用户名: 密码: 验证码:
软土地区深基坑施工引起的变形及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着软土地区城市建筑密度的增加,基坑工程常处于密集的既有建(构)筑物附近,基坑施工受到了更加严格的环境制约。预测基坑施工引起的变形及其对周边环境的影响,总结各种基坑变形控制技术措施并验证其实施效果,对于软土地区深基坑的设计与施工具有重要指导意义。本文结合上海软土地区深基坑工程实践,采用理论分析、数值模拟、原位试验和施工监测等方法,对软土地区深基坑围护结构(地下连续墙)施工和基坑开挖引起的变形及基坑变形控制方法进行了研究。
     总结并探讨了现行方法及软件应用于基坑分析的适用性,结合FLAC3D显式算法的计算特点并针对其构建复杂模型的不足,开发了相应的FLAC3D前处理程序。对FLAC3D基坑数值模拟涉及的模型尺寸与边界条件、初始应力条件、本构模型选用及参数确定、围护结构与土体相互作用、桩土相互作用、显式算法计算结果判断等技术问题进行了分析并提出了具体处理方法与经验建议,为复杂环境下深基坑施工变形预测提供了技术途径。
     对软土地区深基坑常用围护结构地下连续墙施工过程中的槽壁稳定与土体变形问题进行了研究。将地下连续墙槽壁稳定影响因素进行归类,分析了槽壁整体失稳、局部失稳及成槽前后槽壁土体的应力路径。编制了地下连续墙成槽原位试验方案,自主设计了土压力和护壁泥浆压力的测试装置与测试方法,对地下连续墙成槽作业进行了全过程监测并对试验结果进行了分析。通过对地下连续墙成槽开挖与混凝土浇筑的动态数值模拟,研究了槽壁水平应力分布、槽壁侧向变形与地面沉降的规律,并对槽壁加固、导墙施作、混凝土地坪、侧边已有墙体等施工条件对槽壁侧向变形与地面沉降的影响进行了参数分析,提出了相应的技术措施建议。
     根据建议的基坑围护结构侧向变形曲线和地面沉降曲线估算公式,通过引入水平位移传递系数和竖向位移传递系数,提出了预测坑外任意位置地层位移的简化计算公式,给出了基坑开挖对周边环境影响的简化分区图及相应保护对策。根据差异沉降作用下建筑变形的性态,建立了墙体变形的悬臂梁模型、简支梁模型和两跨连续梁模型,采用等代荷载法深梁理论分析了基坑沉降影响区内墙体参数对其受力和变形的影响,给出了建筑破坏等级的实用判断方法并进行了工程验证。根据桩基与基坑环境影响分区的关系,将基坑开挖对高架桥梁桩基的影响划分为无影响桩、短桩、中长桩和长桩四类,分析了不同桩基的变形规律及其保护对策。通过建立短桩、中长桩和长桩侧向变形的等代荷载法简化计算模型,提出了由桩身应力控制的桩基及基坑围护结构变形控制标准。
     针对基坑变形的产生、发展、传递和建(构)筑物保护等环节,提出了“源头控制、路径隔断、对象保护”的基坑变形综合控制理念,建议了基坑变形全过程控制流程。结合上海软土地区工程案例研究了深基坑工程中常用的基坑支护结构方案优化与调整、坑内被动区地基加固、坑外主动区地基加固与隔离、对象保护与加固等技术措施的变形控制效果,提出了基坑变形控制措施选择建议。
     将研究成果应用于上海地铁8号线西藏南路站6区深基坑工程并进行了合理性验证。采用基坑开挖环境影响简化分区图并根据高架桩基与基坑的相对位置关系,得出高架桩基的影响类型。对比分析了地下连续墙和钻孔灌注桩两种基坑围护结构施工的变形,通过建立考虑基坑周边高架基础在内的整体计算模型,动态预测了基坑变形及其对高架基础的影响。制定了基坑监测方案并对基坑开挖实施了跟踪监测,将主要监测结果与计算结果及上海地区已建地铁车站基坑监测数据进行了对比分析,既验证了变形预测结果的可靠性,又验证了基坑开挖环境影响分区图、桩基影响类型判断、由桩身应力控制的基坑变形控制标准及基坑变形综合控制措施的合理性。本文的研究具有一定实用价值,可为今后相关工程的设计与施工提供借鉴。
Deep excavations with complicated environment conditions have sprung up during urban underground space developing process; these deep excavations are usually surrounded by buildings and utilities. More severe restrictions are required for these deep excavations in soft soil deposits. To ensure safety of those adjacent structures, ground movement pattern and the influence of deep excavation on environment are needed to be predicted in advance, thus providing guidelines to take appropriate deformation control measures. This dissertation carried out researches on deformation influence and control issues of deep excavation on environment in Shanghai soft soil deposits, by means of theoretical analysis, numerical simulation as well as in situ test and field observation.
