用户名: 密码: 验证码:
生物质燃烧过程积灰形成机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质锅炉自出现以来,一直受到积灰问题的困扰。积灰造成锅炉效率低,可利用率低,严重阻碍了生物质燃烧技术的推广。本研究基于25 kW高温一维炉系统,利用表面温度可控的积灰采样装置,在不同的工况条件下,对燃烧过程中的积灰进行取样,并分析其特性。
     考虑到近年生物质锅炉的蒸汽参数逐步提高,本文首先将采样管壁面温度分别控制在550、600、650℃三个水平上,研究这一条件对积灰形成的影响。研究发现:采样管温度较低时,积灰的凝结成核机制得到增强;温度较高时,撞击熔融机制得到增强。结合生物质锅炉的发展现状,确定后续研究中采样管表面温度维持600℃。
     为研究生物质积灰的形成机理,再现成灰物质的沉积规律,依次延长采样时间,采集积灰样品并进行分析。分别研究草本、木质生物质的积灰形成过程,发现生物质的积灰速度呈现“快-慢-快-慢”的变化。通过微观上的分析,认为凝结成核机制、撞击熔融机制在不同积灰阶段的相互作用,是造成积灰速度变化的原因。通过化学成分的分析,发现高反应性的钾(K)是影响积灰形成的主要成灰物质。
     基于本文生物质积灰的研究结果,设计了通过实验研究烟气中的K浓度对积灰的影响。在火焰区喷入雾化的钾盐溶液,改变烟气中的K含量。实验结果表明:积灰倾向与烟气中的K浓度有良好的相关性。形貌和成分分析表明,K蒸汽通过两条途径促进积灰的形成:一是与硅铝酸盐结合,形成低熔点共熔物;二是沉积在换热器和飞灰颗粒的表面,增加二者的表面粘性。
     已有研究表明,高岭石对K具有良好的捕集效果。本文选用两种高岭石含量不同的煤种,分别与生物质混烧,研究煤中矿物成分对生物质燃烧过程中积灰形成的影响。结果表明,高岭石含量丰富的煤种与生物质混烧时,会捕集烟气中的K,生成低熔点共熔物。这一过程影响积灰的形成:抑制了凝结成核机制,但增强了撞击熔融机制。就本文的研究,麦秆与富含高岭石的煤种混烧时积灰趋势降低,而混烧低高岭石含量的煤种时积灰倾向增强。
The feasibility of biomass boiler mainly depends on its impact on ash deposition. Deposition reduces the heat transfer efficiency, and is considered as an important problem challenging the development of biomass-combustion technology. In the present work, all experiments were performed in a 25 kW downflow one-dimensional combustor under well-set and reproducible conditions. A temperature-controlled deposition probe was self-developed and employed to collect deposit samples for further analyses like composition, morphology, size, etc.
     Firstly, the effect of probe surface temperature on ash deposition during biomass combustion was investigated, in which 550, 600 and 650℃were carefully selected here in order to meet the increasing steam temperature of biomass boiler in practice. It was found that the low surface temperature enhances the condensation and deposition of vapor-phase species as well as the thermophoresis-driven deposition of nucleated ultrafine particles, which is termed as condensation-nucleation mechanism. Meanwhile, the high surface temperature enhances the adhesion or sintering ability of the deposited particles because the occurrence of melting and is termed as impact-melting mechanism. The lowest ash deposition at 600℃of biomass fuels can be explained by the competing between these two mechanisms. In addition, the 600℃well meets steam parameter of current biomass boilers, and thus are used as probe temperature of main experimental runs.
     Then, the time-dependent deposition behavior of both woody and herbaceous biomass fuels was thoroughly studied by collecting ash deposit with various time-consumption. The deposition rate variation with respect to the time exhibits as follows: at an initial beginning the rate is quite high; then it becomes decreasing and later increases again to the initial level; finally, the rate increment slows down. For a point of micro-scale view, the competition between condensation-nucleation mechanism and impact-melting mechaniam was the reason for the recurrent deposition rates along the time. Based on the composition analysis of samples, the reactive potassium (K) was found as the key ash-forming element that subsequently affects the deposit formation.
