1. [地质云]滑坡
新型反应器微观混合—沉淀过程的理论、实验及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
典型的反应沉淀过程是两种液体混合后,反应产生过饱和度,然后发生成核、生长和团聚。如果沉淀动力学的时间尺度远长于混合时间,两股液体的混合过程快于反应,此时最后产物特性主要依靠物化参数,而不是混合条件。实际上,沉淀过程通常非常快,导致了在反应器内达到均匀过饱和度之前,成核、生长和团聚就已经开始了,这种不均匀过饱和度场产生不同的推动力,反过来影响了产物最后的特性,即产物粒子的形貌及粒度分布受到流体力学和混合过程控制。因此,为了改善产品特性以获得最大的经济效率,需要结合流体力学和混合机制来研究化学反应器的反应沉淀过程。因此本文研究了超重力旋转填充床反应器和微通道反应器内的混合-反应沉淀过程。
     基于前人对旋转填充床中可视化研究及微观混合的研究结果,本论文首先建立了能描述旋转填充床反应器(RPB)内液相反应沉淀过程(包括流体流动、混合、反应、成核及晶体生长)的数学模型。同时就BaCl2与Na2SO4反应生成BaSO4为沉淀体系,实验考察了旋转填充床的反应沉淀过程及各操作条件对产物粒子粒度分布的影响规律,这些工作为旋转填充床的工业应用及结构优化设计提供了理论基础。本文还对多种混合形式的微通道反应器内混合效率进行了研究,建立了CFD模型,考察了在微尺度下不同混合形式及操作参数对混合效率的影响;同时还实验考察了包括混合通道尺度、流量等操作条件对产物颗粒粒度分布的影响规律。最后,基于液相反应沉淀过程的实验和理论研究结果,开展了用超重力法(RPB为核心反应设备)制备纳米药物吉非罗齐的应用研究工作。本论文主要工作如下:
     1、在前人对RPB内流体流动的可视化观察结果和混合特征研究结果的基础上进行合理假设,结合物料衡算方程、粒度衡算方程及结晶动力学方程,采用聚并-分散模型(Coalescence-Redispersion Model)建立了旋转床内描述流体流动、混合、反应、成核及晶体生长的数学模型,提出了表征填料内液相微观混合强度的模型参数—聚并概率,并根据填料结构与液体微元间混合机制计算给出不同径向填料位置的聚并概率大小。
     2、设计了一台可实现沿填料径向取样的旋转填充床(RPB)进行BaSO4沉淀的实验研究,首次从实验上证实了RPB填料端效应区对液相反应沉淀过程的重要性。RPB的反应沉淀实验结果表明:提高转速可改善微观混合,使BaSO4产物颗粒粒径减小、粒度分布变窄;反应物流量的增加也会使粒度下降、分布变好,但当流量达到一定数值后这种下降趋势明显减缓;反应物初始浓度增加,粒度变小、分布变窄;在恒定的BaSO4产物浓度下,随反应物体积流量的增大,粒径稍有增大、分布变差。
     3、基于上面建立的旋转填充床中液相反应沉淀的数学模型,分析计算了聚并概率p、过饱和度、体积比及成核动力学对产物颗粒粒度分布的影响规律。模拟结果表明:成核级数越大,粒径及方差越大,所需填料层厚度增大;随晶核尺度增加,粒径及方差增大;提高反应物初始浓度或体积比,粒径及方差减小。模型的计算结果和实验结果基本吻合,能够正确反映操作参数(流量、转速等)对产物颗粒粒径的影响规律。这些研究结果,为进一步的研究以及旋转填充床的优化设计提供了理论基础。
     4、基于计算流体力学知识,从湍动理论出发,建立CFD模型并对多个混合形式的微通道反应器内流动情况及混合效率进行了数值计算。模拟结果表明:流动处于层流,物质间混合只能依靠分子扩散进行,通道内流体几乎处于完全离集的状态,流速加快后,辅以湍动扩散,混合效率迅速增大;物料流量增大,混合效率增加;进口物料体积流量比增大,混合效率加快;交叉点两流体混合角度越大,混合强度越高。基于对微通道反应器混合效率的研究结果,在Y型和线型微通道反应器中考察了各操作参数对粒度大小及分布的影响规律。实验结果表明:随混合通道尺度下降,产物颗粒平均粒径及无因次方差减小;提高反应物流量,粒径及方差下降,但是当流量提高到一定数值后这种下降趋势减缓;反应物浓度增大,过饱和度增加,粒径及方差下降,反应物体积流量比增大,粒径及方差下降。上述研究结果对于微通道反应器用于纳米颗粒的制备等相关领域具有一定的指导价值。
     5、基于对旋转填充床反应沉淀过程的理论及实验研究结果,利用超重力法制备出了具有窄粒度分布、平均粒径约80 nm纳微吉非罗齐颗粒,同时对纳微粉化药物进行了表征,开发出了超重力法制备纳米吉非罗齐的新工艺。
Precipitation is a very important unit operation which is widely used in chemical industry in the production of fine solids. Typically, precipitation occurs after the mixing of two liquid streams to create supersaturation, followed by nucleation, particle growth and (very often) agglomeration. If the time scale of precipitation kinetics is much longer than that of mixing, the mixing of two liquid streams is faster than the reaction. In this case, precipitation process is often controlled by physicochemical characteristics, and not the mixing conditions. In fact, precipitation process is so fast that nucleation, growth and agglomeration have started prior to the achievement of a homogeneous supersaturation level in a reactor. The heterogeneous supersaturation field generates different driving forces, which in turn drastically affects the final product properties. Therefore, the modeling of precipitation process in chemical reactors is required by combining fluid and mixing mechanics to improve the product quality. This dissertation had a detailed research on the mixing-precipitation process of nanoparticles in a rotating packed bed and microchannel reactors.
     Based on the previous research results of visualization and micromixing in a rotating packed bed (RPB), a mixing-precipitation model was firstly presented to describe the flow, mixing, nucleation and growth process in RPB. The validity of this model was verified experimentally with BaSO4 precipitated from the reaction of Bal2 and Na2SO4 in RPB. Furthermore, the mixing efficiencies of various microchannel reactors were investigated by CFD technology, and exploring the effects of operational conditions on particle size distribution was experimentally carried out. Finally, on the basis of the above-mentioned researches, gemfibrozil (GEM) nanodrug was prepared in RPB. The main contents and findings are summarized as follows:
     1. On the basis of the previous research results of liquid flow and mixing mechanism in RPB, a coalescence-redispersion model is built to describe flow, mixing, reaction, nucleation and growth by reasonable hypothesis and combination with population balance, mass balance and crystallization kinetics for precipitation process in RPB. The mixing intensity of liquid-liquid on cages in RPB can be characterized by the coalescence probability (p), which is defined as the percentage of droplets participating in coalescence-redispersion process. Moreover, coalescence probability at different radial positions of packing was calculated by wire packing structure and mixing mechanism.