     Conventional analysis methods and softwares for deep excavation were summarized and discussed. According to advantage of explicit calculation method and limitation of complex numerical model establishment based on FLAC3D, a pre-processing program for FLAC3D was developed. Some technical issues for numerical simulation, including boundary and initial stress conditions, choice of constitutive model and corresponding parameters, interaction between retaining structure and ground, interaction between pile and ground, and judgement of calculation results, were discussed and the corresponding treatment principles were proposed.
     Theoretical analysis, in situ test and numerical simulation were employed to study slurry wall stability and ground movement during slurry trenching and concreting for diaphragm wall. Influence factors on slurry wall stability were classified and discussed, meanwhile, global and local instability of slurry wall were investigated by theoretical analysis. Deformation mechanism of slurry wall during different construction stages were analyzed by in situ test. New testing equipments and methods for soil pressure and bentonite slurry pressure were designed, and the test results provided parameters for numerical simulation. The slurry trenching and concreting process were dynamically simulated by the established numerical model, and horizontal stress distribution, lateral deflection of slurry wall and ground settlement were investigated. The influence of slurry wall improvement, guide wall, concrete pavement, and existing side wall on lateral deformation of slurry wall and ground settlement was studied by parametric analyses.
     An empirical ground movement estimation expression for any point outside excavation was established based on lateral deflection of retaining wall and ground surface settlement profiles. The influence of deep excavation on surrounding environment was divided into three influence zones, and an simplified zone chart and environment protection countermeasures were put forward. A deep beam model was established to investigate stress and deflection of building wall subjected to differential ground surface settlement, and a practical method for estimating building damage degree was put forward and verified. The influence of deep excavation on adjacent pile foundation was divided into four types, and the corresponding deformation control criteria and protection measures were presented.
     A whole process deformation control idea of“source restriction, path isolation, and object protection”was proposed; the corresponding control flow diagram was also established. Some deformation control measures for deep excavation commonly adopted in Shanghai soft soil deposits, including optimization and adjustment of retaining scheme, ground improvement inside excavation, ground improvement and isolation outside excavation, protection and strengthening of adjacent structures, were investigated, and an integrated deformation control system for deep excavation was established.
     The main findings of the study were applied to a deep excavation project for metro station in Shanghai and validated by the field observation. The types of the nearby piles were classified by the proposed influence zone chart, and the corresponding protection countermeasures were emphasized. The deformation influence of diaphragm wall and bored pile construction on the environment was investigated and analyzed, and the influence of the deep excavation on the nearby pile foundations was dynamically predicted by the established numerical model taking into account the existing pile foundations. The excavation was extensively monitored by the designed observation scheme, and the observed results agreed well with the predicted data, meanwhile, the measured lateral deflection of retaining structures were only half of the collected case histories in Shanghai soft soil deposits. The reliability of this study and the effectiveness of the integrated deformation measures were proved.
引文
[1]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社, 1997.
    [2]白廷辉.上海轨道交通深基坑工程新技术与实践[J].地下空间与工程学报, 2005, 1(4): 554-560.
    [3]赵荣欣.软土地基基坑工程的环境效应及对策研究[D].博士学位论文.杭州:浙江大学, 1999.
    [4]黄海滨.上海地铁车站施工中的环境保护技术[D].博士学位论文.上海:同济大学, 2000.
    [5]吕少伟.上海地铁车站施工周围土体位移场预测及控制技术研究[D].博士学位论文.上海:同济大学, 2002.
    [6]孔祥鹏,刘国彬,廖少明.明珠线二期上海体育馆地铁车站穿越施工对地铁一号线车站的影响[J].岩石力学与工程学报, 2004, 23(5): 821-825.
    [7]姚燕明,周顺华,孙巍,等.坑底加固对平行换乘车站基坑变形影响的计算分析[J].地下空间, 2004, 24(1): 7-10.
    [8]曾远,李志高,王毅斌.基坑开挖对邻近地铁车站影响的因素研究[J].地下空间与工程学报, 2004, 1(4): 642-645.
    [9]汪中卫.考虑时间与小应变的地铁深基坑变形及土压力的研究[D].博士学位论文.上海:同济大学, 2005.
    [10]谢弘帅.紧贴运营地铁车站深基坑施工变形控制研究[D].博士学位论文.上海:同济大学, 2005.
    [11]李志高.地下综合体深基坑施工环境影响及保护研究[D].博士学位论文.上海:同济大学, 2006.
    [12]刘燕.地铁换乘枢纽后建车站施工影响的研究[D].博士学位论文.上海:同济大学, 2007.
    [13]谢秀栋.软土地区深基坑施工变形安全性状的时间特性研究[D].博士学位论文.上海:同济大学, 2007.
    [14]龚晓南,高有潮.深基坑工程设计施工手册[M].北京:中国建筑工业出版社, 1998.
    [15]侯学渊,杨敏.软土地基变形控制设计理论和工程实践[M].上海:同济大学出版社, 1996.