     Thirdly, the effect of the potassium on ash deposition was extensively discussed by introducing the atomized solution of potassium acetate into the flame zone of one-dimensional combustor to control potassium concentration in flue gas. The results indicated that the deposit tendency is linearly dependent to the potassium concentration in flue gas. Morphological and chemical analyses of ash deposits further verified the role of potassium in deposition process. The significant increase of deposition tendency can be attributed to two routes: (1) the combination of aluminosilicate with the potassium that forms new eutectics with a lower melting temperature; (2) the condensation of potassium gas as well as the adhesion of potassium submicron particle on the surfaces of big particles or probe that even increases the work of adhesion between big particles.
     Finally, two kinds of Chinese coals, containing greatly different content of kaolinite, were used to co-firing with various biomass streams. The results indicated that, the high-kaolinite containing coal is effective to capture the potassium from flue gases. The change of ash deposition tendency during co-combustion can be attributed to the combination of the kaolinite from coal and the potassium from biomass, which formed the new eutectics with a lower melting temperature. In this work, it was found that the deposition tendency is decreased when co-firing straw and high kaolinite coal, but is increased when co-firing straw and low-kaolinite coal. It can be explained that the reaction of kaolinite and potassium innibites the condensation-nucleation mechanism, but enhances the impact-melting mechanism.
引文
岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.北京:科学出版社, 1995.
    池作和,周昊,蒋啸,等.锅炉结渣机理及防结渣技术措施研究.热力发电, 1999, 4:26-30.
    兰泽全,曹欣玉,周俊虎.锅炉受热面沾污结渣的危害及其防止措施.电站系统工程, 2003a, 19(1):31-33.
    兰泽全,曹欣玉,赵显桥,等.煤灰形成及沉积模型研究进展.热力发电, 2003b, 10:32-37.
    李文彦,宋之平,孙保民,等.煤粉炉结渣的机理及诊断技术的发展.现代电力, 2002, 19(5):20-24.
    李晓东,吕宏俊,徐茂蓉,等.流化床焚烧处理有机浓缩废液的结焦结渣特性.化工学报, 2005, 56(11):2166-2171.
    楼亿红.动力用煤结渣倾向的判断.热力发电, 2004, 5:68-70.
    绿色煤电有限公司.挑战全球气候变化——二氧化碳捕集与封存.北京:中国水利水电出版社, 2008:1-64.
    吕宏俊,李晓东,徐茂蓉,等.石灰石对流化床焚烧锅炉结焦结渣的抑制特性研究. 锅炉技术, 2006, 37(B04):77-80.
    马孝琴,骆仲泱,方梦祥,等.添加剂对秸秆燃烧过程中碱金属行为的影响.浙江大学学报(工学版). 2006a, 40(4):599-604.
    马孝琴.秸秆燃烧过程中碱金属问题研究的新进展.水利电力机械. 2006b, 28(12):28-34.
    Nieminen M, Karki J.生物质与煤混烧技术在欧洲的应用.中欧科技合作项目专题技术报告.北京:清华大学热能工程系, 2007.
    宁新宇,李诗媛,吕清刚,等.秸秆类生物质与石煤在流化床中的混烧与黏结机理.中国电机工程学报, 2008, 28(29):105-110.
    蒲舸,张力,辛明道.王草的热解与燃烧特性实验研究.中国电机工程学报, 2006, 26(11):65-69.
    盛昌栋.对煤粉炉结渣、积灰及其影响的认识.中国电力, 1997, 30(9):12-14.
    沈又幸,杨卫娟,周俊虎,等.燃煤锅炉炉膛自清渣机理.热力发电, 2004, 9:48-51.
    宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性.节能与环保, 2003, 9:29-31.
    孙宏伟,吕薇,李瑞扬.生物质燃烧过程中的碱金属问题研究.节能技术, 2009, 27(1):24-26.
    孙学信.燃煤锅炉燃烧试验技术与方法.北京:中国电力出版社, 2001:394.
