用户名: 密码: 验证码:
山区峡谷风特性参数及大跨度桁梁桥风致振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区峡谷桥梁抗风是当前风工程研究的热点和难点,这是一个涉及山区峡谷风特性、桥梁结构及二者相互作用及抗风优化措施的多学科研究课题。虽然国内外在山区桥梁抗风方面进行了一些研究和探讨,但是文献资料相对较少,实测气象资料严重不足,山区峡谷风特性研究肤浅,峡谷桥梁抗风设计优化措施欠缺。本文以位于山区峡谷的贵州坝陵河特大跨度桁架加劲梁悬索桥和新疆果子沟大跨度桁梁斜拉桥为例,系统地对山区峡谷风特性及大跨度桁架加劲梁桥的抗风问题进行了研究,主要进行了以下几个方面的工作:
     (1)本文利用FLUENT软件对坝陵河大桥桥址风特性进行了数值模拟,主要研究桥位风场分布,通过引入风速放大系数这一无量纲参数,直观的描述考察点风速分量与边界入口风速的关系。通过坝陵河大桥桥址地形风洞试验,对峡谷区地形的紊流风环境进行了深入细致的研究,从平均风特性、脉动风特性和山区特殊风现象这三个方面分析了山区风场的空间分布特征。
     (2)针对山区桥梁桥址处缺乏气象实测资料难于准确量化推算山区峡谷桥梁抗风设计风速的状况,本文在研究总结前人文献资料的基础上,探讨了“虚拟标准气象站”的设立,改进了反距离加权风速插值法,对海拔高度进行了修正,提出包含距离因子“r”和山脉遮挡效应因子“η”的双因子风速内插方法。在此基础上归纳出一个适用于山区桥址峡谷基本风速计算的经验公式,并经过几个算例的验证,是相对准确量化推算山区峡谷桥梁抗风设计风速的实用方法。
     (3)介绍了桁梁桥全桥气弹模型的设计原则,并以坝陵河大桥和果子沟大桥为例,建立了全桥仿真有限元模型并进行了动力特性计算。本文在明石海峡大桥气弹模型设计方法的基础上对“V”型弹簧加以改进,首次提出了利用“U”型弹簧连接桁架加劲梁段来模拟主梁刚度,并通过模态试验证明了该方法是一种适合于大跨度桁梁桥的全桥气弹模型设计方法。探讨了“U”型弹簧的设计原则,分析了各个参数的变化对主梁刚度的影响。
     (4)回顾了颤振的分析理论,并编制了三维颤振分析的状态空间法的计算程序,对坝陵河大桥进行了颤振稳定性分析。对坝陵河大跨径桁架加劲梁悬索桥进行了气动优化措施的风洞试验研究,首次应用气动翼板于实际桥梁。分析了各种气动措施对颤振稳定性的影响,最终确定了桥面板中央开槽和气动翼板组合这一最优方案,通过考察节段模型系统扭转总阻尼随风速的变化情况,进行了气动翼板抑制颤振机理分析。
     (5)进行了桁梁桥气动导纳函数的试验研究,介绍了识别气动导纳函数的试验原理和试验方法,对试验结果做了三种气动导纳、不同攻角、不同风速的对比分析,然后计算得到其气动导纳函数,最后,结合数值拟合技术,提出桁架结构断面气动导纳函数的经验拟合公式,以坝陵河大桥和果子沟大桥为实例进行抖振频域分析,验证试验得到的桁架断面气动导纳,表明其研究方法和研究结果是可靠与合理的。将基于本文气动导纳的抖振响应计算结果与试验值相比较,结果表明基于本文气动导纳的抖振响应计算结果与试验值具有良好的一致性,证明了本文识别的桁梁气动导纳方法和拟合公式的有效性。
Wind resistance of bridges, located in canyon and mountainous area, has been the hotspot and difficulty in current wind engineering research. It is a multi-disciplines research topics related to wind characteristics, bridge structures and wind resistance optimization method. Although there are some wind resistance research and discussion regarding to bridges in mountainous area at home and abroad, there are few literature and datum about the actual measured weather, wind characteristics and wind resistance design. This dissertation takes the long span truss suspension bridge, Ba-Ling-He bridge in Guizhou province, China, as an example, and systematically investigates the canyon wind characteristics of mountainous area and wind resistance problem of long span truss suspension bridge. The main contents include the following,
     (1) The wind characteristics at Ba-Ling-He bridge site are computed numerically through a commercial code FLUENT. The study is focused on the wind field distribution at the bridge site. The relationship between wind speed components at check point and wind speed of inlet boundary can be described by introducing a dimensionless parameter, wind speed amplification coefficient. Through wind tunnel testing of scaled terrain model of Ba-Ling-He bridge site, the turbulence wind circumstance in canyon is investigated thoroughly. The spatial distribution of wind field at mountain area is discussed from characteristics of three aspects, mean wind, gusty wind and particular mountainous wind.