     2. A RPB, which is allowed sampling at radial position, is specially designed to investigate the precipitation of BaSO4 nanoparticles The important effect of inlet region of the RPB on the whole precipitation process was experimentally confirmed for the first time, which has a significant impact on the design of industrial RPB for the precipitation of sparing soluble material, especially the radial thickness (i.e.,40-50 mm in our experimental conditions). The effects of operating conditions on particle size distribution were also investigated. The results showed that the BaSO4 mean particle size and corresponding size distribution decreased with the increase of rotational speed and liquid flow rate, while increased with the increase of volumetric ratio and the decrease of reactant concentrations.
     3. Based on the above model, the effects of coalescence probability, supersaturation, volumetric ratio and crystallization kinetics on particle number density, supersaturation and mean particle size were explored. The predicted results indicated that mean particle size and variance decreased with the increase of coalescence probability, nucleation order, supersaturation and volumetric ratio, while increases with the increase of the nucleus size. This model has a good agreement between the experimental and predicted results, providing a theoretical base for further investigation and.optimization design of RPB.
     4. The mixing efficiencies (Is) of various microchannels were investigated by CFD model at different operational conditions. The calculated results showed that the mixing efficiency increased with the increase of liquid flow rate. The bigger two inlet cross angle of micrchannels is, the higher the mixing efficiency. However, the mixing efficiency only slightly increases with the increase of liquid flow rate and volumetric ratio at the higher volumetric flow rate. In addition, the precipitation of BaSO4 nanoparticles was carried out in Y-type and line-type microchannel reactors, respectively. The effects of various operational conditions on particle size distribution of precipitates were studied as well. The results showed that the mean particle size and dimensionless variance decreased with the increase of liquid flow rate, initial concentration and volumetric ratio of reactants, as well as the decrease of the microchannel size.
     5. On the basis of the above theoretical and experimental results in RPB, the RPB structure was further optimized for the preparation of gemfibrozil (GEM) nanodrug. The results indicated that GEM nanosized particles with a near-spherical shape, a mean particle size of about 80 nm and a narrow PSD could be successfully prepared in RPB. The as-prepared GEM powder was also characterized by XRD and BET.
引文
[1]Danckwerts P V. The effect of incomplete mixing on homogeneous reactions [J]. Chem. Eng. Sci.1958,8:93-101.
    [2]Pohorecki R, Baldyga J, The use of a new model of micromiing for determination of crystal size in precipitation [J]. Chem. Eng. Sci.,1983,38(1):79-83.
    [3]Baldyga J, Bourne J R. Simplification of micromixing calculations I. Derivation and application of new model [J]. Chem. Eng. J.,1989,42(1):83-92.
    [4]David R, Marcant B. Precipitation of micromixing effects in precipitation:case of double-jet precipitators. AIChE J.1994,40:424-432.
    [5]Tavare N S. Mixing, reaction and precipitation:interaction by exchange with mean micromixing models [J]. AIChE J.1995,41:2537-2548.
    [6]Chen J F, Zheng C, Chen G T. Interaction of macro-and micromixing on particle size distribution in reactive precipitation [J], Chem. Eng. Sci.,1996,51(10):1957-1966.
    [7]Baldyga J, Podgorska W, Pohorecki R. Mixing-Precipitation model with application to double feed semibatch precipitation [J]. Chem. Eng. Sci.,1995,50:1281-1300.
    [8]Jaworski Z, Nienow A W. CFD modeling of continuous precipitation of barium sulphate in a stirred tank [J]. Chem. Eng. J.,2003,91:167-174.
    [9]Wei H, Garside J. Application of CFD modelling to precipitation systems [J]. Transactions of the Institution of Chemical Engineers,1997,75(A):219-227.
    [10]Torbacke M, Rasmuson A C. Influence of different scales of mixing in reaction crystallization [J]. Chem Eng Sci.,2001,56:2459-2473.
    [11]Zauner R, Jones A G. On the influence of mixing on crystal precipitation processes: application of the segregated feed mode [J]. Chem Eng Sci.,2002,57:821-831.
    [12]Schwarzer H C, Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles [J]. AIChE J.,2004,50:3234-3247.
    [13]张立德,牟季美.纳米材料学[M].沈阳:辽宁科技出版社,1994
    [14]张立德主编.超微纷体制备与应用技术[M].北京:中国石化出版社,2001
    [15]Guichardon P, Falk L. Characterization of micromixing efficiency by the iodide-iodate reaction system. Part I:experimental procedure [J]. Chem. Eng. Sci.,2000,55:4233-4243
    [16]Fang J Z, Lee D J. Micromixing efficiency in static mixer [J]. Chem. Eng. Sci.,2001,56: 3797-3802.
    [17]Liu C L, Lee D J. Micromixing effects in a couette flow reactor [J]. Chem. Eng. Sci.,1999, 54:2883-2888.
    [18]Yang H J, Chu G W, Zhang J W, Shen Z G, Chen J F. Micromixing efficiency in a rotating packed bed:experiments and simulation [J]. Ind. Eng. Chem. Res.,2005,44(20):7730-7737.
    [19]Wu Y, Xiao Y, Zhou Y X. Micromixing in the submerged circulative impinging stream reactor [J]. Chinese J. Chem. Eng.,2003,11(4):420-425.
    [20]Bourne J R, Garic R J. Rotor-stator mixers for rapid micromixing [J]. Chem. Eng. Res. Des, 1986,64:11-17
    [21]杨海健.新型化学反应器的微观混合实验、理论及应用研究[D].北京:北京化工大学,2007
    [22]陈建峰主编.超重力技术及应用—新一代反应与分离技术[M].北京:化学工业出版社,2002
    [23]埃尔费尔德W,黑塞尔V,勒韦H(著).骆广生,王玉军,吕阳成(译).微反应器—现代化学中的新技术[M].北京:化学工业出版社,2004
    [24]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.
    [25]Mullin J W. Crystallization 3rd. ed[M.]. London:Butterwlorths,1993
    [26]哈姆斯基E B(著),古涛,叶铁林(译).化学工业中的结晶[M].北京:化工出版社,1984.
    [27]Victor K L M. Nucleation in phase transitions [J]. Industrial & engineering chemistry,1952, 44(6):1270-1277
    [28]Aouna M, Plasarib E, Davida R, Villermauxb J. A simultaneous determination of nucleation and growth rates from batch spontaneous precipitation [J], Chemical Engineering Science, 1999,54(9):1161-1180
    [29]Kelton K F. Analysis of crystallization kinetics [J]. Materials Science and Engineering,1997, 28:226-228
    [30]Mersmann A. Crystallization and Precipitation [J]. Chemical Engineering and Processing, 1999,38:345-353.
    [31]Mealor D, Townshend A. Homogeneous nucleation of some sparingly soluble salts [J].1966, 13:1069-1074.
    [32]Melikhov I V, Kelebeev A S, Bacic S. Electron microscopic study of nucleation and growth of highly dispersed solid phase [J]. J. Colloid Interface Sci.,1986,112:54-65.
    [33]Nielsen A E. The kinetics of crystal growth in barium sulphate precipitation [J]. Acta Chemica Scandinavica,1958,12:951-958.