    [16]中国建筑科学研究院.建筑基坑支护技术规程(JGJ120-99)[S], 1999.
    [17]王卫东,李进军,徐中华.敏感环境条件下深基坑工程的设计方法[J].岩土工程学报, 2008,30(S1): 349-354.
    [18] Roboski J F. Three-dimensional performance and analyses of deep excavations[D]. PhD thesis. Evanston, Ilinois: Northwesten University, 2004.
    [19]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社, 1984.
    [20]周学明,袁良英,蔡坚强,等.上海地区软土分布特征及软土地基变形实例浅析[J].上海地质, 2005, (4): 6-9, 61.
    [21]上海市勘察设计协会.岩土工程勘察规范(DGJ08-37-2002)[S], 2002.
    [22]孙钧.市区地下连续墙基坑开挖对环境病害的预测与防治[J].西部探矿工程, 1994, 6(5): 1-7.
    [23] Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice[M]. New York: John Wiley & Sons, 1948.
    [24] Bjerrum L, Eide O. Stability of strutted excavations in clay[J]. Geotechnique, 1956, 6(1): 32-47.
    [25] Clough G W O'Rourke T D. Construction induced movements of in situ walls[C]// ASCE Conference on Design and Performance of Earth Retaining Structures, Geotechnical Special Publication No. 25. New York, 1990, 439–470.
    [26] Mana A I, Clough G W. Prediction of movements for braced cuts in clay[J]. Journal of Geotechnical Engineering, ASCE, 1981, 107(6): 759-777.
    [27] Mana A I. Finite element analyses of deep excavation behavior in soft clay[D]. PhD thesis. California: Stanford University, 1976.
    [28] Terzaghi K. Theoretical soil mechanics[M]. New York: John Wiley & Sons, 1943.
    [29] Ou C Y, Hisieh P G, Chiou D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 7(7): 758-767.
    [30] Bolton M D, Powrie W. Behaviour of diaphragm walls in clay prior to collapse[J]. Geotechnique, 1988, 38(2): 167-189.
    [31]刘兴旺,施祖元,益德清,等.软土地区基坑开挖变形性状研究[J].岩土工程学报, 1999, 21(4): 456-460.
    [32] Long M. Database for retaining wall and ground movements due to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 203-224.
    [33] Moormann C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98.
    [34] Yoo C. Behavior of braced and anchored walls in soils overlying rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 225-233.
    [35]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D].博士学位论文.上海:上海交通大学, 2007.
    [36] Caspe M S. Surface settlement adjacent to braced open cuts[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(SM4): 51-59.
    [37] Peck R B. Deep excavation and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art-Volume. Mexico City, 1969, 225–290.
    [38]侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算[J].岩土工程师, 1989, 1(1): 3-13.
    [39] Nicholson D P. The design and performance of the retaining wall at Newton Station[C]// Proceeding of Singapore Mass Rapid Transit Conference. Singapore, 1987, 147-154.
    [40] Hsieh P G, Ou C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [41]徐方京,谭敬慧.地下连续墙深基坑开挖综合特性研究[J].岩土工程学报, 1993, 15(6): 28-33.
    [42]刘建航.地下墙深基坑周围地层移动的预测和治理之二—基坑周围地层移动的预测[J].地下工程与隧道, 1993, (2): 2-15,23.
    [43]上海市勘察设计协会.基坑工程设计规程(DBJ08-61-97)[S], 1997.
    [44]唐孟雄.深基坑周围地表沉降及变形分析[J].建筑科学, 1996, (4): 31-35.
    [45]唐孟雄,赵锡宏.深基坑周围地表任意点移动变形计算及应用[J].同济大学学报(自然科学版), 1996, 24(3): 238-244.
    [46] Ou C Y, Liao J T, Lin H D. Performance of diaphragm wall constructed using top-down method[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9): 798-808.
    [47] Ou C Y, J T Liao, H D Lin. Performance of diaphragm wall constructed using top-down method[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998, 124(9): 798-808.
    [48]刘建航.地下墙深基坑周围地层移动的预测和治理之一[J].地下工程与隧道, 1991, (2): 1-15.
    [49]张国霞,张乃瑞,张凤林.病房楼工程基坑回弹和地基沉降的观测分析[J].土木工程学报, 1980, 3(1): 23-37.
    [50] Tsui Y, Cheng Y M. A foundamental stufy of braced excavation[J]. Computers and Geotechnics, 1989, (8): 39-64.
    [51]李佳川.软土地区地下连续墙深基坑开挖的三维分析及试验研究[D].博士学位论文.上海:同济大学, 1992.
    [52]夏明耀.多撑式地下连续墙入土深度的模拟试验研究[J].水电自动化与大坝监测, 1984,(2): 26-34.
    [53]刘国彬,侯学渊.软土基坑隆起变形的残余应力法[J].地下工程与隧道, 1996, (2): 2-7.
    [54]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报, 1996, 18(6): 18-23.
