damage assessment [D]. China: Hongkong University of Science and Technology, 2003.
    [93] Yam L H, Yan Y J, Jiang J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Composite Structures, 2003, 60(4):403-412.
    [94] Taha M M, Lucero J. Damage identification for structural health monitoring using Fuzzy Pattern Recognition. Engineering Structures, 2005, 27: 1774-1783.
    [95] Lardies J, Gouttebroze S. Identification of modal parameters using the wavelet transform. International Journal of Mechanical Sciences, 2002, 44: 2263-2283.
    [96] Kijewski T, Kareem A. Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering, 2003, 18: 339-355.
    [97] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. of the Royal Society of London, 1998, A454: 903-995.
    [98] Elkordy M F, Chang K C, Lee G C. Application of neural networks in vibrational signature analysis. Journal of Engineering Mechanics, ASCE, 1994, 120(2): 251-264.
    [99]陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法.工程力学, 1999, 16(1): 36-42.
    [100] Ni Y Q, Hua X G, Fan K Q, et al. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Engineering Structures, 2005, 27(12): 1762-1773.
    [101] Kirkegaad P H, Andersen P. Use of statistical information for damage assessment of civil engineering structures. USA: Proceedings of the 16th International Modal Analysis Conference, 1998.
    [102]建设部(GB 50011─2001).建筑抗震设计规范.北京:中国建筑工业出版社, 2001.
    [103]交通部(JTJ 004─89).公路工程抗震设计规范.北京:人民交通出版社, 1989.
    [104]李惠彬,秦权.大跨桥模态参数识别及损伤识别的研究[R].北京:清华大学博士后研究报告, 2001.
    [105] Bendat J S, Piersol A G. Engineering Applications of Correlation and Spectral Analysis. USA: John Wiley & Sons, New York, Second edition, 1993.
    [106] Brinker R, Zhang L M, Andersen P. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, 2001, 10: 441-445.
    [107] Hermans L, Guillaume P, Vander Auweraer H. A frequency-domain maximum likelihood approach for the extraction of modal parameters from output-only data. In Proceedings of ISMA 23, Noise and Vibration Engineering, Belgium, 1998.
    [108] Yang J N, Lei Y, Pan S, et al. System identification of linear structures based on Hilbert Huang spectral analysis. Earthquake Engineering and Structural Dynamics, 2003, 32: 1443-1467 and 1533-1554.
    [109]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社, 2001.
    [110] Anderson P. Identification of civil engineering structures using vector ARMA models [D]. Denmark: Aalborg University, 1997.
    [111] Ibrahim S R, Pappa R S. Large modal survey testing using the Ibrahim time domain identification technique. Journal of Spacecraft and Rockets, 1982, 19(5): 459-465.
    [112] Juang J N, Pappa R S. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 1985,8(5): 620-627.
    [113] Juang J N, Cooper J E. An Eigensystem Realization Algorithm using Data Correlation (ERA/DC) for modal parameter identification. Control Theory and Advanced Technology, 1998, 4(1): 5-14.
    [114] James G H, Carne T G, Lauffer J P. The Natural Excitation Technique (NExT) for modal parameter extraction from operating structures. Modal Analysis: the International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260-277.
    [115] Asmussen J C. Modal Analysis Based on the Random Decrement Technique - Application to Civil Engineering Structures [D]. Denmark: Department of Building Technology and Structural Engineering, Aalborg University, 1997.
    [116]刘福强,张令弥.一种改进的特征系统实现算法及在智能结构中的应用.振动工程学报, 1999, 12(3): 316-322.
    [117]秦仙蓉,王彤,张令弥.模态参数识别的特征系统实现算法:研究与比较.航空学报, 2001, 22(4): 340-342.
    [118] Qin Q, Li H B, Qian L Z. Modal identification of Tsingma Bridge by using improved eigensystem realization algorithm. Journal of Sound and Vibration, 2001, 247(2): 325-341.
    [119] Akaike H. Stochastic theory of minimal realization. IEEE Transactions on Automatic Control, 1974, 19: 667-674.
