用户名: 密码: 验证码:
大型风力机功率控制与最大能量捕获策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比化石能源和核电,风能是一个开发成本较低,清洁环境,安全,可再生的能源形式,目前越来越受到重视。根据贝兹理论,理论上风机从风中吸收的能量不超过空气动能的59.3%,实际当中该数值由于机械结构上的缺陷要更小一些。因此,如何才能够获取最大能量,实现风能规模化利用,一直为学者及业界所关注。
     近年来,大型风机都采用了变速变桨距控制技术。采用变速变桨距技术的主要目的是提高响应速度,同时获得最大能量(低风速时捕获最大功率,高风速时捕获额定功率)。但是风能转换系统由于一些不确定因素的存在表现出强非线性特征,同时,风机产生的能量随着风速和风向的连续波动是快速变化的。另一方面,在一个新能源系统中,电能质量和可靠性是两个最重要的指标。一般传统线性定常控制器都会引起超调和损失系统的稳定性,同时由于大型变速变桨距风机的复杂性,例如控制算法、高阶、耦合、强非线性特征等,常规的控制方法就不太适合了。
     根据风速的不同,风电系统由四个动态过程构成:启动、变速运行、变桨距运行、刹车。启动和刹车过程的主要控制目标是使系统能在最短时间内有较快响应速度;变速控制的主要控制目标是调节风能、减少或消除风能产生过程中的急剧波动,捕获最大能量、减弱暂态负荷的影响;变桨距控制的主要控制目标是通过调节桨距角来维持风机输出额定功率不变。
     本文对大型风力机系统模型的建立和最优功率控制策略问题进行了探讨。针对1.5MW变速变桨距双馈感应风力发电机组,研究其控制策略,以得到系统的最优功率输出和加强系统的工作性能。仿真研究证明本文提出的控制策略是有效的。主要研究内容和创新成果包括:
     (1)对大型双馈风电机组风轮、齿轮箱、传动轴、双馈电机、变桨机构等环节进行了理论分析和数学建模,最终得到了一个完整的双馈风电机组数学模型。基于易于实现风电机组最大能量捕获控制的考虑,重点分析了双馈型感应异步发电机的运行理论,通过对双馈感应发电机在dq0同步旋转坐标变换下按定子q轴磁场定向的方法,建立了一个简化的精确的双馈感应发电机的数学模型。
     (2)以大型水平轴风力机为研究对象,详细研究了风力机在进行载荷计算时坐标系的确定原则和方法,通过matlab和VB.net混合编程对风力机基本数据、翼形数据、空气动力数据进行分析和计算,计算得到风力机桨叶轴向诱导因子、周向诱导因子,相对风速、桨距角、入流角、攻角、扭角等参数对应不同风速的值,最终根据这些参数,综合分析得到了变桨载荷的计算算法。
     (3)在完成了风电机组建模和载荷计算的基础上,对电气独立变桨和液压统一变桨这两种变桨方式进行了系统设计,包括理论计算、原理图分析和元件选型等,对电气独立变桨进行了实验研究,对液压统一变桨进行了仿真研究。通过对液压变桨系统的液压泵、电液比例阀、液压缸、曲柄连杆机构等环节进行分析和建模,最终得到了一个真实的完整的液压变桨系统数学模型,即输入控制信号是电液比例阀的电流,输出信号是桨距角,并通过仿真实验验证了其稳定性和可靠性。
     (4)制定了低风速下以发电机转速作为控制输入量,采用变速恒频控制策略;高风速下以发电机功率作为控制输入量,采用变桨距控制策略来捕获最大风能的控制方法。同时针对风电机组高阶强耦合强非线性特性,考虑到模糊控制无需精确的数学模型,滑模控制能提高系统的鲁棒性和稳定性,设计了一种模糊滑模变结构控制器,对大型风电机组变速和变桨距过程进行控制,最终实现风电机组最大功率的输出控制。
     (5)探讨了整个风电机组启动、变速、变桨距、制动的全过程,基于缩短系统响应时间,提高风机对应低风速、额定风速、高风速不同工况下的工作特性,且在保证风电机组安全性和可靠性前提下,实现最大功率捕获的考虑,提出了一种分层多模最优控制策略:bang-bang控制应用于启动和刹车过程,模糊控制应用于变速运行过程,自适应PID控制应用于变桨距运行过程。
     本文得到上海市白玉兰科技人才基金(2007B073)、教育部留学回国科研启动基金项目(教外司[2007]1108号)、中国博士后基金项目(2005038435)、上海博士后基金项目(05R214133)、上海市教育发展基金(200603)的资助。
Compared with fossil fuel and nuclear power, wind power is of cost competitive, environmentally clean, safe, renewable power sources, and being paid more attention recently. An actual turbine cannot extract more than 59.3% of the air kinetic energy according to Betz theory. In practice, this factor is less because of mechanical imperfections, but we also hope get maximum energy by adopting various methods.