    王泉斌,徐明厚,夏永俊.煤与生物质混烧时可吸入颗粒物中矿物质元素演变研究. 中国电机工程学报, 2006, 26(16):103-108.
    翁善勇,赵虹.一种煤粉结渣特性预测方法——沉降炉试验法.热力发电, 2004, 4:28-30.
    徐晓光,李水清,姚强.锯屑与煤混烧过程积灰实验研究.中国工程热物理学会2008年燃烧学学术年会, 2008年10月24-27日,西安交通大学,中国:084182.
    徐赢,林伟宁,梁钦峰,等.水冷壁汽化炉熔渣表面形态的几何特征.化工学报, 2007, 58(12):3122-3127.
    雅克·范鲁,耶普·克佩耶.生物质燃烧与混合燃烧技术手册.田宜水,姚向君译. 北京:化学工业出版社, 2008:40-41.
    杨世铭陶文铨.传热学(第三版).北京:高等教育出版社, 1998:425.
    姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社, 2005:14.
    袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术.北京:化学工业出版社, 2006:11.
    于敦喜.燃煤细微颗粒物的模态识别及其形成机理[博士学位论文].武汉:华中科技大学, 2007.
    张小峰.燃烧中铅、铬的排放特性及其吸附剂控制的实验研究[博士学位论文].北京:清华大学热能工程系, 2007.
    赵青玲.秸秆成型燃料燃烧过程中沉积腐蚀问题的试验研究[博士学位论文].郑州:河南农业大学农业生物环境与能源工程学院, 2007.
    赵晓辉.基于矿物质赋存形态与转变过程的炉内灰渣沉积研究[博士学位论文].杭州:浙江大学机械与能源工程学院, 2007.
    赵永椿,张军营,张富强,等.燃煤高钙灰的组成及其演化机制的研究.中国电机工程学报, 2007, 27(29):12-16.
    中国电力年鉴编辑委员会.中国电力年鉴.北京:中国电力出版社, 2005.
    中国电力年鉴编辑委员会.中国电力年鉴.北京:中国电力出版社, 2006.
    中国电力年鉴编辑委员会.中国电力年鉴.北京:中国电力出版社, 2007.
    中国电力年鉴编辑委员会.中国电力年鉴.北京:中国电力出版社, 2008.
    中国可再生能源发展项目办公室. 2007-2008年中国生物质能发电产业发展研究年度报告.北京, 2008.
    周俊虎,赵晓辉,刘建忠,等.锅炉内卫燃带上高熔点灰渣沉积机理分析.中国电机工程学报, 2008, 28(14):20-26.
    周俊虎,杨卫娟,刘建忠,等.锅炉变负荷引起的水冷壁渣层热应力.化工学报, 2003, 54(12):1678-1682.
    周勇.锅炉结渣过程数值模拟研究和燃烧优化设计[硕士学位论文].北京:清华大学热能工程系, 2005.
    卓建坤.煤粉燃烧过程亚微米颗粒物形成机理的实验研究[博士学位论文].北京: 清华大学热能工程系, 2008.
    Abott M F, Moza A K, Austin L G. Studies on slag deposit formation in pulverized coal combustion. 2. Results on the wetting and adherence of synthetic coal ash drops on different steel substrates. Fuel, 1981, 60:1305-1312.
    Abramoff M D, Magelhaes P J, Ram S J. Image processing with ImageJ. Biophotonics International, 2004, 11(7):36-42.
    Andersen K H. Deposit formation during coal straw co-combustion in a utility PF-boiler. Industrial [PhD Thesis]. I/S Midtkraft and Dept. of Chemical Engineering, Technical University of Denmark, 1998. [ISBN 87-90142-43-8].
    Andersen K H, Frandsen F J, Hansen P F, et al. Deposit formation in a 150 MWe utility pf-boiler during co-combustion of coal and straw. Energy & Fuels, 2000, 14(4):765–800.
    Andersen K H, Hansen P F, Wiech-Hansen K, et al. Co-firing coal with straw in a 150 MWe utility boiler-Deposition propensities. Biomass Energy Environ., P F B, Proc. 9th Eur. Bioenergy Conf, 1996:1102-1107.
