用户名: 密码: 验证码:
洋流涡激作用下水中悬浮隧道稳定性的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡激振动是悬浮隧道研究中一个非常重要的问题,因为悬浮隧道在海流作用下会产生复杂的涡激振动以及频率“锁定”现象,并诱发流体与结构之间的相互作用,由此可导致结构失稳。由于横流向的涡激振动幅值比顺流向涡激振动幅值要大一个量级,因此本文着重研究悬浮隧道在横向涡激作用下的动力特性及其稳定性,所展开的研究工作主要有:
     1基于涡量运动学和动力学特性,针对悬浮隧道管段在运动中受到的流体荷载展开研究,推导出呈小振幅运动的悬浮隧道管段受到的流体荷载计算公式,在已知管段运动规律的前提下运用该公式能准确地计算出作用于悬浮隧道上的流体荷载;并对涡激振动机理进行总结,运用Morison方程估算作用于悬浮隧道上流体作用力。
     2将单跨悬浮隧道简化成两端简支的Euler-Bernoulli梁,采用分离变量法对单跨悬浮隧道的固有特性进行分析。研究表明:单跨悬浮隧道一阶固有频率的影响因素中附加质量系数对其影响最大,管段截面外直径影响次之,海水密度影响最小。将张力腿型多跨悬浮隧道简化为线性弹簧支撑的梁模型,采用Laplace正、逆变化求解多跨悬浮隧道管段固有动力特性。研究表明:多跨悬浮隧道固有频率随张力腿轴向等效刚度的增加而降低,悬浮隧道的固有频率与等效刚度之间成反比例关系;固有频率随着管段结构弹性模量、管段外直径的增加而增大,但不成线性关系。
     3利用混沌理论中的Melnikov方法分析单跨悬浮隧道在横流涡激作用下的稳定性判据,并对影响稳定性的因素进行分析。研究表明:随着跨度的增加,悬浮隧道稳定性降低;振动阶次越高悬浮隧道稳定性越好,在进行稳定性分析时可只分析一阶稳定性情况。悬浮隧道稳定性随洋流速度增加而呈下降趋势;管段弹性模量对稳定性呈线性影响关系;管段材料密度对稳定性影响也呈增加趋势;管段外直径对稳定性影响呈“勺子”状变化;流体阻尼系数对稳定性呈“V”字形影响;升力系数对稳定性呈下降阶跃函数影响关系。此外,将悬浮隧道管段振动视为对张力腿的参数激励而建立悬浮隧道张力腿振动模型,利用Lyapunov函数研究悬浮隧道张力腿在涡激作用下的稳定性判据。研究得出:张力腿稳定性随着振动阶次、结构刚度或初张力的增加都会呈增加趋势,但不呈线性变化关系;而随着参数激励频率、张力腿长度或动张力系数的增加稳定性会逐渐降低。
     4涡激振动模型试验结果表明:悬浮隧道的动力响应随着流速的增大而增大,其中振动最大位移随着流速增加呈线性增加。在相同流场环境条件下,增加支撑张力腿组数能减小管段结构的受力和动力响应幅值,但是会使张力腿的响应规律变得复杂;两节管段的动力响应规律与单节管段大体相同,单节管段悬浮隧道的速度响应幅值比两节管段悬浮隧道大。数值模拟结果表明:在管段迎流面和背流面分别出现正压区和负压区,来流速度越大,管段正负压区的压力值都越高,管段绕流场的分离点后移,漩涡释放频率也越大;圆形截面管体后形成的尾流区最大,椭圆形截面次之,多边形截面最小。
     5考虑悬浮隧道管段结构的非线性,在动力特性分析、稳定性分析及模型试验的基础上研究悬浮隧道管段在横向涡激作用下的动力响应。研究表明:对于单跨悬浮隧道发生首阶谐响应时的模态位移最大;悬浮隧道管段的弹性模量增大或管段外直径的增加都会对动力响应起抑制作用;而跨度的增加却会增大动力响应幅值;随着来流速度的增加悬浮隧道的动力响应幅值会增大。对于多跨悬浮隧道,增大张力腿的轴向刚度有助于抑制悬浮隧道管段的位移响应幅值;悬浮隧道管段位移响应幅值随着张力腿长度的增加而增加;不考虑非线性因素影响时随着张力腿间夹角越小对悬浮隧道管段动力响应的抑制作用越明显,而当考虑非线性因素影响时张力腿间夹角越小管段动力响应幅值越大。
It is an important issue among the studies of submerged floating tunnel (SFT) for the vortex-induced vibration (VIV), the'lock-in'phenomenon and the fluid-structure interaction (FSI) of the submerged floating tunnel will occur when it undergoes the ocean current effect and the vortex-induced vibration will induce the submerged floating tunnel to become instable. Both vortex-induced transverse oscillation and in-line oscillation will occur when fluid flows around a structure. For the amplitude of transverse oscillation is larger than that in-line oscillation, in this dissertation, it focused on the dynamic characteristics and stability of submerged floating under transverse vortex-induced vibration and it carried out the main research work in the dissertation as followed:
     1 The dissertation premised that the amplitude of the oscillating SFT under vortex-induced effect was small, and derived the formula of fluid load based on the kinematics and dynamics characteristics of the vortex. It's easily to determine the fliud load exactly acted on the SFT when its vibration regular had been known. The dissertation made a summary of the mechanism of vortex-induced vibration, and computed the fluid force acted on the SFT by Morison equation.