    [34]Nielsen A E. Homogeneous nucleation in barium sulphate precipitation [J]. Acta Chemica Scandinavica,1961,15:441-442.
    [35]Nielsen A E. Kinetics of precipitation. Oxford:Pergamon.1964
    [36]Nielsen A E. Nucleation and growth of crystals at high supersaturation [J]. Krist. Technik, 1969,4:17-38.
    [37]Botsaris G D. Secondary nucleation—a review, Industrial crystallization, N.Y.:Plenum Press, 1976
    [38]Dejong E J. Nucleation and early crystal growth [J]. ind. Chem.,1963,39:351-356
    [39]Garside J, Davey R J. Secondary contact nucleation; kinetics, growth and scale-up [J]. Chem. Eng. Commun.,1980,4:393-424.
    [40]Gunn D J, Murthy M S. Kinetics and mechanisms of precipitations. Chem. Engng Sci.,1972, 27:1293-1313.
    [41]Klein H, Fontal B. Heterogeneous and homogeneous nucleation of barium sulphate [J]. Talanta,1964,11:1231-1237.
    [42]Aoun M, Plasari E, David R, Villermaux J. Are barium sulphate kinetics suciently known for testing precipitation reactor models [J]. Chem. Engng Sci.,1996a,51:2449-2458.
    [43]Mersmann A, Kind M, Chemical engineering aspects of precipitation from solution [J], Chemical Engineering & Technology,1988,11(1):264-276
    [44]Matz G, Kaufhold G, CEPAS, Nielsen A E. Abstract book [M]. Copenhagen University,1978, 13
    [45]Garside J, Tavare N S, Non-isothermal effectiveness factors for crystal growth [J], Chem. Eng. Sci.,1981,36(5),863-866
    [46]Leo J M J, Blomen E J, Will O L M et al. Growth kinetics of calcium oxalate monohydrate: Ⅱ. The variation of seed concentration [J]. Journal of Crystal Growth,1983,64(2):306-315
    [47]Judat B, Kind M. Morphology and internal structure of barium sulfate—derivation of a new growth mechanism [J]. Journal of Colloid and Interface Science,2004,269:341-345.
    [48]Garside J, Van R RJ, Bennema P. VeriPcation of crystal growth rate equations. J. Crystal Growth,1975,29:353-366.
    [49]Qiu Y, Rasmuson A. Growth and dissolution of succinic acid crystals in a batch stirred crystallizer [J]. AIChE J.,1990,36:665-676.
    [50]Mullin J W, Amatavivadhana A. Growth kinetics of ammonium-and potassium-dihydrogen phosphate crystals [J]. J. Appl. Chem.,1967,17:151-156.
    [51]Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces [J]. Philos Trans. Roy. Soc.,1951,243(A):299-358.
    [52]Walton A G. Dispersion of powders in liquids [M],2nd ed. London:Applied Science Publishers,1973,175-178
    [53]Marchisio D L. Nucleation, Growth, and Agglomeration in Barium Sulfate Turbulent Precipitation [J]. AICHE J.,2002,48(9):2039-2045.
    [54]Pohorecki R, Baldyga J. The effect of micromixing and manner of reactor feeding on precipitation in stirred tank reactors [J]. Chem. Eng. Sci.,1988,43:1949-1954
    [55]Tosun G. Effect of addition mode and mixing intensity on particle size distribution in BaSO4 precipitation [C]. AIChE Meeting. San Francisco.1989.
    [56]Tosun G. An experimental study of the effect of mixing on the particle size distribution in BaSO4 precipitation reactor [C]. In proceedings of the 6th European conference on mixing, Pavia, Italy,1988,161-170
    [57]Baldyga J, Pohorecki R, Podgorska W, Marcant B. Micromixing effects in semibatch precipitation [C]. In Proceedings of the 11th symposium on industrial crystallization. Garmish-Partenkirchen, FRG, A. Mersmann,1990,175-180
    [58]Baldyga J, Pohorocki R. Micromixing effects in semi-batch precipitation [C], Symp on Industrial Crystallization, Garmisch Parteakirchen,1990
    [59]Mersmann A, Franke J. Controlled precipitation [J], Chem. Eng. Technol.,1994,17(1):1-9
    [60]Kuboi R. Mixing effects in double-jet and single-jet precipitation [C]. World Congress II of Chem Eng. Tokyo,1986
    [61]Muhr H. Micromixing in the precipitation process of BaSO4, Industrial Crystallization [M]. France:Toulouse,1996
    [62]陈建峰,陈甘棠.微观混合问题的研究——V混合对沉淀反应过程的影响[J].化学反应工程与工艺,1991,8(1):111-115
    [63]陈建峰,陈甘棠.反应结晶过程中产物粒子粒度分布的模拟[J].化学反应工程与工艺,1993,9(4):386-394
    [64]龚卫星,戴干策,许汝谟.影响BaSO4沉淀颗粒粒径分布的工程因素[J].华东理工大学学报,1995,21(3):300-304
    [65]陆杰,王静康.反应结晶过程研究(Ⅰ)—激光法研究结晶热力学与反应动力学[J].化学工业与工程,1999,16(1):21-25
    [66]陆杰,王静康.反应结晶过程研究(Ⅱ)—二次过程及机理分析[J].化学工业与工程,1999,16(1):58-62
    [67]陆杰,王静康.操作参数对普鲁卡因青霉素晶体粒度的影响[J].高校化学工程学报,
    1999,13(6):554-557
    [68]Schwarzer H C, Peukert W. Nanoparticle precipitation:Experimental investigation, modeling and process simulation [C]. In 15th international symposium on industrial crystallization, Sorrento, Italy,2002
    [69]Schwarzer H C, Peukert W. Experimental investigation into the influence of mixing on nanoparticle precipitation [J]. Chem. Eng. Technol.2002,25:657-661.
    [70]Kockmann N, Kastner J, Woias P. Numerical and experimental study of nanoparticle precipitation in microreactors [C]. in:ESI 2nd Int. Conf. Transport Phenomena Micro Nanodevices, Ciocco, Barga,2006,11-15
    [71]Kockmann N, Kastner J, Woias P. Reactive particle precipitation in liquid micochanne flow [J]. Chem Eng Journal,2007,135S:S110-S116.
    [72]Curl R L. dispersed phase mixing I theory and effects in simple reactors [J]. AIChE J.,1963, 9(2):175-181.
    [73]Speilman L A, Levenspiel. A Monte Carlo treatment for reacting and coalescing dispersed phase systems [J]. Chem. Eng. J.,1965,20(3):247-254.
    [74]Ng D Y C, Rippin D WT. The effect of incomplete mixing on conversion in homogeneous reactions [C]. Third Eur. Symp. Chem. Reaction Eng, Amsterdam,1964,161-165.
    [75]Ritchie B W, Tobgy A H. A three-environment micromixing model for chemical reactors with arbitrary separate feedstreams [J]. Chem. Eng. J.,1979,17:173-182.