    [55]刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法[J].土木工程学报, 2000, 33(4): 61-67.
    [56] Wong K S, Broms B B. Lateral wall deflections of braced excavations in clay[J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(6): 853-870.
    [57] Ou C Y. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(5): 337-345.
    [58] Lee F H, Yong K Y, Quan C N, et al. Effects of corners in strutted excavations: field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(4): 339-349.
    [59]张冬霁.考虑空间与时间效应的基坑工程数值分析研究[D].博士学位论文.杭州:浙江大学, 2000.
    [60]沈健.基于“m”法的软土地区基坑工程时空效应研究[D].硕士学位论文.上海:上海交通大学, 2006.
    [61] Finno R J, Blackburn J T, Roboski J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(1): 30-36.
    [62] Li Y Q, Ying H W, Xie K H. On the dissipation of negative excess porewater pressure induced by excavation in soft soil[J]. Journal of Zhejiang University (Science), 2005, 6A(3): 188-193.
    [63]徐浩峰,应宏伟,朱向荣.某深基坑工程监测与流变效应分析[J].工业建筑, 2003, 33(7): 11-14.
    [64]秦爱芳,刘绍峰,胡中雄.基坑软土强度变化特征及坑底施工安全控制[J].地下空间, 2003, 23(1): 40-44.
    [65]刘涛,杨国伟,刘国彬.上海软土深基坑有支撑暴露变形研究[J].岩土工程学报, 2006, 28(S1): 1842-1845.
    [66]刘国彬,刘登攀,刘丽雯.基坑坑底施工阶段围护墙变形监测分析[J].岩石力学与工程学报, 2007, 28(S2): 4386-4394.
    [67]刘建航.基坑工程时空效应理论与实践[R],上海市科委课题报告. 1997.
    [68]贾坚.软土时空效应原理在基坑工程中的应用[J].地下空间与工程学报, 2005, 1(4): 490-493.
    [69] Meyerhof G G. The settlement analysis of building frames[J]. Structural Engineer, 1947, (25): 309.
    [70] Skempton A W, MacDonald D H. Allowable settlement of buildings[C]// Proceeding of Institution of Civil Engineers, PartⅢ. s.l.: s.n., 1957, 727-768.
    [71] Polshin D E, Tokar R A. Maximum allowable nonuniform settlement of structures[C]// Proceedings of Fourth International Conference on Soil Mechanics and Foundation Engineering. s.l.: s.n., 1957, 402-406.
    [72] Bjerrum I. Allowable settlement of structures[C]// Proceeding of European Conference on Soil Mechanics and Foundation Engineering. Weisbaden, Germany: s.n., 1963, 35-137.
    [73] Burland J B, Wroth C P. Settlement of buildings and associated damage[C]// Proceedings of Conference on Settlement of Structures. London: Pentech Press, 1974, 611-654.
    [74] Boscardin M, Cording E. Building response to excavation-induced settlement[J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(1): 1-21.
    [75] Boone S J. Ground-movement-related building damage[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(11): 886-996.
    [76]杨国伟.深基坑及其邻近建筑物保护研究[D].博士学位论文.上海:同济大学, 2001.
    [77] Finno R J, Bryson L S. Response of building adjacent to stiff excavation support system in soft clay[J]. Journal of Performance of Constructed Facilities, ASCE, 2002, 16(1): 10-20.
    [78] Finno R J, Voss F T, Rossow E, et al. Evaluating damage potential in buildings affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(10): 1199-1210.
    [79] Son M, Cording E J. Estimation of building damage due to excavation-induced ground movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(2): 162-177.
    [80] De Beer E E. The effect of horizontal loads on piles, due to surcharge or seismic effects.[C]// Proceedings of 9th International Conference of Soil Mechanics and Foundation engineering. Tokyo: Japanese Association for Steel Pipe Piles, 1977, 547-558.
    [81]褚峰.基坑开挖对邻近桩的影响分析[D].硕士学位论文.上海:同济大学, 2006.
    [82] Finno R J, Lawrence S A, Allawh N F, et al. Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(6): 934-955.
    [83] Poulos H G, Chen L T. Pile response due to unsupported excavation-induced lateral soil movement[J]. Canadian Geotechnical Journal, 1996, 33(4): 670-677.
    [84] Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(2): 94-99.
    [85] Leung C F, Chow Y K, Shen R F. Behavior of pile subject to excavation-induced soilmovement[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(11): 947-954.
    [86] Leung C F, Lim J K, Shen R F. Behavior of pile groups subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(1): 58-65.
    [87] Goh A T C, Wong K S, Teh C I, et al. Pile response adjacent to braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(4): 383-386.
    [88] Ong D E L, Leung C F, Chow Y K. Pile behavior due to excavation-induced soil movement in clay. I: Stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2006, 132(1): 36-44.
    [89] Leung C F, Ong D E L, Chow Y K. Pile behavior due to excavation-induced soil movement in clay. II: Collapsed wall[J]. Journal of Geotechnical Engineering, ASCE, 2006, 132(1): 45-53.