     2 The dissertation simplified single-span SFT as an Euler-Bernoulli beam simply suppored at both ends. It used separation of variables to analyze the intrinsic characteristics of the SFT. The study showed that the additional quality coefficient is dominant among those factors impacted on the first-order natural frequency of SFT, the impact of the outside diameter of pipe sections followed by, and the impact of the current density is nearly the least important. It simplified the multi-span SFT supported by tension-leg as a beam supported by linear spring, and it used the Laplace transformation and Laplace inverse transformation to study the intrinsic characteristics. The investigation showed with the equivalent axial stiffness increasing the natural frequency of multi-span SFT declined, and the intrinsic frequency is inversely proportional to the equivalent axial stiffness. With the elastic modulus of the SFT increasing the natural frequency increases, not being a linear relationship as well as the outside diameter of the tube.
     3 The dissertation derived the stability criterion of single-span SFT under the vortex-induced vibration from using of the Melnikov method of Chaos Theory. And it analyzed the factors affected the stability. The analysis showed that:With the increasing in spanlength, the stability of the SFT goes down. The higher of the vibration order the greater the stability greater of SFT is, therefore it can only consider the first-order stability on the stability analysis. With the increase of current velocity, the stability of the SFT dropped. The stability of the SFT increased linearly with the tube's elastic modulus. It is an upward trend when the stability of the SFT affected by the material density of the SFT. The impact of the SFT's outside diameter on the stability is of spoon-shaped, the impact of fluid damping on the stability is of V-shaped, however the impact of the lift coefficient on the stability is a decline step function. In addition it established the vibration equation of the tension leg on condition that considered the vibration of the SFT as parameters incentive. It derived the stability criterion of the tension leg under vortex-induced vibration from utilizing the Lyapunov function. The investigation showed the stability of tension inceased with vibration order, structural rigidity, or the initial tension, but not being a linear relationship.
     4 The result of the vortex-induced vibration model test showed that with the increase of current velocity, the dynamic response goes up, and the maximum vibration displacement increases linearly with current velocity. Under the same flow field conditions, the increase in the number of support can reduce the force acted on the SFT and reduce dynamic response amplitude, but the response regularity will be complicated. The axial strain of tension leg will increase follwed by the current velocity. The dynamic response regulerity of two tubes is the same as the one of single-tube, and the single-tube SFT's response amplitude is larger than that of two tubes. Numerical simulation results showed that there are positive pressure zone in upstream surface area and negative pressure zone at the opposite point separately. The value of each area increased with the current velocity. Increasing the current velocity the separation point will prolong and the the vortex frequency will be greater. The wake area formed after the circular areas is the biggest, followed by elliptical cross section, the smallest of multilateral cross-section.
     5 This dissertation also studied the dynamic response under current effect based on considering the structural non-linearity, dynamic characteristics analysis, stability analysis and model test. The research showed:the first-order harmonic mode displacement is of maximum of the single-span SFT. Increasing the elastic modulus or the outside diameter of the SFT tube it will induce the dynamic response to decrease. With the span-length increasing, the dynamic response amplitude will rise, as well as the current velocity. With the axial stiffness of the tension leg increasing, the displacement response of multi-span SFT will go down.With the tension leg length increasing, the amplitude of displacement response will rise.The decrease of angle between the two tension legs contributed to curbing the displacement response amplitude more obvious when not considered the impact of non-linear factors, while when considered the impact of non-linear factors the smaller the angle between tension legs the greater amplitude of the dynamic response obtained.
引文
[1]项贻强,薛静平.悬浮隧道在国内外的研究[J].中外公路,2002,22(6):49~52
    [2]CH.J.A.Hakkart,A.Lancelotti,H.Ostlid,R.Marazza,D.R.cuiverwell,K.S.Nyhus. Chapter 6 Submerged Floating Tunnels[J].Tunnelling and Underground Space Technology,1993,8(2):265-285
    [3]王华.沉管隧道与悬浮隧道(6),第六章悬浮隧道[J].隧道译丛,1994,12:26~45
    [4]Havard Ostlid. Submerged floating tunnel (sft), a new type of structure for efficient transport, energy saving, minimizing pollution and environmental impact[C].4th Symposium on Strait Crossings, Bergen/Norway, Sep 2-5,2001:545-546
    [5]C. Hakkart. State of the Art of the Submerged Floating Tunnel[A]. Inernational Tunnelling Association. International Conference on Submerged Floating Tunnels [C].Sandnes:1996
    [6]孔祥金.水下隧道新结构—悬浮隧道[C].2003年全国公路隧道学术会议,太原,2003:223~226
    [7]刘俊丽.阿基米德桥——悬浮水中的交通隧道[J].力学与实践,2007,29:82
    [8]黄国君,吴应湘,洪友士.跨越水域交通的阿基米得桥[C].2002年度海洋工程学术会议,江西南昌,2002
    [9]麦继婷,关宝树.悬浮隧道[J].隧道建设,2007,27(5):20~23
    [10]Xu Hongfa; Ma Junqing; Tan Huanhuan. The review of the main construction methods of the underwater tunnel [C].4th International Symposium on Underground Freight Transport by Capsule Pipelines and Other Tube/Tunnel Technologies, Shanghai, December 28-31,2005:134-139
    [11]李剑.水中悬浮隧道概念设计及其关键技术研究[D].同济大学,博士学位论文,2003
    [12]FEHRL (Forum of European National Highway Research Laboratory). Analysis of the submerged floating tunnel concept[R]. Crowthorne:Transport Research Laboratory, 1996
    [13]Donna Ahrens. Submerged floating tunnels:a concept whose time has arrived (but who will be the first to build one?)[J].Tunnelling and Underground Space Technology,1996, 11(4):505-510
    [14]兰利敏译.水中悬浮隧道——谁将是第一个成功者?[M].世界隧道,1997,(4):47~52
    [15]Donna Ahrens. Chapter 10 Submerged Floating Tunnels---A Concept Whose Time Has arrived[J].Tunnelling and Underground Space Technology,1997,12(2):317-336
    [16]P. Tveit. Ideas on downward arched and other underwater concrete tunnels [J]. Tunnelling and Underground Space Technology,2000,15(1):69-78
    [17]F. Mazzolani. The waterway strait crossing by means of submerged floating tnnuls[J]. Bauingenier.2006,Band 81,Mai:218-223
    [18]Sakurai. Submerged floating tunnel proposed to connect kansai, kobe airports[J]. Tunnelling and Underground Space Technology,1996,11(4):511-514
    [19]L. C. F. Ingerslev. Water Crossing-the Options[J]. Tunelling and underground space technology.1998,13(4):357-363
    [20]L.C.F. Ingerslev. Understanding immersed and floating tunnels[C]. ITA(International Tunnelling Association) World Tunnelling Congress on (Re)Claiming the Underground Space, Amsterdam, the Netherlands, Apr 12-17,2003:665-672
    [21]L.Aadnesen etc. The case for floating submerged tunnels[J].Tunnels and Tunnelling International,1999,6:32-34.