    Backman R, Hupa M, Skrifvars B J. Predicting superheater deposit formation in boilers burning biomass. Impact of Mineral Impurities in Solid Fuel Combustion, Edited by Gupta R P, Wall T F, Baxter L L. Kluwer Academic, Plenum Publishers, New York, 1999:405-416. (ISBN 0-306-46126-9)
    Baxter L L. Ash deposition during biomass and coal combustion:a mechanistic approach, Biomass and Bioenergy, 1993, 4(2):85-102.
    Baxter L L, DeSollar R W. A mechanistic description of ash deposition during pulverized coal combustion: predictions compared with observations. Fuel, 1993, 72:1411-1418.
    Baxter L L. A task 2, Pollutant emission and deposit formation during combustion of biomass fuels. Quarterly report to national renewable energy laboratory, Sandia National Laboratories, Livermore, California, USA, 1994.
    Baxter L L, Miles T R, Jenkins B M, et al. The behavior of inorganic material in biomass-fired power boiler: field and laboratory experiences. Fuel Processing Technology, 1998, 54:47-78.
    Baxter L L. Ash deposit formation and deposit properties: a comprehensive summary of research conducted at Sandia’s combustion research facility. SAND2000-8253.
    Sandia National Laboratory, Livermore, California, USA, 2000.
    Baxter L L, Koppejan J. Biomass-coal Co-combustion: Opportunity for Affordable Renewable Energy. 2004. http://energytech.at/(de)/rxml/results.html?id=4887
    Benson S A, Holm P L. Comparison of inorganic constituents in three low-rank coals. Industrial & Engineering Chemistry, Product Research and Development, 1985, 24(1):145-149.
    Bryers R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science, 1996, 22:29-120.
    Charon O, Sarofim A F, Beer J M. Distribution of mineral matter in pulverized coal. Progress in Energy and Combustion Science, 1990, 16(4):319-326.
    Christensen, K. A. The Formation of Submicron Particles from the Combustion of Straw [Ph.D. Thesis]. Department of Chemical Engineering, Technical University of Denmark, 1995. (ISBN 87-90142-04-7)
    Dayton D C, French R J, Milne T A. Direct observation of alkali vapor release during biomass combustion and gasification, 1 application of molecular beam/mass spectrometry to switchgrass combustion. Energy and Fuels, 1995a, 9:855-865.
    Dayton D C, Milne T A. Mechanisms of Alkali Metal Release During Biomass Combustion. Prepr. Symp.sAm. Chem. Soc., Div. Fuel Chem. 1995b, 40(3):758-762.
    Dayton D C, Oudry D B. Effect of coal minerals on chlorine and alkali metals released during biomass/coal co-firing. Energy & Fuels, 1999, 13:1203-1211.
    Dockery D W, Pope C A, Xu X, et al. An association between air pollution and mortality in six US Cities. The New England Journal of Medicine, 1993, 329:1753–1759.
    Erickson T A, Fly ash development from sodium, sulphur and silica during coal combustion. Fuel, 1992, 71:15-18.
    Flagan R C, Friedlander S K. Particle Formation in Pulverized Coal Combustion-A Review. in Recent Developments in Aerosol Science, edited by Shaw D T. Wiley, New York, USA, 1978.
    Frandsen F J, Hansen J, Jensen P A, et al. Ash and deposit formation in the biomass co-fired Masned? combined heat and power production plant. Proceeding of United Engineering Foundation international conference on effects of coal quality on power plant management: ash problems, management and solutions, Park City, UT, May, 2000:8–11.
    Frandsen F J, Hansen J, Dam-Johansen K, et al. Ash and deposit formation in waste incinerators. Proceedings of United Engineering Foundation International conference‘power production in the 21th century: impact of fuel quality and operations’, Snowbird, Utah, USA, October 28–November 2, 2001.