     Recently, an increasing number of large-scale wind turbines are being developed with a variable speed-variable pitch (VS-VP) technology. The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy, which means to obtain the maximum power at low wind speed and the rated power at high wind speed. But wind energy conversion systems are of strong nonlinear characteristics because of many uncertain factors. At the same time, the power generated by wind turbine changes rapidly because of the continuous fluctuation of wind speed and direction. On the other hand, in a renewable energy system, both power quality and reliability are two most vulnerable issues. The ordinary linear constant gain controller will cause overshoot or even loss of system stability, meanwhile the adaptive control method is not applicable in this case due to the complexity, such as algorithm, high order, coupling and strong nonlinear characteristics of large-scale VS-VP wind turbine.
     The control strategy is one of the most basilical renewable technology. According to different wind speed range, the wind generating set consists of four dynamic processes: starting, variable speed running, variable pitch running and braking. The main objective for starting and braking process is that the system has faster response speed in the most short time. Objectives for variable speed control system are summarized by the following general goals: to regulate and smooth the power generated, to maximize the energy capture, to alleviate the transient loads; Objectives for the variable pitch control are similar to the variable speed ones but only can be match a rotational power by regulating pitch angle.
     This dissertation has studied establishing system model and optimizing power control for large wind turbien. This paper describes a 1.5 MW variable speed-variable pitch wind turbine DFIG where control strategy has been used extensively to optimize the power output and enhance system performance. The validity of obtained result can be illustrated by the simulation research.The main results and contributions of this dissertation are listed as follows:
     (1) With a view to the fact that the wind turbine system is a very complicated nonlinear system consisting of wind blade, gear box, doubly-fed induction generator (DFIG), variable pitch mechanism etc. To place emphasis on analyzing DFIG and hydraulic variable pitch mechanism, we establishing reliability nonlinear model of DFIG wind turbine system using the electric motor convention and adopting the d ? q reference frame.
     (2) The calculation and analysis of the variable-pitch load are very important work for variable-pitch mechanism design. This Paper investigates the method of determining the reference frame, ascertains the means of classification load, and obtains the variable-pitch load for large horizontal axis wind turbine by analysing and calculating the incident coefficient out of plane, incident coefficient in-plane, chord, relatine wind speed, inflow angle, attack angle, pitch angle using matlab and VB.net.
     (3) The collective pitch control and the individual pitch are two primary variable-pitch methods. The design of electric individual pitch and hydraulic collective pitch are proposed, including theoretical calculation,analysis of the scheme and the selection of units etc. Using subsistent experiment condition, the electric individual pitch is analyzed by experiment and the hydraulic collective pitch is analyzed by simulation.
     (4) When the wind speed range varies from cut-in wind speed to rated wind speed, we adopt variable speed control method by adjusting the rotor speed in order to get optimal power. When the wind speed range varies from rated wind speed to cut-out wind speed, we adopt variable pitch control method by adjusting the pitch angleβin order to make generator work in the case of rated power. Considering that there exists the case that fuzzy control needs no accurate mathematical model and sliding-mode control can provide a good robustness and stability of system. In this paper a new kind of state controller is proposed by fuzzy sliding-mode control theory is established. This control strategy can eliminate the steady state error, compensate the nonlinearity and have excellent robustness.
     (5) In view of the fact that The main objective of adopting a variable speed-variable pitch technology is to improve the fast response speed and capture maximum energy, a kind of layered multi-mode optimal control strategy is proposed: bang-bang control strategy is adopted in starting and braking process; meanwhile, fuzzy control strategy is adopted in variable speed running process and adaptive proportional integral derivative PID control strategy is adopted in variable pitch running process. This control method can shorten the system response time, improve the wind turbine performance at low, rated and high wind speed.
     This work was supported by the Baiyulan Foundation for Science & Technology Talents, Shanghai (No. 2007B073), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. [2007]1108), the Postdoctoral Foundation of China (No. 2005038435), the Postdoctoral Foundation of Shanghai, China (No. 05R214133) and the Shanghai Educational Development Foundation (No. 200603).