    [22]Walter C. Grantz. Steel-shell immersed tunnels- Forty years of experience[J]. Tunnelling and Underground Space Technology,1997,12(1):23-31
    [23]Walter C. Grantz. A new concept for a steel shell submerged floating tunnel[C] ITA (International Tunnelling Association) World Tunnelling Congress on (Re)Claiming the Underground Space, Apr 12-17,2003, Amsterdam, the Netherlands; Vol.1; 2003; Amsterdam, the Netherlands
    [24]A.Fiorentino. Brief history of archimedes bridge in the Strait of Messina [A]. International Conference on Submerged Floating Tunnel [C]. Sandnes, Norway,29-30, May,1996
    [25]B. Faggiano, F.M. Mazzolani. Design and modelling aspects concerning the submerged floating tunnels:an application to the Messina Strait crossing.[A].Strait Crossing 2001 [C]. Krobeborg:Swets&Zeitlinger Publishers Lisse,2001:511-519
    [26]F. Mazzolani. The waterway strait crossing by means of submerged floating tunnels[J]. Bauingenieur, Band 81 Mai 2006:218-223
    [27]Lidvard Skorpa. The Hogsfjord submerged floating tunnel project, transport, environment and energy studies[C].4th Symposium on Strait Crossings, Bergen/ Norway, Sep 2-5,2001:551-554
    [28]European National Highway Research Laboratories. Appendix A "Submerged Floating Tunnels Analysis Project"(edited and condensed version) [J].Tunnelling and Underground Space Technology,1997,12,(2):337-346
    [29]K.Sato.The purpose of submerged floating tunnel plan in Hokkaido[A].International Conference on Submerged Floating Tunnels[C], Sandnes, Norway, May 29-30,1996
    [30]Catherine A. Cardno. Inverted suspension bridge planned for china[J].civil engineering, 2007,8:26
    [31]B.Jakobsen, S. N. Remseth, G. Udahl. Crossing wide and deep fjords with submerged floating tunnels[C].4th Symposium on Strait Crossings, Bergen/Norway, Sep 2-5, 2001:569-574
    [32]M. C. Hort, A. G. Robbins. The dispersion of fugitive emissions from storage tanks[J].Journal of Wind Engineering and Industrial Aerodynamics, Volume 90, Issue 11, November 2002,90(11):1321-1348
    [33]Lidvard Skorpa; Havard Ostlid. Owners experience with the pilot project Hogsfiord submerged floating tunnel. [C].4th Symposium on Strait Crossings, Bergen/Norway, Sep 2-5,2001:547-550
    [34]R.FUJITA; T. MIKAMI. Development of Submerged Floating Tunnel in Shallow Water[C].4th Symposium on Strait Crossings, Bergen/Norway; Sep 2-5,2001:555-562
    [35]Toshiyuki Fujii. Submerged floating tunnels project in Funka Bay design and execution [A]. International Conference on Submerged Floating Tunnel [C], Sandnes, Norway,29-30, May,1996:1-20
    [36]H.Ostlid, I. Marrkey. Instrumention, documention, documention and verification of a submerged floating tunnel[C]2nd International Conference on Concrete Under Severe Conditions, Tromso, Norway, Jun 21-24,1998:1380-1387
    [37]吕国昌.颠覆传统桥梁印象—千岛湖将建世界首座悬浮隧道[J].今日科技,2007,11:7
    [38]James Felch. The Seattle-Bellevue Loop with the still-water submerged floating tunnel[C] 4th Fourth Symposium on Strait Crossings, Bergen/Norway, Sep 2-5, 2001:581-588
    [39]S.A.Haugerud; T.O.Olsen, A.Muttoni. The Lake Lugano Crossing-Technical Solutions [C].4th Symposium on Strait Crossings,Bergen/Norway Sep 2-5,2001:563-569
    [40]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报,2003,16(3):1-4
    [41]麦继婷,杨显成,关宝树.悬浮隧道所受波浪荷载的计算分析[J].铁道科学与工程学报,2007,4(5):83~87
    [42]王广地,周晓军,高波.水中悬浮隧道波流荷载分析研究[J].铁道建筑,2007,10:48~51
    [43]王广地,周晓军,高波.水中悬浮隧道管段结构流阻特性分析[J].西南交通大学学报,2007,42(6):715~719
    [44]王广地.波流作用下悬浮隧道结构响应的数值分析及试验研究[D].西南交通大学,博士学位论文,2008