    [76]Mehta T. Four environment model of mixing chemical reaction [J]. AIChE J.,1983,29: 320-329.
    [77]Villermaux J. Model of an imperfect mixture of two flows of reagents in a continuously agitated reactor [J]. Chem. Eng. Sci.,1972,30:457-462
    [78]Costa P, Trevissoi C. Reactions with non-linear kinetics in partially segregated fluids [J]. Chem. Eng. Sci.,1972,27:2041-2049
    [79]Mao K W, Toor H L. A diffusion model for model for reactions with turbulent mixing [J]. AIChE J.,1970,16:49-56
    [80]Ottino J M, Ranz W E, Macosko C W. A lamellar model for analysis of liquid-liquid mixing [J]. Chem. Eng. J.,1978,34:877-890
    [81]Ranz W E. Applications of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows [J]. AIChE J.,1979,25(1):41-47.
    [82]Angst W, Bourne J R, Sharma R N. Mixing and fast chemical reaction IV the dimensions of the reaction zone [J]. Chem. Eng. Sci.,1982,37(4):585-590
    [83]Baldyga J, Bourne J R. A fluid mechanical approach to turbulent mixing and chemical reaction—part II micromixing in the light of turbulence theory [J]. Chem. Eng. Commun., 1984,28:243-258.
    [84]Baldyga J, Bourne J R. Simplification of micromixing calculations. I derivation and application of new model [J]. Chem. Eng. J.,1989,42:83-92.
    [85]Baldyga J, Bourne J R. Simplification of micromixing calculations. Ⅱ new applications [J]. Chem. Eng. J.,1989,42:93-101.
    [86]Becker G W, Larson M A. Mixing effects in continuous crystallization [J]. Chem. Eng. Prog. Symp. Ser.,1969,65:14-23
    [87]Pohorecki R, Baldyga J. The influence of intensity of mixing on the rate of precipitation [C]. in Proceedings of Industrial Crystallization, North-Holland, Amsterdam,1979,249-258
    [88]Garside J, Tavare N S. Mixing, reaction and precipitation:Limits of micromixing in an MSMPR crystallizer [J]. Chem Eng Sci.,1985,40:1485-1493.
    [89]Nyvlt J, Zacek S. Effect of the rate of stirring on crystal size in precipitation or salting-out systems [J]. Colln. Czech. Chem. Commun.,1986,51:1609-1617
    [90]Pipino M, Barresi A A, Fox R O. A PDF approach to the description of homogeneous nucleation [J]. In Proceeding of Quarto Convegno Internazionale Fluidodinamica Multifase Nell'impiantistica Industrialles, Ancona, Italy,1994.
    [91]Baldyga J, Orciuch W. Closure problem for precipitation [J]. Trans. Inst. Chem. Eng.,1997, 75A:160-170
    [92]Baldyga J, Henczka M, Orciuch W. Closure problem for mixing and precipitation in inhomogeneous turbulent flow [J]. Acta polytechnica scandianvica, Chem. Technology Series,1997,244,160-170
    [93]Wei H Y, Garside J. Application of CFD modelling to precipitation systems. Chem. Eng. Res. Des.,1997,75(2):219-227
    [94]Wei H Y, Wei Z, Garside J. Computational fluid dynamics modeling of the procipitation process in a semibatch crystallizer. Ind. Eng. Chem. Res.2001,40,5255-5261
    [95]Marchiso D L, Barresi A A, Baldi G, Fox R O. Comparison of different modelling approaches to turbulent precipitation [C]. In Proceedings of the 10th European Conference on Mixing, Delft, The Netherlands,2000
    [96]Piton D, Fox R O, Marcant B. Simulation of fine particle formation by precipitation using computational fluid dynamics [J]. Can. J. Chem. Eng.,2000,78:983-995.
    [97]Gavi E, Rivautella L, Marchisio D L, Vanni M, Barresi A A, Baldi G. CFD modeling of nano-particle precipitation in confined impinging jet reactors [J]. Trans IChemE, Chem. Eng. Res. Des.,2007,85(A5):735-744
    [98]Zucca A, Marchisioa D L, Barresia A A, Fox R O. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames [J]. Chemical Engineering Science,2006,61:87-95
    [99]Marchisio D L, Vigil R D, Fox R O. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems [J]. Chem. Eng. Sci.,2003,58:3337-3351
    [100]Baldyga J, Makowski L. Interaction between Mixing, Chemical Reactions, and Precipitation [J]. Ind. Eng. Chem. Res.,2005,44:5342-5352
    [101]Woo X Y, Tan R H, Chow P S, Braatz R D. Simulation of Mixing Effects in Antisolvent Crystallization Using a Coupled CFD-PDF-PBE Approach [J]. Crystal Growth & Design, 2006,6(6):1291-1303
    [102]Podgorska W, Baldyga J, Pohorecki R. Micromixing effects in double feed semibatch precipitation [C]. In Proceedings of 12th international symposium on industrial crystallisation, Warsaw, Poland,1993,2015-2020.
    [103]Marcant B, David R. Influence of micromixing on precipitation in several crystallizer configurations [J]. In Proceedings of 12th international symposium on industrial crystallisation, Warsaw, Poland,1993,2021-2026.
    [104]Aslund B, Rasmuson A C. Semibatch reaction crystallization of benzoic acid [J]. AIChE J., 1992,38:328-342.
    [105]Marcant B, David R. Experimental evidence for and prediction of micromixing effects in precipitation [J]. AIChE J.,1991,37:1698-1710.
    [106]Houcine I, Plasari E, David R, Villermaux J. Influence of mixing characteristics on the quality and size of precipitated calcium oxalate in a pilot scale reactor [J]. Chemical Engineering Research and Design,1997,75:252-256.
    [107]Philips R, Rohani S, Baldyga J. Micromixing in a single-feed semi-batch precipitation process [J].AIChE J.,1999,45:82-92.
    [108]Torbacke M. Reaction crystallisation—analysis of a semibatch process [D]. Sweden, Stockholm:Royal Institute of Technology,1998
    [109]Baldyga J, Pohorecki R, Podgorska W, Marcant B. Micromixing effects in semibatch precipitation [C]. In Proceedings of 11th International Symposium on industrial crystallisation, Garmisch-Partenkirchen, Federal Republic of Germany,1990
    [110]Bourne J R, Tovstiga G. Micro-mixing and fast chemical reactions in a turbulent tubular reactor [J]. Chem. Eng. Res. Des.,1988,66(1):26-32
    [111]Meyer T, David R, Renken A, Villermaux J.. Micromixing in a static mixer and an empty tube by a chemical method [J]. Chem. Eng. Sci.,1988,43(8):1955-1960
    [112]Marchisio D L, Barresi A A, Garbero M. Nucleation, Growth, and Agglomeration in Barium Sulfate Turbulent Precipitation [J]. AIChE J.,2002,48(9):2039-2050
    [113]Judat B, Racina A, Kind M. Macro-and micromixing in a Taylor-Couette reactor with axial flow and their influence on the precipitation of barium sulfate [J]. Chem. Eng. Technol., 2004,27:287-292.