引文
[1]施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力, 2003, 36(9): 54-62.
    [2]周鹤良.我国风力发电产业发展前景与策略[J].上海电力, 2007, (1):1-4.
    [3] Bimal K. Bose. Energy, environment, and advances in power electronics [J]. IEEE Trans. Power Electronics, 2000, 15(4):688-701.
    [4] Anil Kane.利弊之间的权衡[J].上海电力, 2007, (1):8-10.
    [5]能源领域组,能源领域,科技发展“十五规划”和2015年远景研究[M]. 1999.
    [6]勒占里雷斯著.施鹏飞译.风力机的理论与设计[M].北京:机械工业出版社, 1985.
    [7]黄成力,左倜,崔雅文,等.引进型1.25 MW风力发电机组结构与性能特点[J].上海电力, 2007, (4): 359-367.
    [8] Wu Li, Wang Zhixin. Wind Generator Stabilization with Doubly fed synchronous Machine [J]. WSEAS Transaction on Power System, 2006, 1(2): 12-16.
    [9]王承煦,张源.风力发电[M].北京:中国电力出版社, 2002.
    [10]雷亚洲,Gordon Lightbod.风力发电与电力市场[J].电力系统自动化,2005,29(10):1-5.
    [11]郑照宁,刘德顺.中国风电投资成本变化预测[J].中国电力,2004, 37(7):77-80.
    [12]中华人民共和国国家发展和改革委员会,欧洲风电发展及对我国的启示[M], 2006.
    [13]中华人民共和国国家发展和改革委员会, 2006年世界风电发展[M], 2006.
    [14] 2008北京国际风能大会,2008北京国际风能大会论文集.北京,2008.
    [15]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社, 2002.
    [16]杨秀媛,梁贵书.风力发电的发展及其市场前景[J].电网技术,2003,27(7): 78-79.
    [17]徐大平,张新房,柳亦兵.风力发电控制问题综述[J].中国电力,2005, 38(4):70-74.
    [18]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报, 2003, 24(5):729-734.
    [19]王志新,蒋传文,艾芊,等.近海风电场技术及其发展态势[J].上海电力, 2007, (2):119-124.
    [20]姚兴佳,隋红霞,刘颖明,等.海上风电技术的发展与现状[J].上海电力, 2007, (2):111-118.
    [21]刘琦,许移庆.我国海上风电发展的若干问题初探[J].上海电力, 2007, (2): 144-148.
    [22] Simoes M G,Bose B K,Spiegel R J.Fuzzy logic based intelligent control of a variable speed cage machine wind generation system [C].Power Electronics Specialists Conference,26th Annual IEEE,Atlanta,USA,1995.
    [23]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [24]李晶,王伟胜,宋家弊.变速恒频风力发电机组的建模与仿真[J].电网技术,2003,27(9):14-17.
    [25] Simoes M G,Bose B K,Spiegel R J.Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system [J].IEEE Transactions on Industry Application,1997,33(4):956-965.
    [26]林勇刚.大型风力机变桨距控制技术研究[博士论文] [D].浙江:浙江大学, 2005.
    [27]新疆金风科技股份有限公司.金风62/1200风力发电机组介绍[M],金风公司产品资料,2005.
    [28]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(3):26-29.
    [29]雷亚洲,王伟胜,印永华,等.风电对电力系统运行的价值分析[J].电网技术,2003,27(12):10-14.
    [30] Janaka B. Ekanayake,Lee Holdsworth. Dynamic modeling of doubly fed induction generator wind turbine [J]. IEEE Trans. On Power Systems, 2003, 18(2):805-809.
    [31]包能胜,陈庆新,姜桐.柔性风力机系统模型参数辨识[J].太阳能学报,1997,18(4):390-394.
    [32] Leithead W E,Rogers M C M.Design of a controller for a test-rig for a variable speed wind turbine [C].Control Applications,Proceedings of the Third IEEE Conference on,1994.
    [33] Papathanassiou S A,Papadopoulos M P.Dynamic behavior of variable speed wind turbines under stochastic wind [J].IEEE Transactions on Energy Conversion,1999,14(4):1617-1623.
    [34] Papathanassiou S A,Papadopoulos M P.Mechanical stresses infixed-speed wind turbines due to network disturbances [J]. IEEE Transactions on Energy Conversion,2001,16(4):361-367.