    [45]F. Brancaleoni, A. Castellani, P. D'Asdia. The response of submerged floating tunnel to their environment[J].Eng. Struct.,1989,11:47-56
    [46]Terje Hauka's, Svein Remseth.Global dynamic analysis of floating submerged tunnels preliminary study[R]. Department of Structural Engineering, Norwegian University of Science and Technology,1997
    [47]Svein Remseth, Bernt J. Leira, Knut M. Okstad, Kjell M. Mathisen, Terje Haukas. Dynamic response and fluid/structure interaction of submerged floating tunnels[J]. Computers & Structures,1999,72(4-5):659-685
    [48]M.Sato, S.Kanie, I.Mikami, T.Yaginuma, H.Hamaguchi. Modeling of Submerged Floating Tunnel as a Beam on Elastic Foundation under Bending Vibration[C].Strait Crossings 2001, Krokeborg:Swets & Zeitlinger Publishers Lisse,2001,535-540
    [49]Motohiro Sato, Shunji Kanie, Takashi Mikami. Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J].Applied Mathematical Modelling, May 2008,32(5):688-699
    [50]Rolf M. Larssen. Measured Dynamic Response of Submerged Floating Tunnels:A Tool for Further Developments[C].4th Symposium on Strait Crossings, Bergen/ Norway, Sep 2-5,2001:325-341
    [51]麦继婷,杨显成,关宝树.波流作用下悬浮隧道的动态响应分析[J].水动力学研究与 进展A辑,2005,20(5):616~623
    [52]麦继婷,杨显成,关宝树.水流作用下悬浮隧道的响应分析[J].现代隧道技术,2005,42(4):25~31
    [53]麦继婷.波流作用下悬浮隧道的响应分析[D].西南交通大学,博士论文,2005
    [54]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道动态响应的分析估算[J].铁道工程学报,2006,6(96):51~54
    [55]麦继婷,杨显成,关宝树.悬浮隧道在波浪作用下的动力响应分析[J].铁道工程学报,2007,3(102):45~19
    [56]麦继婷.悬浮隧道在波流作用下的响应分析[J].铁道学报,2008,30(2):112~118
    [57]葛斐.水中悬浮隧道在波流场中动力响应的研究[D].中国科学院,博士学位论文,2006
    [58]葛斐,惠磊,洪友士.波浪场中水中悬浮隧道动力响应的研究[J].工程力学,2008,25(6):188~192
    [59]葛斐,惠磊,洪友士.水中悬浮隧道在波浪场中非线性动力响应的研究[J].应用力学学报,2008,25(2):207~211
    [60]董满生.曲线形水中悬浮隧道的几个重要力学问题分析[D].中国科学院,博士学位论文,2006
    [61]董满生,葛斐,张双寅,洪友士.水中悬浮隧道的空间曲线结构运动方程[J].应用数学和力学,2007,28(10):1157~1164
    [62]DONG Man-sheng, GE Fei, ZHANG Shuang-yin, HONG You-shi. Dynamic equations for curved submerged floating tunnel[J]. Applied Mathematics and Mechanics (English Edition),2007,28(10):1299-1308
    [63]董满生,洪友士.辛体系下曲线形水中悬浮隧道对波浪激励的动力响应研究[J].应用力学学报,2008,25(4):535~541
    [64]惠磊,葛斐,洪友士.水中悬浮隧道在冲击载荷作用下的计算模型与数值模拟[J].工程力学2008,25(2):209~213
    [65]惠磊.水中悬浮隧道在偶发载荷作用下的动力响应[D].中国科学院,硕士学位论文,2008
    [66]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道的涡激动力响应[J].铁道学报,2005,27(1):102~105
    [67]惠磊,葛斐,洪友士.水中悬浮隧道在均匀来流作用下的动力响应[C].第15届全国结构工程学术会议,河南焦作,2006:123~128
    [68]谢立广.水中悬浮隧道管段接头的力学行为分析[D].西南交通大学,硕士学位论文,2007
    [69]谢立广,周晓军,杨群.水中悬浮隧道管段接头的力学特性分析[J].现代隧道技术,2008,45(4):32~38
    [70]胡鸿运.定常流作用下拉索式悬浮隧道单节管段的振动初探[D].西南交通大学,硕士学位论文,2008
    [71]麦继婷,罗忠贤,关宝树.流作用下悬浮隧道张力腿的涡激动力响应[J].西南交通大学学报,2004,39(5):600~604
    [72]麦继婷,杨显成,关宝树.波流作用下张力腿悬浮隧道的响应分析[J].中外公路,2008,28(1):159~163
    [73]Jian Li; Yong-sheng Li. Analytical Solution to the Vortex-excited Vibration of Tether in the Submerged Floating Tunnel[C] Geo Shanghai International Conference, Shanghai, June 6-8,2006:147-153
    [74]Jian li,Yong-sheng Li. Analytical Solution to the Vortex-excited Vibration of Tether in the Submerged Floating Tunnel[J]. Underground construction and ground movement, Downloaded 19 Sep 2007 to 222.18.32.80. Redistribution subject to ASCE license or copyright, see http://www.ascelibrary.org/:163-169
    [75]葛斐,董满生,惠磊,洪友士.水中悬浮隧道锚索在波流场中的涡激动力响应[J].工程力学,2006,23(增Ⅰ):217~221
    [76]葛斐,王雷,洪友士.水中悬浮隧道锚索非线性涡激振动的研究[C].第十一届全国非线性振动、第八届全国非线性动力学和运动稳定性学术会议,河北石家庄,2007:325~330
    [77]葛斐,惠磊,洪友士.水中悬浮隧道锚索的非线性涡激振动研究[J].中国公路学报,2007,20(6):85~89
    [78]葛斐,惠磊,洪友士.水中悬浮隧道锚索在剪切流中的涡激回应[J].中国科学院研究生院学报,2007,24(3):351~356
    [79]陈健云,王变革,孙胜男.悬浮隧道锚索的涡激动力响应分析[J].工程力学,2007,24(10):186~192