    [114]Barresi A A, Marchisio D L, Baldi G. On the role of micro-and mesomixing in a continuous Couette-type precipitator [J]. Chem. Eng. Sci.,1999,54:2339-2349.
    [115]Wang L, Marchisiol D L, Vigil R D, Fox R O. CFD simulation of aggregation and breakage processes in laminar Taylor-Couette flow [J]. Journal of Colloid and Interface Science,2005, 282:380-396
    [116]骆广生,陈桂光,徐建鸿,汪家鼎.微混合技术—颗粒材料制备的关键之一[J].现代化工,2004,24(7):17-19
    [117]乐军,陈光文,袁权.微混合技术的原理与应用[J].化工进展,2004,23(12):1271-1276
    [118]陈光文,袁权,微化工技术[J].化工学报[J].2003,54(4):427-429
    [119]骆广生,陈桂光,徐建鸿等.微混合设备及其性能研究进展[J].现代化工,2003,23(8):10-13.
    [120]Chen G G, Luo G S, Sun Y, Wang J D. A ceramic microfiltration tube membrane dispersion extractor [J]. AICHE Journal,2004,50 (2):382-387.
    [121]Michiya T, Taisuke M, Minoru M, Kazuhiro M. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe [J]. Chem Eng J,2004,101(2): 269-276.
    [122]Kiwamu S, Kazuhito K, Kunio A. Hydrothermal synthesis of ZnO nanocrystals using microreactor [J]. Materials letters,2004,58(25):3229-3231.
    [123]Pennemann H, Forster S, Kinkel J, Hessel V, Lowe H, Wu L. Improvement of dye properties of the azo pigment yellow 12 using a micromixer-based process [J]. Org Proc Res Dev,2005, 9(2):188-192.
    [124]Wagner J, Kohler J M. Continuous synthesis of gold nanoparticles in a microreactor [J]. Nano Letters,2005,5(4):685-691.
    [125]Wang H Z, Nakamura H, Uehara M. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor [J]. Chemical Communications,2002,2(14): 1462-1463.
    [126]Chen G G, Luo G S, Xu J H, et al. Membrane dispersion precipitation method to prepare nanoparticles [J]. Powder Technology,2004,139 (2):180-185.
    [127]Chen G G, Luo G S, Yang X R, Sun Y W, Wang J D. Anatase-TiO2 nano-particle preparation with a micro-mixing technique and its photocatalytic performance [J]. Materials Science and Engineering,2004,380:320-325.
    [128]Chen G G, Luo G S, Xu J H, Wang J D. Preparation of barium sulfate particles using filtration dispersion precipitation method in O/W system [J]. Powder Technology,2005,153: 90-94.
    [129]陈桂光,骆广生,杨雪瑞,孙怡文,汪家鼎.微混合沉淀技术制备纳米TiO2颗粒[J].无机材料学报,2004,19(5):1163-1167.
    [130]陈桂光,骆广生,徐建鸿,汪家鼎.膜分散沉淀法制备硫酸钡超细颗粒[J].清华大学学报,2004,44(3):315-318.
    [131]周绪美,郭锴,王玉红,冯元鼎,郑冲.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994,23(12):807-812
    [132]张健.旋转床超重力场分离气溶胶的研究[D].北京:北京化工大学,1994
    [133]Bucklin R W, Won K W. HIGEE contactors for selective H2S removal and superdehydration [C]. Laurance Reid Gas Conditioning Conference. Univ. of Oklahoma. USA Mar.1987,2-4
    [134]万东梅.超重机技术用于工业尾气脱硫化学吸收过程的研究[D].北京:北京化工大学,1995
    [135]金沙杨,李振虎,戴伟,郭锴.旋转填充床脱除裂解气中酸性气体的冷模实验[J].石油化工,2006,3(5):452-457
    [136]Chen J F, Zhou M Y, Shao L, Wang Y Y, Yun J, Chew N Y K, Chan H K. Feasibility of preparing nanodrugs by high-gravity reactive precipitation [J]. Int. J. Pharm.2004,269: 267-274
    [137]Chen J F, Shao L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost [J]. China Particuology,2003,1(2):64-69
    [138]Shen Z G, Chen J F, Yun J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method [J]. Crystal Growth,2004,267: 325-335
    [139]刘骥,向阳,郑冲,陈建峰,周绪美.旋转填充床内液-液法制备碳酸锶纳米粉体[J].化工科技,1999,7(4):11-14
    [140]Wang M, Zou H K, Shao L, Chen J F. Controlling factors and mechanism of preparing of preparing needlelike CaCO3 under high-gravity environment [J]. Powder Technology,2004, 142:166-174
    [141]Chen J F, Li Y L, Wang Y H, Yun J, Cao D P. Preparation and characterization of zinc sulfide nanoparticles under high-gravity. Environment [J]. Materials Research Bulletin,2004, 39:185-494
    [1]Pohorecki R, Baldyga J. The use of a new model of micromiing for determination of crystal size in precipitation [J]. Chem. Eng. Sci.,1983,38(1):79-83
    [2]Baldyga J, Bourne J R. Simplification of micromixing calculations I. Derivation and application of new model [J]. Chem. Eng. J.,1989,42(1):83-92
    [3]Baldyga J, Podgorska W, Pohorecki R. Mixing-precipitation model with application to double feed semibatch precipitation [J]. Chem. Eng. Sci.,1995,50(8):1281-1300
    [4]Chen J F, Zheng C, Chen G T. Interaction of macro-and micromixing on particle size distribution in reactive precipitation [J]. Chem. Eng. Sci.,1996,51(10):1957-1966
    [5]Wei H Y, Garside J. Application of CFD modelling to precipitation systems. Transition Institute of Chemical Engineers,1997,75:219-227.
    [6]Bucklin R W, Won K W. HIGEE contactors for selective H2S removal and superdehydration [C]. Laurance Reid Gas Conditioning Conference. Univ. of Oklahoma. USA Mar.1987,2-4
    [7]万东梅.超重机技术用于工业尾气脱硫化学吸收过程的研究[D].北京:北京化工大学,1995
    [8]Chen Y S, Liu H S. Absorption of VOCs in a rotating packed bed [J]. Ind. Eng. Chem. Res., 2002,41(6):1583-1588.
    [9]Lin C C, Liu W T, Tan C S. Removal of carbon dioxide by absorption in a rotating packed bed [J], Ind. Eng. Chem. Res.,2003:42(11):2381-2386.
    [10]Chen Y S, Hsu Y C, Lin C C, Tai C Y, Liu H S. Volatile organic compounds absorption in a cross-flow rotating packed bed [J], Environ. Sci. Technol.,2008,42 (7):2631-2636.
    [11]金沙杨,李振虎,戴伟,郭锴.旋转填充床脱除裂解气中酸性气体的冷模实验[J].石油化工,2006,3(5):452-457
    [12]周绪美,郭锴,王玉红,冯元鼎,郑冲.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994,23(12):807-812
    [13]Ramshaw C, Higee distillations—an example of process intensification [J]. Chem. Eng., 1983,389:13-14.