     (2) The wind resistance design speed of bridge at canyon in a mountainous area can hardly been accurately estimated due to lack of filed measurement. Based on the previous literatures, the establishment of'virtual standard meteorological station'is dissucssed and the inverse distance weighted wind speed interpolation method is improved. A method is proposed to calculate the design wind speed by defining two interpolation factors, displacement factor and mountain shelter effect factor, and introducing wind speed modification of the height above sea level. An empirical formula is suggested to calculate the basic wind speed in a canyon of a mountainous area. The formula is validated by several examples and is high accurate and practical in prediction of the design speed in a mountainous area.
     (3) The design principle is discussed for the full aeroelastic model of bridge with stiffened truss girder. And the structural dynamic properties are calculated by the FEM of full bridge by taking Ba-Ling-He bridge and Guo-Zi-Gou bridgeas examples. Based on the design experience of full aeroelastic model of Akashi-Kaikyo Bridge, the spring shape 'V' is replaced by the other spring shape 'U', which is used to connect the sections to simulate stiffness of the stiffened truss girder. The spring shape 'U' is proved to be more suitable for full aeroelastic modeling of long-span bridge with truss girder. Each parameters of the 'U' type spring is discussed to show the effect to stiffness of girder.
     (4) Upon reviewing the flutter analysis theory, a computational code by using the state space method is written to analyze 3d flutter of the Ba-Ling-He bridge. The aerodynamic optimization for the truss girder of Ba-Ling-He bridge are studied by section model wind tunnel test. It is the first application for the aerodynamic wing in actual bridge. After analyzing and testing the effect aerodynamic means on flutter stability, an optimal configuration of deck is finally proposed, which is the combination of the central slot and aerodynamic wing. The flutter suppression mechanism of aerodynamic wing is analyzed by studying total torsional damping ratio of section model system varying with wind speed.
     (5) The aerodynamic admittance function of stiffened truss girder is investigated by sectional model wind tunnel testing. This dissertation introduces the test methodology and the identification method of aerodynamic admittance function, and discusses three types of aerodynamic admittance functions under different attack angles and wind speeds. Then, a fitting formula is proposed for aerodynamic admittance function of stiffened truss girder by using experimental results. The buffeting responses are analyzed in frequency domain by taking the Ba-Ling-He bridge and Guo-Zi-Gou bridge as example. The good agreement between buffeting response tested and calculated ones proves validity of the testing method for aerodynamic admittance function of the truss section and fitting formulae.
     (6)Finally, as an example, the wind induced response of Ba-Ling-He bridge is tested through full bridge aeroelastic model in wind tunnel. The wind induced response is systematically analyzed to obtain internal forces induced by the turbulence wind. Those give essential reference to bridge wind resistance design.
引文
[1]吴冲.现代钢桥[M].北京:人民交通出版社,2006年
    [2]周远棣,徐君兰.钢桥[M].北京:人民交通出版社,2003年
    [3]范立础.桥梁工程[M].北京:人民交通出版社,2004年
    [4]李甦冰.万州长江二桥主桥设计简介.铁道标准设计.2003年3月:18-20
    [5]朝天门大桥施工图设计文件.中铁大桥勘测设计院有限公司,重庆交通科研设计院.2005,3
    [6]刘小匕.北盘江大桥悬索桥钢桁加劲梁施工技术[J].贵州工业大学学报(自然科学版).2008年,37(3):184-187
    [7]艾辉林.悬索桥的三维颤振频域分析及其施工阶段颤振稳定性研究.硕士学位论文.成都:西南交通大学,2003
    [8]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1996
    [9]Farquharson F B, Aerodynamic stability of suspension bridges, bull[J]. Univ. of Washington, No.116, Part Ⅰ-Ⅴ,1941-1950.