    [80]陈健云,孙胜男,王变革.水中悬浮隧道锚索的动力分析[J].计算力学学报,2008,25(4):488~493
    [81]陈健云,孙胜男,苏志彬.水流作用下悬浮隧道锚索的动力响应[J].工程力学,2008,25(10):229~234
    [82]孙胜男,陈健云.悬浮隧道锚索多阶涡激非线性振动[J].大连海事大学学报,2007,33(4):86~90
    [83]孙胜男,陈健云,苏志彬.悬浮隧道锚索—隧道耦合非线性参数振动研究[J].振动与冲击,2007,26(10):104~108
    [84]王变革.水中悬浮隧道锚索的动力响应研究[D].大连理工大学,硕士学位论文,2007
    [85]R.Carpaneto.The dynamic seismic analysis of SFT[A]. International Conference on Submerged Floating Tunnel [C], Sandnes, Norway, May,1996:29-30
    [86]P.Fogazzi, F.Pertti.The Dynamic Response of Seabed Anchored Floating Tunnels under Seismic Excitation[J]. Earthquake Engineering and Structural Dynamics, 2000,29:273-295
    [87]M. Di Pilato, F. Perotti, P. Fogazzi.3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation[J]. Engineering Structures,2008, 30(1):268-281
    [88]Mariagrazia Di Pilato, Anna Feriant and Federico Perotti. Numerical models for the dynamic response of submerged floating tunnels under seismic loading[J]. Earthquake engng struct. Dyn.2008;37:1203-1222
    [89]孙胜男,陈健云.地震下悬浮隧道所受动水压力研究-sv[J].波.防灾减灾程学报,2006,26(4):425~430
    [90]孙胜男,陈健云.海底锚固悬浮隧道所受动水压力研究-P波[J].哈尔滨工业大学学报2008,40(8):1292~1296
    [91]陈健云,孙胜男.海底岩土性质对悬浮隧道所受动水压力的影响——p波[J].自然科学进展,2007,27(1):79~85
    [92]肖剑.水中悬浮隧道地震响应分析及抗震设计[D].大连理工大学,硕士学位论文.2008
    [93]Hiroshi Kunsiu, Susumu Mizuno, Yuzo Mizuno, Hiroshi Saeki.Study on Submerged Floating Tunnel Characteristics Under the Wave Condition[J].Proceedings of the Fourth (1994) International Offshore and Polar Engineering Conference,Osaka, Japan, April 10-15,1994,27-32
    [94]H.Kunishu. Submerged floating tunnels in Japan-emperiments and numerial study[A]. International Conference on Submerged Floating Tunnels[C], Sandnes, Norway, 29-30, May,1996
    [95]Kutta Venkataramana, Susumu Yoshihara, Shozo Toyoda, Yorikazu Aikou. Current-induced vibrations of submerged floating tunnels[C]. proceedings of the 6th (1996) international offshore and polar engineering conference, Las Angeles, USA, May 26-31,1996:111-118
    [96]#12
    [97]Toru IIJIMA, Yasuhisa SATO, Hideo KONDO, Natsuhilo OTSUKA. Air spouting type actuator reduce fluid lift force applied for ballast containers of SFT(submerged floating tunnel) subjected flow[J].flow-induced vibration,1999,389:121-127
    [98]#12
    [99]Toru IIJIMA, Fumikazu TANIGUCHI, Hideo KONDO, Yasuhisa SATO, Natsuhilo OTSUKA. Characteristics of Air spouting act on the tesion-leg-suppouted SFT(submerged floating tunnel) subjected sinusoidal flow[J].flow-induced vibration,1999,389:129-135
    [100]S. Kanie; T. Mikami; H. Horiguchi; N. Miyauchi; Y. Mizutani. Effect of non-linearity in restoring force on dynamic response of SFT[C].4th Symposium on Strait Crossings, Bergen/Norway; Sep 2-5,2001:529-534
    [101]Federico M. Mazzolani; Raffaele Landolfo; Beatrice Faggiano; Matteo Esposto. A Submerged Floating Tunnel (Archimedes Bridge) prototype in the Qiandao Lake (PR of China):research development and basic design[J]. Costruzioni Metalliche, 2007,11(5):45-63
    [102]F. M. Mazzolani; R. Landolfo; B. Faggiano; M. Esposto, F. Perotti, G. Barbella. Structure analyses of submerged floating tunnel prototype in qiandao lake(PR of China)[J]. Advances in Structural Engineering.2008,11(4):439-454
    [103]王长春.水中悬浮隧道与洋流耦合作用的模型试验[D].西南交通大学,硕士论文,2005
    [104]ZHOU Xiao-jun; GAO Bo. Mechanical Behaviors of Submerged Floating Tunnel under Current Effect. Journal of Southwest Jiaotong University;2007,15(2):102-110
    [105]干涌.水中悬浮隧道的空间分析与节段模型试验研究[D].浙江大学,博士学位论文2003