    [90]杨敏,周洪波,杨桦.基坑开挖与临近桩基相互作用分析[J].土木工程学报, 2005, 38(4): 91-96.
    [91]范巍.大面积深基坑开挖过程中桩基受力特性研究[D].硕士学位论文.上海:上海交通大学, 2007.
    [92]杜金龙,杨敏.基坑开挖与邻近桩基相互作用的弹塑性解[J].岩土工程学报, 2008, 28(8): 1121-1125.
    [93]杜金龙,杨敏.软土基坑开挖对邻近桩基影响的时效分析[J].岩土工程学报, 2008, 28(7): 1038-1043.
    [94]广东省工程建设标准化协会.建筑基坑支护工程技术规程(DBJ/T15-20-97)[S], 1997.
    [95]深圳市勘察测绘院.深圳地区建筑深基坑支护技术规范(SJG05-96)[S], 1996.
    [96]湖北省深基坑工程咨询审查专家委员会.基坑工程技术规程(DB42/159-2004)[S], 2004.
    [97]李琳.工程降水对深基坑性状及周围环境影响的研究[D].博士学位论文.上海:同济大学, 2007.
    [98] Bowles J E. Foundation Analysis and Design(Fifth Edition)[M]. New York: McGraw-Hill Book Company, 1996.
    [99]王元湘.深基坑挡土结构的受力分析[J].土木工程学报, 1998, 31(2): 12-20.
    [100] Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice(Second Edition)[M]. New York: John Wiley & Sons, 1967.
    [101]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实践(上)[J].地下工程与隧道, 1999, (3): 7-12.
    [102]陆瑞明,赵锡宏.基坑围护非线性的空间设计计算理论与方法[J].广东土木建筑, 1999,(4): 3-10.
    [103]沈健,王建华,高绍武.基于“m”法的深基坑支护结构三维分析方法[J].地下空间与工程学报, 2005, 1(4): 530-533.
    [104]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社, 2000.
    [105] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of Geotechnical Engineering, ASCE, 1971, 97(12): 1657-1673.
    [106] Clough G W, Tsui Y. Performance of tied-back walls in clay[J]. Journal of the Construction Division, ASCE, 1974, 100(12): 1259-1273.
    [107] Clough G W, Denby G M. Stabilizing berm design for temporary walls in clay[J]. Journal of Geotechnical Engineering, ASCE, 1977, 103(2): 75-90.
    [108] Christian J T, Wong I H. Errors on simulating excavation in elastic media by finite elements[J]. Soils and Foundations, 1973, 13(1): 1-10.
    [109] Jardine R J, Potts D M, Fourrie A B, et al. Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction[J]. Geotechnique, 1986, 24(4): 549-561.
    [110] Potts D M, Flourie A B. The hehavior of a propped retaining wall: Results of a numerical experiment[J]. Geotechnique, 1984, 34(3): 383-404.
    [111] Zdravkovic L, Potts D M, ST John H D. Modelling of a 3D excavation in finite element analysis[J]. Geotechnique, 2005, 55(7): 497-513.
    [112]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报, 1988, 10(3): 13-22.
    [113]俞建霖,龚晓南.软土地基坑开挖的三维性状分析[J].浙江大学学报(自然科学版), 1998, 32(5): 552-557.
    [114]陆新征,宋二祥,吉林,等.某特深基坑考虑支护结构与土体共同作用的三维有限元分析[J].岩土工程学报, 2003, 25(4): 488-491.
    [115] Marti J, Cundall P A. Mixed discretization procedure for accurate solution of plasticity problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 129-139.
    [116] Itasca Consulting Group, Inc., ed. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0, Users' Manual. 2002: Minneapolis, MN, USA.
    [117]何海健.地铁洞桩法施工对邻近桥桩的影响与控制[D].博士学位论文.北京:北京交通大学, 2007.
    [118] Hart H. Enhancing rock stress understanding through numerical analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(7-8): 1089–1097.
    [119]庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实列[M].北京:科学出版社, 2005.
    [120]胡斌,张倬元,黄润秋,等. FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报, 2002, 21(9): 1387-1391.
    [121]徐文杰,胡瑞.基于逆向工程的三维复杂地质体精细建模及ADINA前处理在FLAC3D建模中的应用[J].工程地质学报, 2008, 16(5): 703-709.
    [122]于开平,周传月,谭惠丰,等. HyperMesh从入门到精通[M].北京:科学出版社, 2005.
    [123]徐中华,王卫东,王建华.上海软土地区某深基坑工程的实测与分析[J].岩石力学与工程学报, 2004, 23(S1): 4639-4644.
    [124]丁勇春,王建华,徐中华,等.上海软土地区某深基坑施工监测分析[J].西安建筑科技大学学报(自然科学版), 2007, 39(3): 333-338,344.