    [10]Smith E C, Vincent G S, Aerodynamic stability of suspension bridge with special references to Tacoma Narrows Bridge[J], Engineering Experiment Station, Univ. of Washington, Bull,116,1949-1954.
    [11]Scruton C, Experimental investigation of aerodynamic stability of suspension bridges with special reference to proposed Seven Bridge, Proc ICE, Part.1, Vol.1,No.2,1952.
    [12]Walshe D E, A resume of the aerodynamic investigation for the Forth and Seven Bridges, Proc ICE, Vol.37,1967.
    [13]Frazer R A, Scruton C, A summarized account of the Seven Bridge aerodynamic investigation, NPL/Aer/222,1952.
    [14]Bleich F M, et al. The Mathematical Theory of Vibration in Suspension Bridges. Government Printing Office, Bureau of Public Roads. U.S. Department of Commerce. Washington D.C..1950:52-54
    [15]Bleich F M. Dynamic Instability of Truss-stiffened Suspension Bridges Under Wind Action. Proc.ASCE.1949,75(3):36-38
    [16]Kloppel K, Thiele F. Modellversuch in Windkananl Zur Bemessung Von Brucken Gegen die Gefahr Winderregter Schwingungen.Der Stahlbau,1967,12:68-70
    [17]Van der Put. Rigidity of Structures against Aerodynamic Force. IABSE.1976:320-366
    [18]Scanlan R H, Sabzevari A. Experimental Aerodynamic Coefficients in the Analytical Study of Suspension Bridge Flutter. J.Mech.Eng.Sci.1969,11(3):234-242
    [19]Scanlan R H, Tomko J J. Airfoil and Bridge Deck Flutter Derivatives.ASCE.1971, 97(6):1717-1737
    [20]Scanlan R H. Theory of the Wind Analysis of Long Span Bridges Based on Data Obtained from Section Model Test.Proc.ICWEBS.1975:124-130
    [21]Thiele F. Zugescharfte Berechnungsweise der Aerodynamischen Stabilitat Weitges pannter Bracken.Der Stahlbau,1976,12:210-215
    [22]Scanlan R H. Interpreting aero elastic Models of Cable-stayed Bridges.ASCE.1987, 113(4):114-117
    [23]杨永年,赵令诚.非定常空气动力及颤振.空军工程学院,1983
    [24]胡津亚,曾三元.现代随机振动.北京:中国铁道出版社,1981
    [25]欣内尔斯.现代控制系统理论及应用.北京:机械工业出版社,1979
    [26]Karpel M.Design for Action Flutter Suppression and Gust Alleviation Using State-space Aero-elastical Modeling. AIAA paper 80-766.1980
    [27]小西一郎.钢桥(4),(5).(10).(11).北京:人民铁道出版社,1989
    [28]Parkinson G V. Mathematical Models of Flow-induced Vibrations of Bluff Bodies, Proc. IUTAMLAHR Symposium on Flow-induced Structural Vibrations. Germany, 1972:124-135
    [29]Novak M. Galloping Oscillations of Prismatic Structure.ASCE.1972,98(EM1):56-59
    [30]Simiu E, Scanlan R H(刘尚培,项海帆,谢雾明译).风对结构的作用—风工程导论.上海:同济大学出版社,1992
    [31]Davenport A G. The buffeting of a suspension bridge by storm winds. Journal of the Structural Division, ASCE.1962,Vol.88(6):233-268.