    [106]Yiqiang Xiang; Yong Gan; Xing Xu. Spatial analysis of the submerged floating tunnel in the jintang strait[C]. Proceedings of the 7th International Symposium on Structural Engineering for Young Experts,tianjin, august 28-31,2002:666-670
    [107]董满生,葛斐,洪友士.曲线形水中悬浮隧道的温度内力研究[J].工程力学,2006,23(增Ⅰ):21~24
    [108]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究[J].铁道工程学报,2003,4(80):93~96
    [109]王长春.水中悬浮隧道方案可行性初探[J].北方交通2008,2:147~150
    [110]董满生,葛斐,惠磊,洪友士.水中悬浮隧道研究进展[J].中国公路学报,2007,20(4):101~107
    [111]马军庆.水中悬浮隧道研究现状[J].中国港湾建设,2008,6(158):71~73
    [112]陈健云,孙胜男.水中悬浮隧道结构分析研究进展[J]海洋工程,2008,26(3):111~118
    [113]林祥金.悬浮隧道风险分析[D].大连理工大学,硕士学位论文,2007
    [114]李剑.基于模糊综合评价的水中悬浮隧道风险分析[J].地下空间与工程学报,2008,4(2):383~386
    [115]谢立广,周晓军,杨群.传递矩阵法在悬浮隧道纵向静力分析中的应用[J].四川建筑,2007,27(4):96~970
    [116]杜凤,王伟峰.浅谈3ds MAXSCript在悬浮隧道中的应用[J].四川建筑,2008,28(4):62~63
    [117]杜凤.悬浮隧道水下工作环境动态演示系统的研究[D].西南交通大学,硕士学位论文,2008
    [118]李玉成.波浪对海上建筑物的作用[M].北京:海洋出版社,1990
    [119]宁波海洋学校编.海洋学[M].北京:海洋出版社,1986
    [120]缪国平.挠性部件力学导论[M].上海:上海交通大学出版社,1995
    [121]布雷比亚,比尔克.边启光译.近海结构动力分析[M].北京:海洋出版社,1985
    [122]茅春浦.流体力学[M].上海:上海交通大学出版社,1995
    [123]余建星,王磊,侯国华.海底管跨涡激振动疲劳可靠性研究[J].油气储运,2004,23(7):25~28
    [124]余建星,李红涛.波流联合作用下海底管跨疲劳失效的分析[J].天津大学学报,2006,39(9):1015~1020
    [125]王振东.漫话卡门涡街及其应用[J].力学与实践,2006,28:88-90
    [126]傅强.海洋输液立管动力特性及涡激振动理论研究[D].中国海洋大学,硕士学位论文,2004
    [127]Pan Zhi-yuan, Cui Wei-cheng, Zhang Xiao-ci. An overview on VIV of slender marine structures[J]. Journal of ship mechanics,2005,9(6):135-154
    [128]X.Q. Wang, R.M.C. So, K.T. Chan. A non-linear fluid force model for vortex-induced vibration of an elastic cylinder[J].Journal of Sound and Vibration,2003, (260):287-305
    [129]R.D.Gabbai,H.Benaroya. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration 282 (2005) 575-616
    [130]O.M. Griffin, G.H. Koopmann, The vortex-excited lift and reaction forces on resonantly vibrating cylinders[J],Journal of Sound and Vibration,54 (1977):435-448.
    [131]C.H.K. Williamson, R. Govardhan. A brief review of recent results invortex-induced vibrations[J]. Journal of Wind Engineeringand Industrial Aerodynamics, (2007), doi:10.1016/j.jweia.2007.06.019
    [132]娄敏.海底管道悬跨段涡激振动动力特性及动力响应的数值模拟[D].中国海洋大学,硕士学位论文,2005
    [133]娄敏.海洋输流立管涡激振动试验研究及数值模拟[D].中国海洋大学,博士学位论文,2008
    [134]康海贵.振荡流场中近底水平圆柱升力研究[J].海洋通报,2001,20(1):1~7
    [135]任安禄,罗雄平,邵雪明,邓见,王焕然.圆柱绕流涡致振动的平面湍流数值模拟[J].浙江大学学报(工学版),2008,42(7):1111~1114
    [136]ABDALLAH S. Numerical solution for pressure Poisson equation with Neumann boundary condition using non-staggered grid 1,2[J]..Journal of Computational Physics,1987,70:182-202
    [137]WILLIAMSON C, GOVARDHAN R. Vortex-induced vibrations.[J] Annu Rev Fluid Mech,2004,36:413-455
    [138]王建,金志浩,张玉娇.方柱绕流的数值模拟.沈阳化工学院学报[J],2007,21(2):117~120
    [139]龙飞飞,戴光,付冰.高雷诺数下静止管道绕流的数值分析[J].大庆石油学院学报,2007,31(6):90~94&130
    [140]邓见,任安禄,邹建锋.方柱绕流横向驰振及涡致振动数值模拟[J].浙江大学学报(工学版),2005,39(4):595~599
    [141]YUE Bao-zeng. ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem[J].Journal of Beijing Institute of Technlogy, 2006,15(1):5~8
    [142]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究[D].中国海洋大学,博士学位论文,2006
    [143]余建星,孙大军,罗延生,刘立名.涡激振动下管桥段的模糊动力可靠性研究[J].地震工程与工程振动,2005,22(5):36~40
    [144]余建星,孙凡,张忠义,杨晓蓉.基于尾流振子模型的海底管跨动力特性研究[J].海洋技术,2008,27(2):47~51
    [145]童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社,1994
    [146]陶建华.水波的数值模拟[M].天津:天津大学出版社,2005
    [147]吴介之.涡动力学引论[M].北京:高等教育出版社,1993
    [148]杨永发.向量分析与场论[M].天津:南开大学出版社,2006
    [149]袁振伟,褚福磊,工三保.圆柱类转子构件在流体中的振动阻力研究[J].郑州大学学报(工学版),2005,26(1):61-64
    [150]蔡洪滨.圆柱体的涡激升力研究及其动力响应分析[D].中国海洋大学,硕士学位论文,2006
    [151]Blevins,R.D. Flow-induced vibrations[M].2nd edn,New York:Van Nostrand&Co.1990.