    [14]Kelleher Y, Fair J R. Distillation studies in a high-gravity contactor [J]. Ind. Eng. Chem. Res., 1996,35(12):4646-4655
    [15]Li X P, Liu Y Z, Li Z Q, Wang X L. Continuous distillation experiment with rotating packed bed [J]. Chin. J. of Chem. Eng.,2008,16(5):656-662.
    [16]Chen J F, Wang Y H, Guo F, Wang X M, Zheng C. Synthesis of nanoparticles with novel technology:high-gravity reactive precipitation [J]. Ind. Eng. Chem. Res.2000,39(4):948-954
    [17]Shen Z G, Chen J F, Yun J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method [J]. J. Crystal Growth,2004, 267:325-335
    [18]Wang M, Zou H K, Shao L, Chen J F. Controlling factors and mechanism of preparing of preparing needlelike CaCO3 under high-gravity environment [J]. Powder Technology,2004, 142:166-174
    [19]Chen J F, Zhou M Y, Shao L, Wang Y Y, Yun J, Chew N Y K, Chan H K. Feasibility of preparing nanodrugs by high-gravity reactive precipitation [J]. Int. J. Pharm.2004,269: 267-274
    [20]Chiou H, Li L, Hu T T, Chan H K, Chen J F, Yun J. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation [J]. International J Pharm., 2007,331(1):93-98.
    [21]陈建峰.超重力技术及应用—新一代反应与分离技术[M].北京:化学工业出版社,2002
    [22]Curl R L. dispersed phase mixing I theory and effects in simple reactors [J]. AIChE J.,1963, 9(2):175-181
    [23]郭锴.超重机转子填料内液体流动的观测与研究[D].北京:北京化工大学,1996;
    [24]Burns J R, Ramshaw C. Process intensification:Visual study of liquid maldistribution in rotating packed beds [J]. Chem. Eng. Sci.,1996,51:1347-1352
    [25]张军.旋转床内液体流动与传质的实验研究和计算模拟[D].北京:北京化工大学,1996
    [26]郭奋.错流旋转床内流体力学与传质特性的研究[D].北京:北京化工大学,1996
    [27]Keyvany M, Gardner N C. Operating characteristics of rotating beds [J]. Chem. Eng. Pro., 1989,9:48-52
    [28]Guo K, Guo F, Feng Y D, Chen J F, Zheng C, Nelson C. Gardner Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor [J]. Chem. Eng. Sci.,2000,55 (9): 1699-1706.
    [29]刘骥.旋转填充床内微观混合及液-液相法制备碳酸锶纳米纷体[D].北京:北京化工大学,1999
    [30]刘骥,陈建峰,宋云华,郑冲.旋转填充床中微观混合实验研究[J].化学反应工程与工艺,1999,15(3):328-332
    [31]刘骥,向阳,陈建峰,周绪美,郑冲.用聚并分散模型研究旋转填充床中微观混合过程[J].北京化工大学学报,1999,26(4):19-22
    [32]陈建峰,梁继国,张建文.两股无预混流体湍流混合与反应过程的数值模拟[J].化工学报,2004,52(2):207-213
    [33]梁继国,陈建峰,张建文.旋转填充床内微观混合数值模拟[J].化工学报,2004,55(6):882-887
    [34]Yang H J, Chu G W, Zhang J W, Shen Z G, Chen J F. Micromixing efficiency in a rotating packed bed:Experiments and simulation [J]. Ind. Eng. Chem. Res.,2005:44(20):7730-7737.
    [35]Yang H J, Chu G W, Xiang Y, Chen J F. Characterization of micromixing efficiency in rotating packed beds by chemical methods [J]. Chem. Eng. J.,2006,121:147-152
    [36]杨海健.新型化学反应器的实验、理论及应用研究[D].北京:北京化工大学,1999
    [37]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.
    [38]Randolph A D, Larson M A. Theory of particulate processes [M]. New York:Academic Press,1988.
    [1]Garside J, Tavare N S. Mixing, reaction and precipitation:Limits of micromixing in an MSMPR crystallizer [J]. Chem. Eng. Sci.,1985,40(8):1485-1493.
    [2]Baldyga J, Podgorska W, Pohorecki R. Mixing-precipitation model with application to double feed semibatch precipitation [J]. Chem. Eng. Sci.,1995,50(8):1281-1300
    [3]Chen J F, Zheng C, Chen G T. Interaction of macro-and micromixing on particle size distribution in reactive precipitation [J]. Chem. Eng. Sci.,1996,51(10):1957-1966
    [4]Guo K, Guo F, Feng Y D, Chen J F, Zheng C, Nelson C. Gardner Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor [J]. Chem. Eng. Sci.,2000,55 (9): 1699-1706.
    [5]Yang H J, Chu G W, Zhang J W, Shen Z G, Chen J F. Micromixing efficiency in a rotating packed bed:experiments and simulation [J]. Ind. Eng. Chem. Res.,2005,44(20):7730-7737.
    [6]Baldyga J, Bourne J R, Yang Y. Influence of feed pipe diameter on mesomixing in stirred tank reactors [J]. Chem. Eng. Sci.,1993,48:3383-3390.
    [7]Baldyga J, Bourne J R, Hearn S J. Interaction between chemical reactions and mixing on various scales [J]. Chem. Eng. Sci.,1997,52:457-466.
    [8]Philips R, Rohani S, Baldyga J. Micromixing in a single-feed semi-batch precipitation process [J]. AIChE J.,1999,45:82-92.
    [9]Marcant B, David R. Experimental evidence for and prediction of micromixing effects in precipitation [J]. AIChE. J.,1991,37:1698-1710.
    [10]Marcant B, David R. Influence of micromixing on precipitation in several crystallizer configurations [C]. Proceedings of 12th international symposium on industrial crystallisation, Warsaw, Poland,1993:2021-2026
    [11]Houcine I, Plasari E, David R, Villermaux J. Influence of mixing characteristics on the quality and size of precipitated calcium oxalate in a pilot scale reactor [J]. Chem. Eng. Res. Des.,1997, 75:252-256
    [12]Aslund B, Rasmuson A C. Semibatch reaction crystallization of benzoic acid [J]. AIChE J., 1992,38:328-342.
    [13]Aslund B, Rasmuson A C. Influence of different scales of mixing in reaction crystallization [J]. Chem. Eng. Sci.,2001,56:2459-2473
    [14]天津化工研究院等.无机盐工业手册[M].北京:化学工业出版社.1988.
    [15]Nielsen A E. Kinetics of precipitation [M]. New York:Macmillan Co.,1964
    [16]Dirksen J A, Ring T A. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology [J]. Chem. Eng. Sci.,1991,46(10):2389-2427.
    [17]Nielsen A E. Nucleation and growth of crystals at high supersaturation [J]. Krist. Technik, 1969,4:17-38.