    [32]Davenport, A G. The response of slender line-like structures to a gusty wind. Proc. ICE,1962,23(6):389-408
    [33]Davenport A G. The application of statistical concepts to the wind loading of structures. Proc. ICE,1961,19(2):449-472
    [34]Davenport A G. A statistical approach to the wind loading on tall masts and suspension bridges:[Ph. D Thesis].University of Bristol,1961
    [35]Davenport A G. The spectrum of horizontal gustiness near the ground in high winds. Quarterly. Journal of the Royal Meteorological Society,1961,87:194-211
    [36]Scanlan R H. Gade R H. Motion of suspended bridge spans under gusty wind. Journal of the Structural Division. ASCE.1977,103(9),1867-1883
    [37]Scanlan R H. The action of flexible bridges under wind, Ⅱ:buffeting theory. Journal of Sound and Vibration.1978,60(2),201-211
    [38]Jain A, Jones N P, Scanlan R H. Coupled flutter and buffering analysis of long-span bridges. Journal of Structural Engineering. ASCE,122(7),1996:716-725
    [39]Katsuchi H. Jones N P. Scanlan R H. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo bridge. Journal of Wind Engineering ASCE 125(1),1999:60-70.
    [40]李明水.连续大气湍流中大跨度桥梁的抖振响应.博十学位论文.西南交通大学,1993
    [41]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析.博士学位论文.同济大学,2002
    [42]陈伟.大跨度桥梁抖振反应谱研究.博十学位论文.同济大学,1993
    [43]Kovacs I, Svensson H S, Jordet E. Analytical aerodynamic investigation of cable-stayed Helgeland bridge. Journal of the Structural Division ASCE.1992,118 (1):147-168
    [44]Santos J C, Miyata T, Yamada H. Gust response of a long span bridge by the time domain approach. Proceedings of the 3rd Asia-pacific Symposium on Wind Engineering. HongKong,1993,1:211-216
    [45]Xiang H F, Liu C H, Gu M. Time-domain analysis for coupled buffeting response of long span bridges.91CWE.India,1995
    [46]刘春华,项海帆,顾明.大跨度桥梁抖振响应的空间非线性时程分析法[J].同济大学学报.1996,24(4):380-385
    [47]项海帆,刘春华.大跨度桥梁耦合抖振响应的时域分析.同济大学学报.1994,22(4):451-456
    [48]Bucher C G, Lin Y K. Stochastic stability of bridges considering coupled modes. ASCE. 1988,114(EM12);1989,115(EM2)
    [49]Yang W W. Finite element modeling and aerodynamic responses of cable-supported bridges. Doctor of Philosophy. The Hong Kong University of Science and Technology.1996
    [50]西南交通大学风工程中心.坝陵河大桥风洞试验研究报告[R].成都:西南交通大 学风工程中心,2006
    [51]胡峰强.山区风特性参数及钢桁架悬索桥颤振稳定性研究.博十学位论文.同济大学,2006
    [52]陈政清,张志田.矮寨大桥悬索桥抗风设计研究.第十八届全国桥梁学术会议,2008(734-742)
    [53]刘建新,李加武.中国西部地区桥梁风工程研究.建筑科学与工程学报.2005.22(4):32-39
    [54]中交公路规划设计院.公路桥梁抗风设计规范(JTG/T D60-01-2004),人民交通出版社,2004
    [55]刘峰,许德德,陈正洪.北盘江大桥设计风速及脉动风频率的确定.中国港湾建设.2002,2(1):23-27
    [56]傅抱璞.河谷内的风速[J].气象学报.1963,33(4):518-526.
    [57]傅抱璞.起伏地形中的小气候特点[J].地理学报.1963,29(3):175-187.
    [58]傅抱璞.坡地方位对小气候的影响[J].气象学报.1962,32(1).
    [59]翁笃明,罗哲贤.山区地形气候[M].北京:气象出版社,1990
    [60]陈启新.风速的“狭管效应”增速初探[J].山西水利科技.2002,144(2):62-64.