    [152]林建忠,阮晓东,陈邦国,王建平,周洁,任安禄.流体力学[M].北京:清华大学出版社,2005
    [153]易家康.挪威峡湾的水中悬浮隧道[J].海洋世界,1997:26
    [154]徐继祖,李维扬,汪克让.海洋工程结构动力分析[M].天津:天津大学出版社,1992
    [155]金伟良.工程荷载组合理论与应用[M].北京:机械工业出版社,2006
    [156]孙意卿.海洋工程环境条件及其荷载[M].上海:上海交通大学出版社,1989
    [157]Chen,Y.N. Fluctuating lift forced of the Karman vortex streets on single circular cylinder and in tube bundles[M]. Journal of Eng For Industry,Tran.Of ASME Ser.B,1972,94(2):603-628
    [158]余建星,罗延生,杨晶.海底管线悬空段模糊固有频率的计算[J].地震工程与工程振动,2006,22(3):66~20
    [159]唐友刚,项忠权,李长升.悬空管线涡激振动强度分析[J].天津大学学报,1996,29(2):247~252
    [160]林家浩,曲乃泗,孙焕纯.计算结构动力学[M].北京:高等教育出版社,1989
    [161]刘盾.实用数学物理方程[M].重庆:重庆大学出版社,1999
    [162]吴晓,郭作杰.考虑支承质量时弹性支承连续梁的固有横振[J].机械科学与技术,1997,16(4):600~602
    [163]吴晓.多跨连续长索的横向固有频率[J].振动与冲击,2005,24(4):127~128&XIV
    [164]李军强,方同.轴向力作用下弹性支承连续梁的固有横振[J].西安石油学院学 报,1999,14(4):70~75
    [165]刘延柱,陈立群.非线性动力学[M].上海:上海交通大学出版社,2000
    [166]袁远,余音,金咸定.船舶在规则横浪中的全局稳定性[J].振动与冲击,2003,22(1):85~87
    [167]袁远,余音,金咸定.船舶在随机横浪中的奇异倾覆机理[J].船舶力学,2004,8(1):44~50
    [168]高普云.非线性动力学—分叉、混沌与孤立了[M].合肥:国防科技大学出版社,2005
    [169]玛尔德纽克,阿·阿,孙振.带小参数的非线性系统的稳定性分析[M].北京:科学出版社,2006
    [170]Dym, Clive L.Stability theory and its applications to structural mechanics [M]. Mineola, N.Y.:Dover Publications,2002.
    [171]刘曾荣.混沌的微扰判据[M].上海科学技术文献出版社,1993
    [172]李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版社,1989
    [173]张琪昌.分岔与混沌理论及应用[M]天津:天津大学出版社,2005
    [174]Wei Xua, Jinqian Fenga, Haiwu Rong. Melnikov's method for a general nonlinear vibro-impact oscillator[J]. Nonlinear Analysis,71(2009):418-426
    [175]唐友刚,谷家扬,郑宏宇,李红霞.用Melnikov方法研究船舶在随机横浪中的倾覆[J].船舶力学,2004,8(5):27~34
    [176]F C. Experiments on chaotic motions of a forced nonlinear oscillator:stranger attractors [J]. J Appl Mech,1988,55:190-196
    [177]徐建,陈斌.重庆地区公路桥梁车辆荷载轴重调查研究[J].山西建筑,2009,35(7):293~294
    [178]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002
    [179]李磊岩,李华军,梁丙臣,工树青.海底管道管跨段在内外流体作用下的竖向动力特性研究[J].中国海洋大学学报,2005,35(1):162~166
    [180]包口东,闻邦椿.水下悬跨管道动力响应分析[J].振动与冲击,2008,26(6):140~143&176~177
    [181]Biolley F. On wake oscillator models for 2-D vortex-induced vibrations [J]. Journal of Fluids and Structures,2002,7:97-123
    [182]Facchinetti M L,de Langre E,Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J].Journal of Fluids and Structures,2004,19(3):123-140
    [183]顾圣十,韩茂安.非线性系统的理论和方法[M].北京:科学出版社,2001
    [184]骆桦.一类非自治系统的稳定性[J].数学的实践与认识,2005,35(2):169~171
    [185]舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社,2001
    [186]黄琳.稳定性理论[M].北京:北京大学出版社,1992,7:16~22
    [187]李骊.强非线性振动系统的定性理论与定量方法[M].北京:科学出版社,1997
    [188]Yoshiaki Muroya, Emiko Ishiwata. Stability for a class of difference equations[J]. Journal of Computational and Applied Mathematics,2009,228(2):Pages 561-570
    [189]E.J. Janowski, M.R.S. Kulenovic. Attractivity and global stability for linearizable difference equations[J]. Computers & Mathematics with Applications,2009, 57(9):1592-1607
    [190]#12
    [191]杨绍普,申永军.滞后非线性系统的分岔与奇异性[M]..北京:科学出版社,2003
    [192]谢应齐,曹杰.非线性动力学数学方法[M].北京:气象出版社,2001
    [193]闫长斌,徐国元.动荷载诱发上下交叠硐室间顶柱失稳的突变理论分析[J].工程力学,2007,24(4):46~51
    [194]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987
    [195]余建星,孙凡,傅明炀,杜尊峰,郭君.海底管线涡激振动响应动力特性[J].天津大学学报,2009,42(1):1-5
    [196]余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究[J].地震工程与工程振动,2001,21(4):93~97
    [197]朱彤.结构动力模型相似问题及结构动力试验技术研究[D].大连理工大学,博士学位论文,2004
    [198]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005
    [199]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005
    [200]朱川海.大跨度屋盖气弹模型风洞试验需要满足的相似条件[J].空间结构,2005,11(4):46~53
    [201]李昕,刘亚坤,周晶,等.海底悬跨管道动力响应的试验研究和数值模拟[J].工程力学,2003,20(2):21-25.