    Frandsen F J, Nielsen H P, Jensen PA, et al. Deposition and corrosion in straw and coal–straw co-fired utility boilers—Danish experiences. Proceeding of United Engineering Foundation international conference on the impact of mineral impurities in solid fuel combustion, Kona, Hawaii, USA, November 2–7 1997.
    Frandsen F J. Utilizing biomass and waste for power production-a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel, 2005, 84:1277-1294.
    Gatlin C L, Schaberg E S, Jordan W H. Point counting on the Macintosh: a semiautomated image analysis technique. Anal. Quant. Cytol. Histol, 1993, 15 (5):345-350.
    Hansen L A, Frandsen F J, Dam-Johansen K, et al. Characterisation of ashes and deposits from high temperature coal–straw co-firing. Energy & Fuels, 1998, 13(4):803–816.
    Hansen L A, Nielsen H P, Frandsen F J, et al. Influence of deposit formation on corrosion at a straw-fired boiler. Fuel processing technology, 2000, 64:189-209.
    Hansen L A, Frandsen F J, Dam-Johansen K. Characterization of ashes and deposits from high temperature coal-straw co-firing. Energy and Fuels, 1996, 16:803-816.
    Heije M W, Madeleine B, Bo L. Distribution of Potassium, Chlorine, and Sulfur between Solid and Vapor Phases during Combustion of Wood Chips and Coal. Energy and Fuels, 2003, 17:18-28.
    Hinds W C. Aerosol Technology: properties, behavior, and measurement of airborne particles. A Wiley-Interscience publication, 1998:44.
    Huggins F E. Overview of analytical methods for inorganic constituents in coal. International Journal of Coal Geology. 2002, 50(1-4):169-214.
    Hurley J P, Nowok J W, Bieber J A, et al. Strength development at low temperatures in coal ash deposits. Progress in Energy and Combustion Science, 1998, 24(6):513-521.
    Isaak P, Tran H N, Barham D, et al. Stickiness of fireside deposits in kraft recovery units. Journal of Pulp and Paper Science, 1986, 12:84-88.
    Jacob N K, Peter A J, Kim D J. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy & Fuels, 2004, 18:1385-1399.
    Jenkins B M, Baxter L L, Miles T R, et al. Combustion properties of biomass. Fuel processing technology, 1998, 54:17-46.
    Jensen J P, Nielsen L B, Schultz–M?ller C, et al. The nucleation of aerosols in flue gases with a high content of alkali - a laboratory study. Aerosol science and technology, 2000b, 33:490-509.
    Jensen P A, Stenholm M, Hald P. Deposition investigation in straw fired boilers. Energy & Fuels, 1997, 11(5):1048–55.
    Jensen P A, Frandsen F J, Dam-Johansen K, et al. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy & Fuels, 2000a, 14:1280-1285.
    Koppejan J. Overview of experiences with co-firing biomass in coal power plants, IEA Bioenergy Task 32: Biomass Combustion and co-firing. 2004.
    Kumar M, Sahu S G. Study on the effect of the operating condition on a pulverized coal-fired furnace using computational fluid dynamics commercial code. Energy & Fuels, 2007, 21:3189–3193.
    Lind T, Valmari T, Kauppinen E, et al. Ash formation mechanisms during combustion of wood in circulating fluidized beds, Proceedings of the Combustion Institute 28. 2000:2287-2295.
    Livingston W R. Straw ash characteristics, Babcock Report Number 34/91/08, Contractor Report, Department of Energy, ETSUB 1242; Babcock Energy Ltd. 1991.
    Logan R G, Richards G A, Meyer C T. A study of techniques for reducing ash deposition in coal-fired gas turbines. Progress in Energy and Combustion Science, 1990, 16(4):221-233.
    Lokare S S, Dunaway J D, Moulton D, et al. Investigation of Ash Deposition Rates for a Suite of Biomass Fuels and Fuel Blends. Energy & Fuels, 2006, 20:1008-1014.
    McElroy M W, Carr R C, Ensor D S, et al. Size distribution of fine particles from coal combustion. Science, 215(4528):13-19.