    [120] Benveniste A, Fuchs J J. Single sample modal identification of a nonstationary stochastic process. IEEE Transactions on Automatic Control, 1985, 30(1): 66-74.
    [121] Van Overschee P, De Moor B. Subspace algorithm for the stochastic identification problem. Proc. of 30th IEEE Conference on Decision and Control, 1991, 1321-1326.
    [122] Peeters B. System identification and damage detection in civil engineering [D]. Belgium: Katholieke University Leuven, 2000.
    [123] Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: A review. Journal of Dynamic Systems, Measurement, and Control, 2001, 123: 659-667.
    [124] Yi J H, Yun C B. Comparative study on modal identification methods using output-only information. Structural Engineering and Mechanics, 2004, 17(3-4): 445-466.
    [125] He X, Moaveni B, Conte J P, et al. Comparative comparison of system identification techniques applied to New Carquinez Bridge [R]. USA: University of California at San Diego, 2006.
    [126] Siringoringo D M, Fujino Y. System identification of suspension bridge from ambient vibration response. Engineering Structures, 2007, doi: 10.1016/j.engstruct.2007.03.004.
    [127] Magalhaes F, Caetano E, Cunha A. Challenges in the application of stochastic modal identification methods to a cable-stayed bridge. Journal of Bridge Engineering, 2007, 12(6): 746-754.
    [128] Reynders E, Pintelon R, De Roeck G. Uncertainty bounds on modal parameters obtained from Stochastic Subspace Identification. Mechanical Systems and Signal Processing, 2008, 22(4): 948-969.
    [129] Peeters B, De Roeck G, Anderson P. Stochastic system identification: uncertainty of the estimated modal parameters. Proc. of 17th IMAC, 1999, 231-237.
    [130]李国强,陆烨,陈素文.量测噪声对输入未知下结构频率和振型识别的影响.振动、测试和诊断, 2000, 20(1): 34-40.
    [131] Grimmelsman K A, Pan Q, Aktan A E. Analysis of data quality for ambient vibration testing of the Henry Hudson Bridge. Journal of Intelligent Material Systems and Structures, 2007, 18: 765-775.
    [132] Pintelon R, Guillaume P, Schoukens J. Uncertainty calculation in operational modal analysis. Mechanical Systems and Signal Processing, 2007, 21: 2359-2373.
    [133]谢峻.基于振动的桥梁结构损伤识别方法研究[博士学位论文].广州:华南理工大学, 2003.
    [134]刘济科,杨秋伟,邹铁方.结构损伤识别中的模型缩聚问题.中山大学学报(自然科学版), 2006, 45(1): 1-8.
    [135] Guyan R J. Reduction of stiffness and Mass Matrices. AIAA journal, 1965, 3(2): 380-386.
    [136] O' Callahan J. A procedure for an improved reduced system (IRS) model. In: Proceedings of the 7th international modal analysis conference Union college, Schenectady, NY. 1989:17-21.
    [137] Friswell M, Garvey S D, Penny J. Model reduction using an iterated IRS Technique. UK: the 5th International Conference on Recent Advances in Structural Dynamics, 1994, 879-889.
    [138] O’Callahan J C, Avitabile P, Riemer R. System Equivalent Reduction Expansion Process (SEREP). USA: the 7th IMAC, 1989, 29-37.
    [139] Alvin K F. Finite element model update via Bayesian estimation and minimization of dynamic residuals. AIAA Journal, 1997, 35(5): 879-886.
    [140] Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21(8): 1169-1173.
    [141] Kammer D C. Sensor placement for on orbit modal identification and correlation of large space structures. AIAA Journal, 1991, 26(1): 104-121.
    [142] Chung Y T, Moore D. On-orbit sensor placement and system identification of space station with limited instrumentations. Proc. of 11th IMAC, 1993, 41-46.
    [143] Papadopoulos M, Garcia E. Sensor Placement Methodologies for Dynamic Testing. AIAA Journal, 1998, 36(2): 256-263.
    [144] Hemez F M, Farhart C. An energy-based optimum sensor placement criteria and itsapplication to structural damage detection. Proc. of 12th IMAC, 1994, 1569-1575.