    [35] Bossanyi E A.The design of closed loop controllers for wind turbines [J].Wind Energy,2000,(3):149-163.
    [36] Akhmatova V,Knudsena H, Nielsenb A H.Advanced simulation of windmills in the electric power supply [J].International Journal of Electrical Power and Energy Systems,2000,22(6):421-434.
    [37] Petru T,Thiringer T.Modeling of wind turbines for power system studies [J].IEEE Transactions on Power Systems,2002,17(4):1132-1139.
    [38] Salman S K,AnitaL J T.Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator [J].IEEE Trans on Power System,2003,18(2):795-802.
    [39]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化,2004, 28(23):92-96.
    [40]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报,2002,22(11):100-105.
    [41] Pena R,Clare J C,Asher G M.Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation [J].IEE Proc.-Electr.Power Appl.,1996,143(3):231-241.
    [42]林勇刚,李伟,叶杭冶.变速恒频风力机组变桨距控制系统[J].农业机械学报,2004,35(4):110-114.
    [43] Kendall Lewis, Balas Mark J., Lee Yung Jae and Fingersh Lee Jay. Application of proportional-integral and disturbance accommodating control to variable speed variable pitch horizontal axis wind turbines [J]. Wind Engineering, 1997, 21(1): 21-38.
    [44] Prats M M.,Carrasco J M,Galvan E,et al.A new fuzzy logic controller to improve the captured wind energy in a real 800 kW variable speed-variable pitch wind turbine [C].Power Electronics Specialists Conference,Cairns,Australia,2002.
    [45] Cardenas-Dobson, R. Asher, G.M. Power limitation in variable speed wind turbines using pitch control and a mechanical torque observer [J].Wind Engineering, 1996, 20(6): 365-387.
    [46] T. Thiringer, J. LInders. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range [J]. IEEE Trans on Energy Conversion, 1992, 8(3):520-526.
    [47] Hansen A.D., S?rensen P., Lov F.. Control of variable speed wind turbines with doubly-fed induction generators [J]. Wind Engineering, 2004, 28(4):411-432.
    [48] A.S.Neris, N.A.Vovos, G.B.Giannakopoulos. A variable speed wind energy conversion scheme for connection to weak ac system [J]. IEEE Trans on Energy Conversion, 1999, 14(1):122-127.
    [49] M. Yamamoto, 0.Motoyoshi. Active and reactive power control for doubly-fed wound rotor induction generator [J]. IEEE Trans on Power Electronics, 1991 ,6(4):624-629.
    [50] Y.f. Tang, L.y. Xu. A flexible active and reactive power control strategy for a variable speed constant frequency generating system [J]. IEEE Trans on Power Electronics, 1995, 1(4):472-478.
    [51] R. Datta, V.T.Rangnathan. Method of tracking the peak power points for a variable sped wind energy conversion system [J]. IEEE Trans on Energy Conversion, 2003, 18(1):165-168.
    [52]肖劲松.风力机组偏航系统的建模及仿真[J].太阳能学报,1997,18(3):252-261.
    [53] Kung Chris Wu, Joseph, R.K., Thupili, N.K.. Evaluation of classical and fuzzy logic controllers for wind turbine yaw control [C]. The First IEEE Regional Conference on May 25-27, 1993, Page(s):254–258.
    [54] Farret, F.A., Pfitscher, L.L., Bernardon, D.P.. Sensorless active yaw control for wind turbines [C]. The 27th Annual Conference of the IEEE, 2001, 2(1):1370-1375.
    [55] Hansen M.H., Hansen Anca, Larsen T.J., et al. Control design for a pitch-regulated, variable speed wind turbine [D]. Ris?-R-1500(EN), Ris? National Laboratory, 2005.
    [56] Lin Yonggang, Li Wei, Cui Baoling and Liu Hongwei. Two models switched predictive pitch control for wind turbine based on improved incremental SVR [C]. 6th World Congress on Intelligent Control and Automation, Jun 21-23 2006, Dalian, China.
    [57] De H, Mantz R J, Christiansen C F. Dynamical sliding mode power control of wind driven induction generators [J]. IEEE Trans on Energy Conversion, 2000, 5(4):451-457.
    [58] Pete M M Bongers, Gregor E, Van Baars. Load reducation in a wind conversion system using an H∞controller [C]. Second IEEE Conference on Control Application. 1993, Page(s):965-970.