    [125]钱家欢,殷宗泽.土工原理与计算(第2版)[M].北京:中国水平水电出版社, 1996.
    [126]王卫东,王建华.深基坑支护结构与主体结构相结合的设计、分析与实例[M].北京:中国建筑工业出版社, 2007.
    [127] Ling H J, Whittle J. Discussion: Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(5): 458-459.
    [128] Ou C Y, Chiou D C, Wu T S. Closure: Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(5): 459-460.
    [129]李进军,王卫东,邸国恩,等.基坑工程对邻近建筑物附加变形影响的分析[J].岩土力学, 2007, 28(S1): 623-629.
    [130] Potts D M, Mair R J. Finite element analysis in geotechnical engineering: application[M]. London: Thomas Telford, 2001.
    [131] Simpson B. Retaing structures: displacement and design[J]. Geotechnique, 1992, 42(4): 541-576.
    [132] Schanz T, Vermeer P A. The hardening soil model: formulation and verification[C]// Beyond 2000 in Computational Geotechnics. Balkema, 1999, 281-296.
    [133] Whittle A J. A constitutive model for overconslilidated clays with application to the cyclic loading of friction piles[D]. PhD thesis. Cambridge, Massachusetts: Massachusets Inistitute of Technoligy (MIT), 1987.
    [134]中华人民共和国建设部.建筑地基基础设计规范(GB5007-2002)[S], 2002.
    [135]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S], 2001.
    [136]冶金工业部建筑研究总院.建筑基坑工程技术规范(YB9258-97)[S], 1997.
    [137]上海市勘察设计协会.地基基础设计规范(DGJ08-11-1999)[S], 1999.
    [138]高广运,李伟,顾国荣,等.软土基坑土压力计算抗剪强度参数的分析[J].岩土力学, 2005, 26(S1): 183-186.
    [139] Roscoe K H, Schofield A N, Worth C P. On the yielding of soils[J]. Geotechnique, 1958, 8(1): 22 - 53.
    [140] Roscoe K H, Schofield M A, Thurairajah A. Yield of clays in states wetter than critical[J]. Geotechnique, 1963, 13(3): 211-240.
    [141] Roscoe K H, Burland J B. On the generalized stress-strain behaviour of 'wet' clay[C]// Engineering Plasticity. Cambridge: Cambridge University Press, 1968, 535-609.
    [142] Schofield A N, Wroth C P. Critical State Soil Mechanics[M]. London: McGrw-Hill, 1968.
    [143]林毅峰,成卫忠,朱合华.江中超深基坑与围堰相互作用的分析与研究[J].岩土工程学报, 2006, 28(S1): 1826-1829.
    [144]黄绍铭,高大钊.软土地基与地下工程(第二版)[M].北京:中国建筑工业出版社, 2005.
    [145] Jack J. The coefficient of earth pressure at rest[J]. Journal of the Society of Hungarian Architects and Engineers, 1944, 7: 355-358.
    [146] Gao D Z, Wei D D, Hu Z Z. Geotechnical properties of Shanghai soils and engineering[C]// Marine Geotechnology and Nearshore/Offshore Structures. Shanghai: STP923, 1986, 161-178.
    [147]孙洋波.软土地区深基坑工程逆作法数值分析与实测研究[D].博士学位论文.上海:同济大学, 2006.
    [148]赵锡宏,姜洪伟,袁聚云,等.上海软土各向性弹塑性模型[J].岩土力学, 2003, 24(3): 322-330.
    [149]丁勇春,王建华,徐斌.基于FLAC3D的基坑开挖与支护三维数值分析[J].上海交通大学学报, 2009, 43(6): 976-980.
    [150]魏道垛,胡中雄.上海浅层地基土的前期固结压力及有关压缩性参数的试验研究[J].岩土工程学报, 1980, 2(4): 13-22.
    [151]魏道垛,高大钊,胡中雄.上海软土的工程性质[C]//软土地基理论与实践.北京:中国建筑工业出版, 1992, 39-49.
    [152] Wood D M. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [153] Tsui Y. A foundamental study of tie-back wall behavior[D]. PhD thesis. Duham, North Carolina: Duke University, 1974.
    [154] Hashash Y M A. Analysis of deep excavation in clay[D]. PhD thesis. Cambridge, Massachusetts: Massachusets Inistitute of Technoligy (MIT), 1992.
    [155]夏明耀,曾进伦.地下工程设计施工手册[M].北京:中国建筑工业出版社, 1999.
    [156] Morton K, Cater R W, Linney L. Observed settlements of buildings adjacent to stations constructed for the modified initial system of the mass transit railways, Hong Kong[C]// Proceedings of the 6th Asian Conference of the Soil Mechanics and Foundation Engineering. Taipei: s.n., 1980, 415-429.
    [157] Cowland J W, Thorley C B B. Ground and building settlement associated with adjacent slurry trench excavation[C]// Ground Movements and Structures. London: Pentech Press, 1985, 723-738.