    [145]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点.工程力学, 2000, 17(1): 25~34.
    [146] Kammer D C, Tinker M L. Optimal placement of triaxial accelerometers for moal vibration tests. Mechanical Systems and Signal Processing, 2004, 18: 29-41.
    [147] Udwadia F. Methodology for optimum sensor locations for parameter identification in dynamic system. Journal of Engineering Mechanics, 1994, 120(2): 368-390.
    [148] Kim H B and Park Y S. Sensor placement guide for structural joint stiffness model improvement. Mechanical Systems and Signal Processing, 1997, 11(5): 651-672.
    [149]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用.同济大学学报, 1999, 27(2): 165~169.
    [150] Zhang D W, Li S. Succession-level approximate reduction (SAR) technique for structural dynamic model. In: Analysis conference, Union College Press, Schenectady, NY, 1995: 435-441.
    [151] Pape D A. Selection of measurement locations for experimental modal analysis. Proc. of 12th IMAC, 1994, 205-211.
    [152] Larson C B. Vibration testing by design: excitation and sensor placement using genetic algorithms [D]. USA: University of Florida, 1996.
    [153] Li Y Y, Yam L H. Sensitivity analysis of sensor locations for vibration control and damage detection of thin-plate systems. Journal of Sound and Vibration, 2001, 240(4): 623-636.
    [154] Papadimitriou C. Optimal sensor placement methodology for parametric identification of structural systems. Journal of Sound and Vibration, 2004, 278: 923-947.
    [155] Penny J E, Friswell M I, Garvey S D. Automatic choice of measurement location for dynamic testing. AIAA Journal, 1994, 32(2): 407-414.
    [156] Heo G, Wang M L, Satpathi D. Optimal transducer placement for health monitoring of long span bridge, Soil Dynamic and Earthquake Engineering.1997, 16: 495-502.
    [157] Worden K, Burrows A P. Optimal sensor placement for fault detection. Engineering Structures, 2001, 23: 885-901.
    [158] Li D S, Li H N. The state of art of sensor placement methods in structural health monitoring. Smart Structures and Material: Proc. of SPIE, 2006, 6174(61743T): 1-11.
    [159] Meo M, Zumpano G. Optimal sensor placement on a large scale civil structure. Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, Proc. of SPIE, 5394: 108-117.
    [160]刘斌,姚永丁,叶贵如.斜拉桥传感器优化布点的研究.工程力学, 2005, 22(5): 171-177.
    [161] Cobb R G, Liebst B S. Sensor location prioritization and structural damage localization using minimal sensor information. AIAA Journal, 1996, 35(2): 369-374.
    [162] Shi Z Y, Law S S, Zhang L M. Optimum sensor placement for structural damage detection. Journal of Engineering Mechanics, 2000, 126(11): 1173-1179.
    [163]杨和振.环境激励下海洋平台结构模态参数识别与损伤诊断研究[博士学位论文].青岛:中国海洋大学, 2004.
    [164] Guo H Y, Zhang L, Zhang L L, et al. Optimal placement of sensor for structural health monitoring using improved genetic algorithms. Smart Materials and Structures, 2004, 13: 528-534.
    [165] Kim H M, Bartkowicz T J. Damage detection and health monitoring of large space structures. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1993, 3527-3533.
    [166] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing science. 1983, 220:671-680.
    [167] Van Laarhoven P J, Aarts E H. Simulated Annealing: Theory and Application. Dordrecht: D Reidel Publishing Company, 1987.
    [168] Vondrak I. Genetic Algorithms and Neural Network Adaptation. Neural Network World, 1994.
    [169] Glover F. Laguna, M. Tabu search, Kluwer Academic Publishers, 1997.
    [170] Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies. Proc. of the First European Conf. On Artificial Life. Paris, France: Elsevier Publishing, 1991:134-142.
    [171] Holland J H. Adaptation in natural and artificial systems. Cambridge, MA: MIT Press, 1975.
    [172] De Jong K A. An analysis of the behavior of a class of genetic adaptive systems [D]. USA: University of Michigan, 1975.