    Michelsen H P, Larsen O H, Frandsen F J, et al. Deposition and high temperature corrosion in a 10 MW straw fired boiler. Proceedings of engineering foundation conference on biomass usage for utility and industrial power, Snowbird, Utah, April 28–May 3, 1996.
    Miles T R, Miles Jr T R, Baxter L L, et al. Alkali Deposits found in biomass power plants, a preliminary investigation of their extent and nature, Summary report for Nation Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393, NREL Subcontract TZ-2-11226-1, 1995.
    Mims F M. How to Analyze Digital Images. The Citizen Scientist. 21 October 2005. http://www.sas.org/tcs/weeklyIssues_2005/2005-10-21/feature2/
    Moza A K, Austin L G. Studies on slag deposit formation in pulverized coal combustors. 1. Results on the wetting and adherence of synthetic coal ash drops on steel. Fuel, 1981, 60:1057-1064.
    Naruse I, Kamihashira D, Khairil, et al. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions. Fuel, 2005, 84:405-410.
    Nielsen H P. Deposition and High-Temperature Corrosion in Biomass-Fired Boilers [Ph.D. Thesis]. Department of Chemical Engineering, Technical University of Denmark, Lyngby, 1998a.
    Nielsen H P, Baxter L L, Sclippab G, et al. Deposition of potassium salts on heat transfer surfaces in straw-fired boiler:a pilot-scale study. Fuel, 2000, 79:131-139.
    Nielsen L B. Combustion aerosols from potassium-containing fuels [PhD Thesis]. Department of Chemical Engineering, Technical University of Denmark, 1998b.
    Obernberger I. Decentralized biomass combustion: state of the art and future development. Biomass and Bioenergy, 1998, 14:33-56.
    Olanders B, Steenari B M. Characterization of ashes from wood and straw. Biomass and Bioenergy, 1995, 8(2):105-115.
    Pope C A, Thun M J, Namboodiri M M, et al. Particulate air pollution as a predictor of mortality in a prospective study of US adults. Journal of Respiratory and Critical Care Medicine, 1995, 151:669–674.
    Quann R J, Sarofim A F. Vaporization of refractory oxides during pulverized coal combustion, Nineteenth International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, USA, 1982:1429.
    Quann R J, Sarofim A F. Scanning electron microscopy study of the transformations of organically bound metals during lignite combustion. Fuel, 1986, 65(1):40-46.
    Raask E. Mineral Impurities in coal combustion: behavior, problems, and remedial measures. Chapter 12, Deposition mechanisms, rate measurements, and the mode of formation of boiler deposits. Hemisphere Publishing Corporation, 1985:189-216. (ISBN 089116362-x)
    Ramsden A R. A microscopic investigation into the formation of fly-ash during the combustion of a pulverized bituminous coal. Fuel, 1969, 48(2):121-137.
    Rasband W. Introduction to ImageJ. Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA, 2000. http://rsbweb.nih.gov/ij/docs/intro.html
    Reid W T. The relation of mineral composition to slagging, fouling and erosion during and after combustion. Progress in Energy and Combustion Science, 1984, 10:159-175.
    Reinking L. Examples of Image Analysis Using ImageJ. Department of Biology, Millersville University, Millersville, PA 17551. June 2007. http://rsbweb.nih.gov/ij/docs/pdfs/examples.pdf
    Robinson A L, Junker H, Baxter L L. Pilot-Scale Investigation of the Influence of Coal-Biomass Cofiring on Ash Deposition. Energy & Fuels, 2002, 16:343-355.
    Rosner D E, Tandon P, Rational prediction of inertially induced particle deposition rates for a cylindrical target in adust-laden stream, Chemical Engineering Science, 1995, 50:3409-3431.
    Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 2001, 27:171-214.
    Sarofim A F, Helble J J. Mechanisms of ash deposit formation, The impact of ash deposition on coal fired plants, Edited by Williamson J and Wigely F, Taylor and Francis, Washington, DC, USA, 1994, 567-582. (ISBN 1-56032-293-4)
    Shrinivas S, Lokare J, David Dunaway, et al. Investigation of ash deposition rates for a suite of biomass fuels and fuel blends. Energy & Fuels, 2006, 20:1008-1014.