    [59] Y.D. Song, B. Dhinakaran. Nonlinear variable speed control of wind turbines. IEEE International Conference on Control Applications [C]. Hawai’I, USA, 1999, Page(s):814-819.
    [60] Z Chen, S Arnalte Gomez, M Mccormick. A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems [C]. IEEE Power Electronics and Variable Speed Dives Conference, 2000, Page(s):114-119.
    [61] Yifan Tang, Longya Xu. Adaptive fuzzy control of a variable speed power generating system with doubly excited reluctance machine [C]. Proceedings ofPower Electronics Specialists Conference, PESC '94 Record 25th Annual IEEE. Taipei, Taiwan, 1994:377-384.
    [62] Rogério G. de Almeida, J. A. Pe?as Lopes, J. A. L. Barreiros. Improving Power System Dynamic Behavior Through Doubly Fed Induction Machines Controlled by Static Converter Using Fuzzy Control [J]. IEEE Transaction on Power System, 2004, 19(4):1942-1950.
    [63]许实章.电机学[M].北京:机械工业出版社,2001.
    [64] Kong Yigang,Jia Yuehu.Application of virtual instruments in a hydraulic position servo control systems [C].The Seventh International Conference on Electronic Measurement and Instruments,Beijing,China,2005.
    [65]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社, 2002.
    [66]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京:机械工业出版社,2006.
    [67]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册[M].北京:中国科技文化出版社, 2005.
    [68]肖劲松,倪维斗,姜桐.大型风力发电机组的建模与仿真[J].太阳能学报,1997,18(2) :117-127.
    [69]卞松江.变速恒频风力发电关键技术研究[博士论文] [D].浙江:浙江大学, 2003.
    [70]戴赟,王志新.变速恒频风力机桨叶电液比例控制系统研究[J].机电一体化,2006,12(1):16-20.
    [71]金增,包能胜,陈庆新等.风力机系统的神经网络模型辨识[J].太阳能学报,1998,19(2): 206-211.
    [72]胡兆光,方燕平.智能工程及其在电力发展战略研究中的应用[J].中国电机工程学报,2000,20(3):45-49.
    [73]陈云程,陈孝耀,朱成名.风力机设计与应用[M].上海:上海科学技术出版社,1990.
    [74] Molenaar D P, Kijistra S. Modeling the structural dynamics of flexible wind turbines [A]. Proc of 1999 EWEC[C], Nice, France, March 1999:234—237.
    [75]窦秀荣.水平轴风力机气动性能及结构动力学特性研究[D].山东工业大学博士学位论文1995,6.
    [76]陈余岳.玻璃钢风力机叶片疲劳设计[J].风力发电, 1992,(4):17-21.
    [77]风力发电机组规范[M].中国船级社, 2008.
    [78]贺德馨等.风工程与工业空气动力学[M].国防工业出版设,2006.
    [79] E A Bossanyi. Bladed for Windows Theory Manual[M].Garrad Hassan and Partners Limited, 2005
    [80]李本立,宋宪耕等.风力机结构动力学[M].北京航空航天大学出版社,1999.
    [81]李德源,叶枝全,陈严.风力机旋转叶片的多体动力学数值分析[J].太阳能学报, 2005, 26(4): 471—481.
    [82] Lee D, Hodges DH, Patil M J. Multi-flexible-body dynamic analysis of horizontal axis wind turbines [J]. Wind Energy, 2002, 5: 281—300.
    [83] Hodges D H, Patil M J. Multi-flexible-body analysis for application to wind turbine control design [A]. Proceedings of the ASME Wind Energy Symposium [C], Reno, Nevada, January 2000, Paper 2000-0030, 110—120.
    [84] Li Deyuan, Ye Zhiquan, Chen Yan, et al. Load spectrum and fatigue life analysis of the blade of the horizontal axis wind turbine [J]. Wind Engineering, 2003, 27(6):495—506.
    [85] Garrad Hassan & Partners. Bladed[EB/OL]. [2005_07_03]. http://www.garradhassan.com/bladed/bladed.htm.
    [86]庞强.风力机结构组件德有限元模拟与优化设计.上海交通大学硕士学位论文.2008
    [87]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报, 2005, 26(6): 792-800.
    [88] Flemming Rasmussen,Morten Hartvig Hansen,Kenneth Thomsen,etc., Present Status of Aeroelasticity of Wind Turbines,Wind Energ,2003(6):213–228.
    [89]姜香梅,曾杰.风力机及其零部件载荷的确定方法[J].新疆农业大学学报. 2002, 25(2):74-77.