    [173]董聪.广义遗传算法.大自然探索, 1998, 17(63): 33-37.
    [174]雷英杰,张善文,李续武等. Matlab遗传算法工具箱及应用.西安:西安电子科技大学出版社, 2005.
    [175]黄朝俊.特大桥梁结构健康监测系统的传感器布设优化[硕士学位论文].北京:清华大学土木系, 2007.
    [176] Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge: I. Experimental study. Smart Material and Structure, 1998, 7: 704-719.
    [177] Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Material and Structure, 1998, 7: 720-731.
    [178] Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural healthmonitoring benchmark problem using simulated data. Journal of Engineering Mechanics, 2004, 130(1): 3-15.
    [179] Caicedo J M, Dyke S J, Johnson E A. Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data. Journal of Engineering Mechanics, 2003, 130(1): 49-60.
    [180] Ettouney M, Daddazio R, Hapij A, et al. Health Monitoring of Complex Structures. Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, Proceedings of SPIE, 1999, 3(326): 368–379.
    [181] Alvandi A, Cremona C. Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration, 2006, 292(1): 179-202.
    [182]孙宗光,高赞明,倪一清等.斜拉桥桥面结构损伤位置识别的指标比较.工程力学, 2003, 20(1): 27-32.
    [183]丁幼亮,李爱群,缪长青.大跨斜拉桥扁平钢箱梁损伤定位指标的噪声鲁棒性比较研究.公路交通科技, 2007, 24(4): 79-84.
    [184] Sun X D, Ou J P. Assessment of vibration-based damage indexes in structural health monitoring. Proc. of SPIE, Health Monitoring of Structural and Biological Systems, 2007, 6532(1J): 1-12.
    [185] Clough R W, Penzien J. Dynamics of Structures (2nd Edition). Berkeley: Computers and Structures Inc., 2003.
    [186] Bathe K J, Wilson E L. Numerical Methods in Finite Element Analysis, New Jersey: PreticeHall Inc., 1976.
    [187]秦权,林道锦,梅刚.结构可靠度随机有限元-理论和应用.北京:清华大学出版社, 2006.
    [188] Bendat J S, Piersol A G. Random data: Analysis and measurement procedures (Third edition). USA: John Wiley & Sons Inc., 2000.
    [189] Matlab, Simulink. Product Help for Matlab 7.5. The Mathworks Inc., 2007.
    [190] Li Huajun, Yang Hezhen, Hu S L. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, 2006, 132(9): 941-951.
    [191] Goldberg D E. Genetic Algorithms in Search, Optimization & Machine Learning. New York: Addison-Wesley Publishing Company Inc., 1989.
    [192]中交公路规划设计院.舟山大陆连岛工程西堠门大桥、金塘大桥结构运营监测综合管理系统(送审稿).北京:中交公路规划设计院, 2006.
    [193]李昊.地脉动测试分析技术与工程应用.勘察科学技术, 2000(6): 59-62.
    [194]包世华,周坚.薄壁杆件结构力学.北京:中国建筑工业出版社,2006.
    [195] Boswell LF, Zhang S H. A Box Beam Finite Element for the Elastic Analysis of Thin-Walled Strucutures. Thin-Walled Strucutures, 1983, 1(4): 353-383.
    [196]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社, 1997.
    [197] Sennah K S, Kennedy J B. Literature Review in Analysis of Box-Girder Bridges. Journal of Bridge Engineering, 2002, 7(2): 134-141.
    [198]范立础.桥梁工程(第二版).北京:人民交通出版社, 1986.
    [199]贺拴海.桥梁结构理论与计算方法.北京:人民交通出版社, 2003.
    [200]张志田,葛耀君.基于正交异性壳单元的悬索桥非线性静风稳定性分析.中国公路学报, 2004, 17(4): 64-70.
    [201]孙正华,李兆霞.润扬斜拉桥有限元模拟及模态分析.地震工程与工程振动, 2006, 26(2): 25-33.
    [202]徐芝纶.弹性力学(第三版).北京:高等教育出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700