    [61]陈万隆.峡谷中风状况的分析[J].南京气象学院学报.1979,S1:28-33
    [62]Solari G.Integrated procedures in wind engineering. International Journal of Fluid Mechanics Research,2002,29(3-4):323-328
    [63]Augusti G, Solari G. Wind engineering:A short introduction. Meccanica,1998,33 (3):215-217
    [64]Solari G, Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics,2001,16(1):73-86
    [65]Tubino F, Solari G. Double proper orthogonal decomposition for representing and simulating turbulence fields. Journal of Engineering Mechanics,ASCE,2005,131 (12):1302-1312
    [66]Carassale L., Solari G. Monte carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics,2006,94 (5):323-339
    [67]中国建筑科学研究院.建筑结构荷载规范(GB 50009-2001),中国建筑工业出版社,2006
    [68]Davenport A.G. The dependence of wind loads on meteorological parameters. Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures. Ottawa:1967.19-82
    [69]Hino M.Spectrum of gusty wind.in:Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures.Toky,Japan:1971.69-77
    [70]日本建议. AIJ Recommendations for Loads on Building, Japan.1996
    [71]Kaimal J.C., Wyngaard J.C., Izumi Y., et al. Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society,1972,98:563-589
    [72]《公路桥梁抗风设计指南》编写组.公路桥梁抗风设计指南.北京:人民交通出版社,1996.
    [73]Simiu E. Wind spectra and dynamic along wind response. Journal of Structural Engineering,ASCE,1974,100(9):1897-1910
    [74]黄本才.随高度变化的脉动风速谱及风振计算.力学与应用论文集,上海:同济大学出版社,1988
    [75]黄本才.结构抗风分析原理及应用,上海:同济大学出版社,2001
    [76]Harris R.I. The nature of the wind. Proceedings of the Seminar on the Modern Design of Wind Sensitive Structures. Institution of Civil Engineers,London:1970.29-55
    [77]Von Karman T. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of USA,1948,34:530-539
    [78]Panofsky H. A., Mccormick R.A.The spectrum of vertical velocity near the surface. Quarterly Journal of the Royal Meteorological Society,1960,86:546-564.
    [79]Lumley J. L. and Panofsk H. A. The structure of atmospheric turbulence, Wiley, New York,1964
    [80]Jorgen Hojstrup. Spectral coherence in wind turbine wakes. Journal of Wind Engineering and Industrial Aerodynamics,1999,80:137-146
    [81]Panofsky H. A., Sniger I. A. Vertical structure of turbulence. J. Royal Meteorol. Soc.,1965,91:339-344
    [82]Vickery B. J. On the Reliability of Gust Loading Factors. Proceedings of the Technical Meeting Concerning Wind Loads on Buildings and Structures, National Bureau of Standards, Building Science Series 30, Washington, D. C.:1970,93-104
    [83]陈政清,李春光,张志田等.山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学.2008,22(3):54-59.
    [84]庞佳斌.沿海和山区强风特性的观测分析与风洞模拟研究.博士学位论文.上海:同济大学,2006.
    [85]陈英俊,于希哲.风荷载计算[M].北京:中国铁道出版社,1998.
    [86]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004),人民交通出版社,2004.
    [87]陆忠汉,陆长荣,王婉馨.实用气象手册[M].上海:上海辞书出版社,1982.
    [88]Yiahak Feliks, Ehud Gavze, Reuven Givati. Optional Vector Interpolation of Wind Fields. Journal of Applied Meteorology,1996.35:1153
    [89]余琦,刘原中.复杂地形上的风场内插方法[J].辐射防护.2001,21(4):213-218.
    [90]傅抱璞.山地气候[M].北京:科学出版社,1983
    [91]翁笃明.山区农业气候与小气候考察方法讲座[R].1984
    [92]方精云,沈泽吴,崔海亭.试论山地的生态特征及山地生态学的研究内容[J].生物多样性.2004,12(1):10-19
    [93]Walh. E. Windspread on mountains:final report of meteorological research (AFCRL-66-280) [R]. University of Wisconsin.1966
    [94]庞加斌,宋锦忠,林志兴.山区峡谷桥梁抗风设计风速的确定方法[J].中国公路学报.2008,21(5):39-44
    [95]胡峰强,陈艾荣,王达磊.山区桥梁桥址风环境试验研究[J].同济大学学报.2006, 34(6):721-725
    [96]铁道第三勘察设计院.TB 10002.1-2005铁路桥涵设计基本规范[S].2005.
    [97]ALLAN LARSEN. Aerodynamics of Large Bridges. DANISH MARITIME INSTI-TUTE.1992.