    [18]Nielsen A E. The kinetics of crystal growth in barium sulphate precipitation [J]. Acta Chemica Scandinavica,1958,12:951-958.
    [19]Baldyga J, Podgorska W, Pohorecki R. Mixing-precipitation model with application to double feed semibatch precipitation [J]. Chem. Eng. Sci.,1995,50:1281-1300.
    [20]Taguchi K, Garside J, Tavare N S. Nucleation and growth kinetics of barium sulphate in batch precipitation [J]. Journal of Crystal Growth,1996,163:318-328
    [21]Melikhov I V, Kelebeev A S, Bacic S. Electron microscopic study of nucleation and growth of highly dispersed solid phase [J]. J. Colloid Interface Sci.,1986,112:54-65.
    [22]Fitchett D E, Tarbell J M. Effect of mixing on the precipitation of barium sulphate in an MSMPR reactor [J]. AIChE J.,1990,36,511-522.
    [23]Aoun M, Plasari E, David R, Villermaux J. A simultaneous determination of nucleation and growth rates from batch spontaneous precipitation [J], Chem. Eng. Sci.,1999,54(9):1161-1180
    [24]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.
    [25]David R. General rules for prediction of the intensity of micromixing effects on precipitations [J]. Powder Technology,2001,121:2-8.
    [26]Guichardon P, Falk L. Characterization of micromixing efficiency by the iodide-iodate reaction system. Part I:experimental procedure [J]. Chem. Eng. Sci.,2000,55:4233-4243
    [27]Dirksen J A, Ring T A. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology [J]. Chem. Eng. Sci.,1991,46(10):2389-2427
    [1]Nielsen A E. Nucleation and growth of crystals at high supersaturation [J]. Krist. Technik, 1969,4:17-38.
    [2]Dirksen J A, Ring T A. Fundamentals of crystallization:kinetic effects on particle size distributions and morphology [J]. Chem. Eng.. Sci.,1991,46(10):2389-2427.
    [3]Nielsen A E. Kinetics of precipitation [M]. New York:Macmilla Co.,1964.
    [4]化学工程手册编委会.化学工程手册,第1卷[M].北京:化学工业出版社,1989
    [5]张军.旋转床内液体流动与传质的实验研究和计算模拟[D].北京:北京化工大学,1996
    [6]郭锴.超重机转子填料内液体流动的观测与研究[D].北京:北京化工大学,1996
    [7]Guo K, Guo F, Feng Y D, Chen J F, Zheng C, Nelson C. Gardner Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor [J]. Chem. Eng. Sci.,2000,55 (9): 1699-1706.
    [8]Yang, H J, Chu, G W, Zhang, J W, Shen, Z G, Chen, J F. Micromixing efficiency in a rotating packed bed:Experiments and simulation [J]. Ind. Eng. Chem. Res.,2005:44(20):7730-7737.
    [9]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.
    [10]Burns J R, Ramshaw C. Process intensification:Visual study of liquid maldistribution in rotating packed beds [J]. Chem. Eng. Sci.,1996,51:1347-1352
    [1]W.埃尔费尔德,v.黑塞尔,H.勒韦(著),骆广生,王玉军,吕阳成(译).微反应器——现代化学中的新技术[M].北京:化学工业出版社,2004
    [2]Burns J R, Ramshaw C. Development of a microreactor for chemical production [J]. Chem. Eng. Res. Des.,1999,77 (A3):206-211.
    [3]Greenway G M, Haswell S J, Morgan D O, Skelton V. The use of a novel microreactor for high throughput continuous flow organic synthesis [J]. Sensors and Actuators B,2000,63: 153-158.
    [4]Gotz V. Experimental and theoretical investigation of H2 oxidation in a high temperature catalytic microreactor [J]. Chem. Eng. Sci.,2001,56:1265-1273.
    [5]Chen G W, Li S L, Yuan Q. Microchannel reactors for methanol autothermal reforming reaction [J]. Chinese Journal of Catalysis,2002,23:491-492.
    [6]Michiya T, Taisuke M, Minoru M, Kazuhiro M. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe [J]. Chem. Eng. J.,2004,101(2): 269-276.
    [7]Kiwamu S, Kazuhito K, Kunio A. Hydrothermal synthesis of ZnO nanocrystals using microreactor [J]. Materials letters,2004,58(25):3229-3231.
    [8]Pennemann H, Forster S, Kinkel J, Hessel V, Lowe H, Wu L. Improvement of dye properties of the azo pigment yellow 12 using a micromixer-based process [J]. Org. Proc. Res. Dev., 2005,9(2):188-192.
    [9]Wagner J, Kohler J M. Continuous synthesis of gold nanoparticles in a microreactor [J]. Nano Letters,2005,5(4):685-691.
    [10]Wang H Z, Nakamura H, Uehara M. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor [J]. Chemical Communications,2002,2(14): 1462-1463.
    [11]Shirure V S, Pore A S, Pangarkar V G. Intensification of precipitation using narrow channel reactors:magnesium hydroxide precipitation [J], Ind. Eng. Chem. Res.,2005,44(15): 5500-5507.
    [12]Ying Y, Chen G W, Zhao Y C, Li S L, Yuan Q. A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors [J]. Chem. Eng. J.,2008, 135(3):209-215
    [13]Marko H, Michael S, Norbert R. Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV [J]. Chem. Eng. Sci.,2006,61:2968-2976
    [14]Oddy M H, Santiago J G, Mikkelsen J C, Electrokinetic instability micromixing [J]. Analytical Chemistry,2001,73:5822-5832.
    [15]Matsumoto R, Zadeh H F, Ehrhard P. Quantitative measurement of depth-averaged concentration fields in microchannels by means of a fluorescence intensity method [J]. Experiments in Fluids,2005,39:722-729.
    [16]Park J S, Choi C K, Kihm K D. Optically sliced micro-PIV using confocal laser scanning microscopy [J]. Experiments in Fluids 2004,37:105-119.
    [17]Yamaguchi Y, Takagi F, Watari T, Yamashita K, et al. Interface configuration of the two layered laminar flow in a curved microchannel [J]. Chem. Eng. J.,2004,101:367-372.
    [18]Meinhart C D, Wereley S T, Gray M H B.2000. Volume illumination for two-dimensional particle image velocimetry [J]. Measurement Science and Technology,2000,11:809-814.
    [19]Liu D, Garimella S V, Wereley S T. Infrared micro-particle image velocimetry in silicon-based microdevices [J]. Experiments in Fluids,2005,38:385-392.
    [20]Shinohara K, Sugii Y, Aota A, Hibara A, Tokeshi M, Kitamori T, Okamoto K. High-speed micro-PIV measurements of transient flow in microfluidic devices [J]. Measurement Science and Technology,2004,15:1965-1970.
    [21]Ehrfeld W, Golbig K, Hessel V, Lowe H, Richter T. Characterization of mixing in micromixers by a test reaction:single mixing units and mixer arrays [J]. Ind. Eng. Chem. Res.,1999,38:1075-1082
    [22]Panic S, Loebbecke S, Tuercke T, et al. Experimental approaches to a better understanding of mixing performance of microfluidic devices [J]. Chem. Eng. J.,2004,101:409-419
    [23]杨海健.新型化学反应器的微观混合实验、理论及应用研究[D].北京:北京化工大学,2007.