    [158]刘国彬,鲁汉新.地下连续墙成槽施工对房屋沉降影响的研究[J].岩土工程学报, 2004, 26(2): 287-289.
    [159]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社, 1998.
    [160] Nash K L. Stability of trenches filled with fluids[J]. Journal of the Construction Division, ASCE, 1974, 100(4): 533-542.
    [161] Nash K L. Diaphragm wall construction techniques[J]. Journal of the Construction Division, ASCE, 1974, 100(4): 605-620.
    [162]雷国辉,王轩,雷国刚.泥浆护壁开挖稳定性的影响因素及失稳机理综述[J].水利水电科技进展, 2006, 26(1): 82-86.
    [163] Filz G M, Adams T, Davidson R R. Stability of long trenches in sand supported by bentonite-water slurry[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(9): 915-921.
    [164] Morgenstern N, Amir-Tahmasseb I. The stability of a slurry trench in cohesionless soils[J]. Geotechnique, 1965, 15(4): 387-395.
    [165]陆震铨,祝国荣.地下连续墙的理论与实践[M].北京:中国铁道出版社, 1987.
    [166]王卫东,翁其平.“两墙合一”设计关键技术问题研究[J].地下空间与工程学报, 2005, 1(4): 574-578.
    [167]北京市城乡建设委员会.地下铁道工程施工及验收规范(GB50299-2003)[S], 2003.
    [168]李广诚.黄壁庄水库副主渗墙施工地面塌陷原因分析[J].水利技术监督, 2003, (2): 43-47.
    [169]刘杰.黄壁庄水库副坝塌陷原因分析[J].水利水运工程学报, 2003, (4): 20-24.
    [170] Tsai J S. Stability of weak sublayers in a slurry supported trench[J]. Canadian Geotechnical Journal, 1997, 34(2): 189-196.
    [171] Tsai J S, Chang C C, Jou L D. Lateral extrusion analysis of sendwiched weak soil in slurry trench[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(11): 1082-1090.
    [172]李耀良,袁芬.大深度大厚度地下连续墙的应用与施工工艺[J].地下空间与工程学报, 2005, 1(4): 614-618.
    [173]赵建夏,黄力平.地下连续墙施工中的常见事故及对策[J].现代隧道技术, 2001, 38(4): 37-39, 47.
    [174] Farmer I W, Attewell P B. Ground movements caused by a bentonite-supported excavation in London clay[J]. Geotechnique, 1973, 23(4): 577-581.
    [175] Oblozinsky P, Ugai K, Katagiri M, et al. A design method for slurry trench wall stability in sandy ground based on the elasto-plastic FEM[J]. Computers and Geotechnics, 2001, 28(2): 145-159.
    [176] Powrie W, Kantartzi C. Ground response during diaphragm wall installation in clay: centrifuge model test[J]. Geotechnique, 1996, 46(4): 725-739.
    [177]张厚美,夏明耀.地下连续墙泥浆槽壁稳定的三维分析[J].土木工程学报, 2000, 33(1): 73-76.
    [178]李禄荣.关于地连墙槽壁稳定三维分析计算公式的辨正[J].岩土工程学报, 2001, 23(3): 374-375.
    [179] Fox P J. Analytical solutions for stability of slurry trench[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(7): 749-758.
    [180]吴权.软土地区逆作法深基坑围护变形与邻近建筑物沉降实测研究[D].硕士学位论文.同济大学, 2004.
    [181]陈锦剑,丁勇春,王建华,等.土体中侧向土压力传感器埋设方法及装置[P].中国专利: CN101358455, 2008.
    [182]陈锦剑,丁勇春,王建华.地下连续墙成槽施工中护壁泥浆压力的测试方法及装置[P].中国专利: CN101324062, 2008.
    [183]中国船舶工业总公司第九设计研究院.船台滑道结构设计[M].北京:国防工业出版社, 1988.
    [184] Ng C W W, Yan W M. Stress transfer and deformation mechanisms around a diaphragm wall panel[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(7): 638-648.
    [185] Gunn M J, Satkunananthan A, Clayton C R I. Finite element modeling of installation effects[C]// Retaining Structures. England: s.n., 1993, 46-55.
    [186]王轩,雷国辉,施建勇.矩形地连墙槽壁整体稳定分析方法的对比研究[J].岩土力学, 2006, 27(4): 549-554,560.
    [187]《地基处理手册》(第二版)编写委员会.地基处理手册(第二版)[M].北京:中国建筑工业出版社, 2000.
    [188] Lings M L, Ng C W W, Nash D F T. The lateral pressure of wet concrete in diaphragm wall panels cast under bentonite[J]. Proceedings of the Institution of Civil Engineering: Geotechnical Engineering, 1994, 107(3): 163-172.
    [189]刁伟轶.钻孔咬合桩受力变形规律及在地铁车站设计施工中的应用研究[D].硕士学位论文.上海:同济大学, 2006.