    [90] Ackermann, T., editor. Wind Power in Power Systems [M]. John Wiley & Sons Ltd, Chichester, UK. 2005.
    [91] Ackermann, T. and Soder, L. An overview of wind energy-status [J]. Renewable and Sustainable Energy Reviews. 2002, 6(1-2), 67–127.
    [92] Amato, F., Garofalo, F., Glielmo, L., and Pironti, A. Robust and quadratic stability via polytopic set covering [J]. International Journal of Robust and Nonlinear Control, 1995(5):745–756.
    [93] AWEA. Electrical guide to utility scale wind turbines [M]. Technical report, American Wind Energy Association (AWEA). 2005, http://www.awea.org/pubs.
    [94] Bianchi, F., Mantz, R., and Christiansen, C. Power regulation in pitch-controlled variable-speed WECS above rated wind speed [J]. Renewable Energy, 2004, 29(11):1911–1922.
    [95] Bianchi, F., Mantz, R., and Christiansen, C. Gain scheduling control of variable-speed wind energy conversion systems using quasi- LPV models [J]. Control Engineering Practice, 2005, 13(2):247–255.
    [96] Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. Wind Energy Handbook [M]. John Wiley & Sons, Ltd., Chichester, UK. 2001.
    [97] Bossanyi, E. The design of closed loop controllers for wind turbines [J]. Wind Energy, 20003, (3):149–163.
    [98] AWEA. Wind energy fact sheets. Economics and cost of wind energy [M]. Technical report, American Wind Energy Association (AWEA). 2005, http://www.awea.org/pubs.
    [99]林勇刚,李伟,陈晓波.大型风力机组独立桨叶控制系统研究[J].太阳能学报,2005, 26(6):780-786.
    [100]张浩然,韩正之,李昌刚,基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003, 37(6):927-930.
    [101] Z. Shi, F. Gu, B. Lennox and A.D. Ball. The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system [J]. Control Engineering Practice, 2005, 13(11): 1357-1367.
    [102] Andrew Alleyne, Rui Liu. A simplified approach to force control for electro-hydraulic systems [J]. Control Engineering Practice, 2000, 8(12): 1347-1356.
    [103]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,28(13):55-59.
    [104]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [105]李东东,陈陈.风轮发电机组动态模型研究[J].中国电机工程学报, 2005,25(3):115-119.
    [106]李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报, 2004, 26(2):146-148.
    [107] Kong Yigang, Jia Yuehu. Application of Virtual Instruments in A Hydraulic Position Servo Control Systems [C]. ICEMI, 2005, The Seventh International Conference on Electronic Measurement and Instruments, Volume 8, 16-18 Aug. 2005:646 - 649 vol.8.
    [108]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003, 27(20):62-67.
    [109]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998, 19(1):30-35.
    [110] Muller, S, Deicke, M., De Doncker R.W. Doubly Fed Induction Generator Systems for Wind Turbines [J]. Industry Applications Magazine. IEEE, 2002, 8(3):26-33.
    [111]盛双文,许洪华.失速型风力发电机组双速电机切换过程的仿真分析[J].太阳能学报, 2002,23(5):604-609.
    [112] Rolf Hoffmann. A comparison of control concepts for wind turbines interms of energy capture [D]. Doctor thesis. Technology University Darmstadt, 2002.
    [113]赵仁德,贺益康,黄科元.变速恒频风力发电机交流励磁电源研究[J].电工技术学报, 2004, 19(6):1-6.
    [114] De Battista, H., Mantz, R., and Christiansen, C. Dynamical sliding mode power control of wind driven induction generators [J]. IEEE Transactions on Energy Conversion 2000, 15(4):451–457.
    [115] Mutschler P., Hofrnann R. Comparison of Wind Turbines Regarding Their Energy Generation [C]. Power Electronics Specialists Conference, 2002: 6-11.
    [116] O. Carlson, J. Hylander, and K. Thorborg. Survey of variable speed operation of wind turbines [C]. European Union Wind Energy Conference, Goeteborg, Sweden, 1996:406-409.
    [117] Koutroulis, E.; Kalaitzakis, K.; Design of a maximum power tracking system for wind-energy-conversion applications [J]. Industrial Electronics, IEEE Transactions on, April 2006 , 53(2):486-494.