    [202]刘礼华,欧珠光.动力学实验[M].武汉:武汉大学出版社:2006
    [203]夏候淳.振动测量的应用[M].北京:中国环境科学出版社,1986
    [204]M.A.普林特,康振黄译.流体力学实验教程[M].北京:计量出版社,1986
    [205]沙勇.悬跨海底管线动力响应试验与数值研究[D].大连理工大学,博十学位论文.2007
    [206]吴了牛.计算流体力学基本原理[M].北京:科学出版社,2001
    [207]Pieter Wesseling.Principles of computational fluid dynamics[M].北京:科学出版社,2006
    [208]任安禄.不可压缩粘性流场计算方法[M].北京:国防工业出版社,2003
    [209]Alexandre J. Chorin旋度与湍流[M].北京:清华大学出版社,2005
    [210]张兆顺.湍流[M].北京:国防工业出版社,2002
    [211]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999
    [212]林建忠.流场拟序结构及控制[M].杭州:浙江大学出版社,2002
    [213]朱家鲲.计算流体力学[M].北京:科学出版社,1985
    [214]姚育成,李万平.高雷诺数情况下钝体绕流的数值模拟[J].华中科技大学学报:自然科学版,2003,31(2):106~108
    [215]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析[J].水动力学研究与进展,2005,20(2):146~151
    [216]李寿英,顾明.斜直圆柱绕流CFD模拟[J].空气动力学学报,2005,23(2):222~227
    [217]Speziale G G, Thangam S. Analysis of an RNG based tur-bulence model for sepaeated flows[J]. Int J Engrg Sci,1992,30:1379-1391.
    [218]潘小强,沈庆.漕渡门桥航行水阻力和绕流场的数值预报[J].解放军理工大学学报,2005,6(4):363~369
    [219]Jianfeng Zhang, Charles Dalton. Interactions of vortex-induced vibrations of a circular cylinder and a steady approach flow at a Reynolds number of 13000 [J]. Computers & Fluids,1996,25(3):283-294
    [220]C.T.Yamamotoa,J.R. Meneghinib,F. Saltarab,R.A.Fregonesib,J.A.Ferrari Jr Numerical simulations of vortex-induced vibration on flexible cylinders[J]. Journal of Fluids and Structures,19 (2004):467-489
    [221]詹昊,李万平,方秦汉,李龙安.不同雷诺数下圆柱绕流仿真计算[J].武汉理工大学学报,2008,30(12):129~132
    [222]赖永星,刘敏珊,董其伍.圆管绕流旋涡脱落诱导振动的数值模拟[J].动力学与控制学报,2005,3(1):84~89
    [223]江召兵,沈庆,陈徐均,潘小强.ALE动网格法在流固耦合数值模拟中的应用[J].应用力学学报,2008,25(4)
    [224]工福军.计算流体动力学分析:CFD软件原理与应用[M]北京:清华大学出版社,2004
    [225]蒋莉,沈孟育.求解流体与结构相互作用问题的ALE有限体积方法.水动力学研究与进展A辑,2000,15(2):148~155
    [226]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003
    [227]韩占忠,工敬,兰小平.FLUENT流体丁程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [228]工瑞金,张凯,工刚FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007
    [229]颜庆津.数值分析[M].北京:北京航空航天大学出版社,2006
    [230]Gerald Recktenwald,五卫国,万群,张辉.数值方法和MATLAB实现与应用[M].北京:机械工业出版社,2004
    [231]NakamuraShoichiro,梁恒,刘晓艳.科学计算引论——基于MATLAB的数值分析(第二版)[M].北京:电子工业出版社,2002
    [232]Edward B.Magrab,Shapour Azarm,Balakumar Blachandran,James H.Duncan,Keith E.Herold,Gregory C.walsh,高会生,李新叶,胡智奇.MATLAB原理与工程应用[M].北京:电了工业出版社,2006
    [233]T.Sarpkaya A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures.19(2004):389-447
    [234]李小珍,强十中.大跨度公铁两用斜拉桥车桥动力分析[J].振动与冲击,2003,22(1):6-9&19&25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700