    [190]丁勇春,王建华,徐中华,等.上海软土地区地铁车站深基坑的变形特性[J].上海交通大学学报, 2008, 42(11): 1871-1875.
    [191] Son M. The response of buildings to excavation-induced ground movements[D]. PhD thesis. Urbana: University of Illinois at Urbana-Champaign, 2003.
    [192]吴家龙.弹性力学[M].上海:同济大学出版社, 1987.
    [193]中交公路规划设计院.公路桥涵地基与基础设计规范(JTG D63-2007)[S], 2007.
    [194] Gere J M, Timoshenko S P. Mechanics of Materials[M]. New York: Nostrand Reinhold Company, 1972.
    [195]重庆市土地房屋管理局.危险房屋鉴定标准(JGJ125-99)[S], 2000.
    [196]中华人民共和国建设部.建筑工程质量检验评定标准(GBJ301-88)[S], 1988.
    [197]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社, 1998.
    [198] Laefer D F. Prediction and assessment of ground movement and building damage induced by adjacent excavation[D]. PhD thesis. Urbana: University of Illinois at Urbana-Champaign, 2001.
    [199]交通部公路规划设计院.公路桥涵设计通用规范(JTJ 024-85)[S], 1985.
    [200]中华人民共和国建设部.城市桥梁养护技术规范(CJJ99-2003)[S], 2003.
    [201]中华人民共和国建设部.地铁设计规范(GB50517-2003)[S]. 2003.
    [202]中华人民共和国住房和城乡建设部.建筑桩基技术规范(JGJ94-2008)[S], 2008.
    [203]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S], 2002.
    [204]上海市勘察设计协会.上海地铁基坑工程施工规程(SZ-08-2000)[S], 2000.
    [205]孙钧.城市环境土工学[M].上海:上海科学技术出版社, 2005.
    [206]杨国伟,刘建航,刘涛,等.上海地铁车站基坑工程设计若干问题探讨[J].城市轨道交通研究, 2006, (12): 39-42.
    [207]包承钢,饶锡保.土工离心模型的试验原理[J].长江科学院院报, 1998, 15(2): 1-4.
    [208]刘金元.软土基坑的离心模型试验研究[D].博士学位论文.上海:同济大学, 1999.
    [209]马险峰,张海华,朱卫杰,等.超深基坑开挖对超临近高层建筑影响的离心模型试验研究[J].岩土工程学报, 2008, 30(S1): 499-504.
    [210]林鸣,徐伟.深基坑工程信息化施工技术[M].北京:中国建筑工业出版社, 2006.
    [211]丁勇春,王建华,夏志凡,等.连续墙施工引起的地层移动现场监测分析[J].西安建筑科技大学学报(自然科学版), 2006, 38(4): 544-549.
    [212]贾坚.控制基坑变形的坑内加固机理研究及实践[D].博士学位论文.上海:同济大学, 2003.
    [213]白云.软土地基劈裂注浆的加固机理和应用[D].硕士学位论文.上海:同济大学, 1988.
    [214]中国建筑科学研究院.既有建筑地基基础加固技术规范(JGJ123-2000)[S], 2000.
    [215]陈兴年.深基坑基底加固的变形设计理论[D].博士学位论文.上海:同济大学, 2003.
    [216]黄宏伟,魏磊,张平云.坑内加固对围护结构侧向位移影响的实测分析[J].大坝观测与土工试验, 2000, 24(4): 28-30.
    [217]李永盛.采用劈裂注浆控制深基坑相邻房屋的沉降[J].建筑施工, 1997, (2): 25-26.
    [218]王新杰,王元湘.注浆技术在上海地铁车站施工中的应用[J].地基处理, 1996, 7(3): 34-42.
    [219]蒋洪胜,侯学渊.劈裂注浆技术在软粘土深基坑工程中的应用[J].施工技术, 1999, 28(9): 46-47.
    [220]戴咸林.劈裂注浆在上海浦城路地道地基加固中的应用[J].铁道建设, 1998, (1): 1-7.
    [221]吴杏弟.上海香港新世界大厦基坑工程中的地基加固与土方开挖[J].建筑施工, 2000, (1): 2-4.
    [222]方良,华锦耀.软土地区深基坑施工中保护周边环境的综合措施[J].建筑技术, 2002, 33(2): 102-104.
    [223]刘国彬,刘建航,侯学渊.土体被动区注浆控制基坑挡墙变形的方法[P].中国专利: CN1376836A, 2002.
    [224]刘国彬,张建峰,刘金元.降水治理软土深基坑周围的建筑物差异沉降[J].土木工程学报, 1999, 32(6): 64-66.
    [225]魏祥,杜金龙,杨敏.被动区加固对基坑外桩基础的变形影响分析[J].岩土工程学报, 2008, 30(S1): 37-40.
    [226] Wang Z W, Ng C W W, Liu G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-1254.
    [227] Ou C Y, Hisieh P G, Chiou D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 7(7): 758-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700