    [118] Neammanee, B.; Krajangpan, K.; Sirisumrannukul, S.; Chatrattana, S.; Maximum Peak Power Tracking-Based Control Algorithms with Stall Regulation for Optimal Wind Energy Capture. [C] . Power Conversion Conference - Nagoya, 2007. PCC '072-5 April 2007:1424-1430.
    [119] Mutoh, N.; Nagasawa, A.; A Maximum Power Point Tracking Control Method Suitable for Multi-Parallel-Connected Compact Wind Power Generators with Self-Pitch Controlled Blades [C]. IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on, 6-10 Nov. 2006:4278-4284.
    [120] Sang-Yong Jung; Hochang Jung; Sung-Chin Hahn; Hyun-Kyo Jung; Cheol-Gyun Lee; Optimal Design of Direct-Driven PM Wind Generator for Maximum Annual Energy Production [J]. Magnetics, IEEE Transactions on, June 2008, 44(6):1062-1065.
    [121] Rossouw, E.; Kamper, M.J.; Use of air-cored axial flux permanent magnet generator in direct battery charging wind energy systems [C]. Power Electronics and DriveSystems, 2007. PEDS '07. 7th International Conference on27-30 Nov. 2007:1102 -1107.
    [122] Krichen, L.; Abdallah, H.H.; Ouali, A.; Reduced order observer for permanent magnet synchronous generator in wind energy conversion system [C]. Electrical Machines and Power Electronics, 2007. ACEMP '07. International Aegean Conference on, 10-12 Sept. 2007:818-823.
    [123] L. Hui, K.L. Shi and P.G. McLaren, Neural-network-based sensorless maximum wind energy capture with compensated power coefficient [J]. IEEE Trans. Ind. Appl. 2005, 41(6):1548-1556.
    [124] Iyasere, E.; Salah, M.; Dawson, D.; Wagner, J.; Nonlinear robust control to maximize energy capture in a variable speed wind turbine [C]. American Control Conference, 2008 11-13 June 2008:1824-1829.
    [125] Prats M M.,Carrasco J M,Galvan E,et al.Improving transition between power optimization and power limitation of variable speed, variable pitch wind turbines using fuzzy control techniques [C].IECON Proceedings (Industrial Electronics Conference), 2000, (3):1497-1502.
    [126] Perales M,Perez J,Barrero F,et al.Fuzzy logic control of a variable speed, variable pitch wind turbine [C]. Industrial Electronics Society, The 25th Annual Conference of the IEEE,CA,USA,1999.
    [127]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,2001.
    [128] Arantxa Tapia, Gerardo Tapia, etc. Modeling and Control of a Wind Turbine Driven Doubly Fed Induction Generator [J]. IEEE Transactions on Energy Conversion, 2003, 18(2):194-204.
    [129] Y.D. Song, B. Dhinakaran, X.Y. Bao. Variable speed control of wind turbines using nonlinear and adaptive algorithms [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2000, 8(5):295-308.
    [130] Sun yaojie. Robust sliding mode control of variable-speed wind power system [C]. In: Proceedings of Power Electronics and Motion Control Conference, IPEMC 2004, Xi’an China, 2004:1712-1716.
    [131] M.Idan, D. Lior, and G. Shaviv. A robust controller for a novel variable speed wind turbinet ransmission [J]. Journal of Solar Energy Engineering, 1998, 12(11):247-252.
    [132]高为炳.非线性系统的变结构控制[J].自动化学报.1989, 15(2):408-415.
    [133]杨俊华,吴捷.风力发电机组的非线性控制一变结构控制与鲁棒控制[J].动力工程.2003, 23(6):2805-2809.
    [134]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.
    [135]张天平,冯纯伯.一类不确定动态系统的输出反馈变结构控制[J].控制理论与应用. 1996, 13(4):432-440.
    [136] Slotine J.E. Adaptive Sliding Controller Synthesis for Nonliner Systems [J]. LntJ.control, 1996, 43(6):165-165.
    [137]吴捷,钱来,杨金明.感应电动机锁相及模糊滑模控制[J].控制理论及应用,2000,17(2):198-203.
    [138] Li T.H.S. Shiech M.Y. Switching-Type Fuzzy Sliding Mode Control of a Cart-Pole [J]. System Mechatronics,2000, 10(1-2):91-109.
    [139]李少远,席裕庚.模糊滑动模态控制系统的性质分析[J].控制理论与应用, 2000, 17(1):14-18.
    [140]张化光.复杂系统的模糊辩识与模糊自适应控制[M].沈阳:东北大学出版社,1993.