    [98]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
    [99]徐洪涛,廖海黎,苑敏.大跨钢桁加劲梁气动弹性模型的设计方法[J].四川建筑科学研究.2009,142(2):87-90
    [100]Selberg,A. Aerodynamic effects on suspension bridges. In:Proc. of Int. Symp. on Wind Effects on Buildings and Structures,Teddington,1963,2,462-486.
    [101]Scanlan, R.H. The action of flexible bridges under wind, I:flutter theory. J. Sound Vib.,1978,60(2),187-199.
    [102]张若雪.桥梁结构气动参数识别的理论和试验研究.博十学位论文.上海:同济大学,1998,13-73.
    [103]项海帆,葛耀君,朱乐东等.现代桥梁抗风理论与实践.北京:人民交通出版社,2005,50-105.
    [104]何宪飞.桥梁断面三自由度颤振导数识别.硕士学位论文.上海:同济大学,2001,30-75.
    [105]Matsumoto, M. Daito, Y. Yoshizumi, K. Torsional flutter of bluff bodies. J. Wind Eng.Ind.Aerodyn.,1997,69-71,871-882.
    [106]杨詠昕.大跨度桥梁二维颤振机理及其应用研究.博士学位论文.上海:同济大学,2002,15-84.
    [107]丁泉顺,朱乐东.桥梁主梁断面气动耦合颤振分析与颤振机理研究.土木工程学报,2007,40(3),69-73.
    [108]许福友.桥梁结构颤振导数识别与颤振分析.博士学位论文.上海:同济大学,2005,51-131.
    [109]Agar, T. J. A. Aerodynamic flutter analysis of suspension bridges by a modal technique. J.Eng.Struct.,1989,11(2),75-82.
    [110]Agar, T J. A. Dynamic instability of suspension bridges. Computers & Structures, 1991,41(6),1321-1328.
    [111]Beith J.G. A practical engineering method for the flutter analysis of long-span bridges. J. Wind.Eng.Ind. Aerodyn.,1998,77-78,357-366.
    [112]Namini A. Albrecht, P. Bosch H. Finite element-based flutter analysis of cable-suspended bridges,J.Struct.Eng.,ASCE,1992,118(6),1509-1526.
    [113]程韶红.大跨度桥梁的三维颤振有限元分析.硕士学位论文.上海:同济大学,1993,45-112.
    [114]张新军.大跨度桥梁三维非线性颤振分析.博士学位论文.上海:同济大学,2000,25-77.
    [115]陈政清.桥梁颤振临界状态的三维分析与机理研究.1994年斜拉桥国际学术会议论文集,上海,1994,302-306.
    [116]Chen, Z. Q. Agar T. J. Finite element-based flutter analysis of cable-suspended bridges (discussion).J.Struc.Eng.,ASCE,1994,120(3),1044-1046.
    [117]华旭刚,陈政清.桥梁风致颤振临界状态的全域自动搜索法.工程力学,2002,19(2),68-72.
    [118]Tanaka H. Yamamura N. Tatsumi M. Coupled mode flutter analysis using flutter derivatives. J.Wind Eng.Ind.Aerodyn.,1992,42(1-3),1279-1290.
    [119]Katsuchi,H. Jones N. P.,Scanlan R. H. Coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge.J.Struct.Eng.,ASCE,1999,125(1),60-70.
    [120]Ding Q. Chen A. Xiang H. Coupled flutter analysis of long-span bridges by multi-mode and full-order approaches.J.Wind Eng. Ind.Aerodyn.,2002,90(12-15),1981-1993.
    [121]Miyata T.Yamada H. Coupled flutter estimate of a suspension bridge. J.Wind. Eng.Ind. Aerodyn.,1990,33(1-2),341-348.
    [122]Dung N. N. Miyata T. Yamada H. Minh N. N. Flutter responses in long span bridges with wind induced displacement by the mode tracing method.J.Wind. Eng.Ind. Aerodyn.1998,77-78,367-379.
    [123]Ge Y. J. Tanaka H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches.J.Wind.Eng.Ind.Aerodyn.,2000,86(2-3),123-153.
    [124]Ge Y. J. Xiang H.F. Tanaka H. Application of a reliability analysis model to bridge flutter under extreme winds.J.Wind.Eng.Ind.Aerodyn.,2000,86(2-3),155-167.