    Skrifvars B J, Lauren T, Hupa M, et al. Ash behavior in a pulverized wood fired boiler-a case study. Fuel, 2004, 83:1371-1379.
    Spiro C L, Chen C C, Kimura S G. Deposit remediation in coal-fired gas turbines through the use of additives. Progress in Energy and Combustion Science, 1990, 16(4):213-220.
    Steenari B M, Lindqvist O. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass and Bioerergy, 1998, 14:67-76.
    Swanson M L. Modeling of ash properties in advanced coal-based power systems. North Dakota: University of North Dakota, Energy Engineering, 2000.
    Theis M. Interaction of Biomass Fly Ashes with Different Fouling Tendencies [PhD Thesis]. Report 06-02, ABO university, 2006a.
    Theis M, Skrifvars B J, Hupa M, et al. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1:Deposition rates. Fuel, 2006b, 85:1125-1130.
    Tillman D A. Biomass Cofiring: the technology, the Experience, the Combustion Consequences. Biomass and Bioenergy, 2000a, 19:365-384.
    Tillman D A. Cofiring Benefits for Coal and Biomass. Biomass and Bioenergy, 2000b, 19:363-364.
    Tran K Q, Iisa K, Hagstrom M, et al. On the application of surface ionization detector for the study of alkali capture by kaolin in a fixed bed reactor. Fuel, 2004a, 83:807-812.
    Tran K Q, Iisa K, Steenari B M, et al. A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel, 2005, 84:169-175.
    Tran K Q, Steenari B M, Iisa K, et al. Capture of potassium and cadmium by kaolin in oxidizing and reducing atmospheres. Energy & Fuels, 2004b, 18:1870-1876.
    Uberoi M, Punjak W A, Shadman F. The kinetics and mechanism of alkali removal from flue gases by solid sorbents. Progress in Energy and Combustion Science, 1990, 16(4):205-211
    Valero A, Cortes C. Ash fouling in coal-fired utility boilers monitoring and optimization of on-load cleaning. Progress in Energy and Combustion Science, 1996, 22:189-200.
    Valmari T, Lind T M, Kauppinen E I, et al. Field Study on Ash Behavior during Circulating Fluidized-Bed Combustion of Biomass. 1. Ash Formation. Energy & Fuels, 1999, 13(2):379-389.
    Van Loo S, Koppejan J. Handbook of biomass combustion and cofiring. IEA bioenergy research centre, 2002.
    Wall T F, Lowe A, Wibberley L J, et al. Mineral matter in coal and the thermal performance of large boilers. Pregress in Energy and Combustion Science, 1979, 5:1-29.
    Walsh P M, Sarofim A F, Beer J M. Fouling of convection heat exchangers by lignitic coal ash. Energy & Fuels, 1992, 6:709-715.
    Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bitumimous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth. Progress in Energy and Combustion Science, 1990, 16:327-346.
    Wei X L, Lopez C, Puttkamer T, et al. Assessment of Chlorine-Alkali-Mineral Interactions during Co-Combustion of Coal and Straw. Energy & Fuel, 2002, 16:1095-1108.
    Werther J, Saenger M, Hartge E U, et al. Combustion of agricultural residues. Progress in Energy and Combustion Science, 2000, 26:1-27.
    Westberg H M, Bystrom M, Leckner B. Distribution of Potassium, Chlorine, and Sulfur between Solid and Vapor Phases during Combustion of Wood Chips and Coal. Energy & Fuel, 2003, 17:18-28.
    Wolf K J, Smeda A, Muller M, et al. Investigations on the influence of additives for SO2 reduction during high alkaline biomass combustion. Energy & Fuels, 2005, 19:820-824.
    Zevenhoven M. Ash forming matter in biomass [PhD Thesis], Report 00-03. ABO AKADEMI, Finland, 2000.
    Zhang L, Ninomiya Y. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. Proceedings of the Combustion Institute, 2007, 31(2):2837-3854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700