    [141]吴学光,张学成.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术,1998,22(6):68-72.
    [142] J- P.M olly,张世惠译.风能理论、应用与测试[M].
    [143] Donald S. Zinger and Eduard Muljadi. Annualized wind energy improvement using variable speeds [J]. IEEE Transactions on Industry Applications, 1997, 33(6):1444-1447.
    [144] Gary L. Johnson. WIND ENERGY SYSTEMS [M]. Manhattan, KS, 2001.
    [145]刘豹.现代控制理论[M].北京:机械工业出版社, 2000.
    [146] F. Blaabjerg, Z. Chen, R. Teodorescu, et al. Power Electronics in Wind Turbine Systems [C]. Proceedings of CES/IEEE 5th international power electronics and motion control conference. Shanghai, 2006, 1(5): 46-57.
    [147] E. Lee, J. Park, K. Bang-Bang impact control using hybrid mpedance/time-delay control [J]. IEEE/ASME Trans. on Mechatronics, 2003, 8(2):272-277.
    [148] A.L. Dontchev, W.W. Hager, A.B. Poore. Optimality, stability and convergence in nonlinear control [J]. Applied Mathematics arid Optimization, 1995, 3(1):297-326.
    [149] A.A. Agrachev, G. Stefani, and P.L. Zezza. Strong optimality for a bang-bang trajectory [J]. SIAM J. Controland Optimization, 2002, 41(4): 991-1014.
    [150] Andrew Miller, Edward Muljadi, Donald S. Zinger. A Variable Speed Wind Turbine Power Control [J]. IEEE Trans on Energy Conversion. 1997.12(2):1981-1986.
    [151] Leithead, W.E., Connor,B. Control of Variable Speed Wind Turbines: Design Task. Int [J]. J.Contr., 2000, 73(13):1189-1212.
    [152] M.Machmoum, F. Poitier, et al. Dynamic Performances of a Doubly-fed Induction Machine for a Variable-speed Wind Energy Generation [C]. International Conference on Power System Technology. 2002, (1):2431-2436.
    [153] W.Leithead,S.dela Salle,and D.Readon. Wind turbine control objectives and design [C]. In European Community Wind E nergy Conference, Madrid, 1990, 510-515.
    [154]李洪兴,苗志宏,王加银.非线性系统的变论域稳定自适应模糊控制[J].中国科学E辑, 2002 ,32(2):65-75.
    [155] Cadirci,l.Ermis,M .Double-out induction generator operating at subsynchronous and super synchronous speeds: steady-state performance optimisation and wind-energy recovery [C]. IEE Proceedings-Electric Power Applications. 1992, 139(5):429-442.
    [156] Tan Guan-zheng, Zeng Qing-dong, He Sheng-jun, et al. Adaptive and Robust Design for PID Controller Based on Ant System Algorithm [J]. Advances in Natural Computation Lecture Notes in Computer Science, 2005, 36(5):915-924.
    [157] Dominguez Rubira, S .M cCulloch,M .D. Control method comparison of doubly fed wind generators connected to the grid by asymmetrict ransmission lines [J]. IEEE Trans on Industry Applications. 2000, 36(4):986-991.
    [158] Hansen, A.C., User's Guide to the Wind Turbine Dynamics Computer Programs Yaw Dyn and Acro Dyn for A DAMS [D]. Mechanical Engineering Department, University of Utah, Salt Lake City, UT, 1998.
    [159] Gregor E. Van Baars and Peter M.M. Bongers. Wind turbine control design and implementation based on experimental models [C]. Proceedings of the 31th conference on Decision and Control, Tucson, Arizona, 1992, (24):2454-2459.
    [160]李树广,何志明.模糊自适应PID控制在立式风力发电系统中的应用[J].测控技术, 2003, 22(7):24-27.
    [161] Yamada K. Robust internal model servo control with control input saturation [C]. Proceedings of the 1998 American Control Conference, 1998(6):3685-3686.
    [162] Ho, W., Hang, C.C., and Cao, L. S. Tuning of PID Controllers Based on Gain and Phase Margin in Specifications [C]. Proceedings of the 12th IFAC World Congress, 1993, (5):267-270.
    [163]刘金琨.先进PID控制及其MATLAB仿真[M].北京:北京电子工业出版社, 2003.
    [164]张健民,杨华甬,路甬祥.基于过程整定法的模糊PID [J].信息与控制, 1998, 27(1):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700