    [125]Hua X. G. Chen Z. Q. Ni Y. Q. Ko J. M. Flutter analysis of long-span bridges using ANSYS. Wind and Structures,2007,10(1),61-82.
    [126]Scanlan R. H. Motion-related body-force functions in two-dimensional low-speed flow. J. Fluids Strcut.,2000,14(1),49-63.
    [127]Scanlan R. H. Beliveau J.G. Budlong K. Indicial aerodynamic functions for bridge decks. J.Mech.Div.,ASCE,1974,100(4),657-672.
    [128]Bucher C. G. Lin Y.K.Effect of span wise correlation of turbulence field on the motion stochastic stability of long-span bridges. J.Fluids and Structures,1988,2(5), 437-451.
    [129]Lin Y. K. Li Q. C. New stochastic theory for bridge stability in turbulent flow. J.Eng.Mech.,1993,119(1),113-128.
    [130]Chen X.. Matsumoto M. Kareem A. Time domain flutter and buffeting response analysis of bridges.J.Eng.Mech.,ASCE,2000,126(1),7-16.
    [131]张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究.博士学位论文.上海:同济大学,2004,54-108.
    [132]谢霁明,项海帆等.桥梁三维颤振分析的状态空间法[J].同济大学学报,1985(3):1-13
    [133]廖海黎,奚绍中编译.改善大跨度桥梁抗风稳定性的建议[J].国外桥梁,1999,3:60-63
    [134]Scanlan R H Tomko J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics. ASCE,1971,97(6):1717-1237
    [135]宋锦忠,林志兴,徐建英.桥梁抗风气动措施的研究及应用[J].同济大学学报,2002,(5):618-621
    [136]Xie J.,Savage M.G.& Tanaka H. Identification of the aerodynamic admittance functions for bridge road deck. Proceeding of the 2nd Asia-Pacific symposium on wind engineering, Peking,1989.
    [137]蒋永林.斜拉桥抖振响应分析.博十学位论文.成都:西南交通大学,2000,1-43
    [138]马存明.流线箱型桥梁断面三维气动导纳研究.博士学位论文.成都:西南交通大学,2007,1-60
    [139]靳新华.桥梁断面气动导纳识别理论及试验研究.博士学位论文.上海:同济大学,2003,1-80
    [140]张若雪.桥梁结构气动参数识别的理论和试验研究.博十学位论文.上海:同济大学,1998,15-49
    [141]秦仙蓉,顾明.桥梁结构气动导纳识别的随机子空间方法.同济大学学报,2004,32(4):421-425
    [142]Kawatani M. and Kim H. Evaluation of aerodynamic admittance for buffeting analysis. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44(1): 613-624
    [143]Diana G. Bruni S. Cigada A. and Zappa E. Complex aerodynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):2057-2072
    [144]Drabble M.J. and Grant I. The aerodynamic admittance of a square plate in a flow with a fully coherent fluctuation. Phys Fluids A,1990,2(6):1005-1013
    [145]Vickery B.J. Fluctuating lift and drag on long cylinder of square cross-section in a smooth and in a turbulent stream. Journal of Fluid Mechanics,1966,25,part3:481-494
    [146]Bearman P.W. An investigation of the forces on flat plates normal to turbulent flow. Journal of Fluid Mechanics,1971,46(1):177-198
    [147]Sankaran R. Jancauskas E.D. Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44(1):601-611
    [148]顾巍.钝体和桥梁断面的气动导纳试验技术与研究.博十后研究报告.上海:同济大学,2000,35-45
    [149]李丽.桥梁气动导纳函数研究及其应用.博士学位论文.成都:西南交通大学,2007.54-77
    [150]Matsuda K. Hikami Y. Fujiwara T. Moriysma A. Aerodynamic admittance and the 'strip theory'for horizontal buffeting forces on a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):337-346
    [151]Larose G L, Mann J. Gust loading on streamlined bridge decks[J].J of Fluid and Structure,1998,12:511-536.
    [152]赵林.风场模式数值模拟与大跨桥梁抖振概率评价.博十学位论文.上海:同济大学,2003年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700