    [24]余文.微通道反应器的微观混合实验及理论研究[M].北京:北京化工大学,2007.
    [25]Bothea D, Stemichb C, Warneckeb H J. Fluid mixing in a T-shaped micro-mixer [J]. Chem. Eng. Sci.,2006,61:2950-2958.
    [26]Guo Z Y, Li Z X, Size effect on microscale single-phase flow and heat transfer [J]. International Journal of Heat and Mass Transfer,2003,46:149-159.
    [27]Lee P S, Garimella S V, Liu D. Investigation of heat transfer in rectangular microchannels [J]. International Journal of Heat and Mass Transfer,2005,48:1688-1704.
    [28]Koo J, Kleinstreuer C. Viscous dissipation effects in microtubes and microchannels [J]. International Journal of Heat and Mass Transfer,2004,47:3159-3169.
    [29]Morini G L. Viscous heating in liquid flows in micro-channels [J]. International Journal of Heat and Mass Transfer,2005,48:3637-3647.
    [30]Danckwerts P V. The definition and measurement of some characteristics of mixtures [J]. Applied Science Research,1952, A3:279-296.
    [31]Danckwerts P V. The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci.,1958,8(1):93-101.
    [32]Schwarzer H C, Schwertfirm F, Manhart M, Schmid H J, Peukert W. Predictive simulation of nanoparticle precipitation based on the population balance equation [J]. Chem. Eng. Sci., 2006,61(1):167-181.
    [33]Gradl J, Schwarzer H C, Schwertfirm F, Manhar M, Peukert W. Precipitation of nanoparticles in a T-mixer:Coupling the particle population dynamics with hydrodynamics through direct numerical simulation [J]. Chem. Eng. Pro.,2006,45(10):908-916.
    [34]Kockmann N, Kastner J, Woias P. Reactive particle precipitation in liquid microchannel flow [J]. Chem. Eng. J.,2008,135 (S1):S110-S116.
    [35]Kockmann N, Dreher S, Woias P. Unsteady Laminar Flow Regimes and Mixing in T-shaped Micromixers [C]. ASME-ICNMM2007-30041,2007.
    [36]Bokenkamp D, Desai A, Yang X, Tai Y C, Marzluff E M, Mayo S L. Microfabricated Silicon Mixers for Submillisecond Quench-Flow Analysis [J]. Anal Chem,1998,70(2):232-236.
    [37]Nielsen A E. Kinetics of precipitation [M]. New York:Macmilla Co.,1964.
    [1]王子好,张东生.纳米药物的研究进展[J].东南大学学报(医学版),2004,23(2):131-135
    [2]平其能.纳米药物制剂的现在和将来[J].中国药师,2002,5(7):421-423
    [3]Suarez S, Hickey A J. Drug properties affecting aerosol behavior [J]. Resp. Care,2000, 45(6):652
    [4]刘建峰,肖琅.吸入给药肺沉积的研究进展[J].武警医学院学报,2005,14((2):133~135
    [5]Rogers L T, Nelsen C A, Hu J, et al. A novel particle engineering technology to enhance dissolution of poorly water soluble drug:spray-freezing into liquid [J]. Eur. J. Pharm. Biopharm.,2002,54:271-280
    [6]Mosharraf M, Nystron C. The effect of particle size and shape on the surface specific dissolution rate of microsized pracitically insoluble drug[J]. Int. J. Pharm.,1995,122:35-47
    [7]Sarkari M, Brown J, Chen X, et al. Enhanced drug dissolution using evaporation precipitation into aqueous solution[J]. Int. J. Pharm.,2002,243:17-31
    [8]平其能.纳米药物和纳米载体系统[J].中国新药杂志,20021,11(1):42-46
    [9]国家药典委员会.中华人民共和国药典(2005年版)[M].北京:化学工业出版社,2005:178-331
    [10]史斌.吉非贝齐对血脂调节的疗效观察[J].交通医学,1999,13(4):468-469
    [11]周湘兰.国产吉非罗齐治疗高脂血症的临床疗效[J].上海医科大学学报,1998,25(4):319-320
    [12]杨彦平.吉非罗齐治疗高脂血症疗效观察[J].河北医药,2000,22(6):460-461
    [13]Martinac A, Filipovic-Grcic J, Barbaric M, et al. Gemfibrozil encapsulation and release from microspheres and macromoleculear conjugates [J]. Eur. J. Pharm. Sci.,2002,17: 207-216
    [14]Ghebre-Sellassie I, Fawzi MB. Gemfibrozil formulations [P]. US Patent,5281421, 1994-01-25
    [15]Hui Y H, Huang N H, Ebbert L, et al. Pharmacokinetic comparisons of tail-bleeding with cannula-or retro-orbital bleeding techniques in rats using six marketed drugs [J]. J. Pharmcol. Toxicol. Method.,2007,56:256-264
    [16]Mosharraf M, NyatrOm C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs [J]. Int. J. Pharm.,1995,122: 35-47
    [17]Drooge D J V, Hinrichs W L J, Frijlink HW. Anomalous dissolution behaveiour of tablets prepared from sugar glass-based solid dispersions [J]. J. Control. Release,2004,97: 441-452
    [18]徐辉碧.纳米医药[M].北京:清华大学出版社,2004,235
    [19]李凤生,刘宏英,刘雪东等.微纳米粉体制备与改性设备[M].北京:国防工业出版社,2004.48
    [20]Turk M, Hils P, Helfgen B, et al. Micronization of pharmaceutical substances by the Rapid expansion of supercritical solutions (RESS):A promising method to improve bioavailability of poorly soluble pharmaceutical agents [J]. Journal of Supercritical Fluids,2002,22:75-84
    [21]续京,刘晓林,陈建峰.微细硫酸沙丁胺醇颗粒的制备[J].过程工程学报,2004,4(2):150-154
    [22]续京,刘晓林,雷霁霞,陈建峰,YunJimmy.超细硫酸沙丁胺醇药物颗粒的制备与表征[J].高校化学工程学报,2004,18(4):501-505
    [23]周敏毅,陈建峰,刘晓林.重结晶法制备微粉化布洛芬的初步探索[J].化工进展,2003,22(5):524-527
    [24]Ruch F, Matijevic E. Preparation of micrometer size budesonide particles by precipitation [J]. J. Colloid Interface Sci.,2000,229:207-211
    [25]Moschwitzer J, Muller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals [J]. Eur. J. Pharm.Biopharm.,2006,62:282-287
    [26]Guichardon P, Falk L. Characterization of micromixing efficiency by the iodide-iodate reaction system. Part Ⅰ:experimental procedure [J]. Chem. Eng. Sci.,2000,55:4233-4243
    [27]Yang H J, Chu G W, Zhang J W, Shen Z G, Chen J F. Micromixing efficiency in a rotating packed bed:Experiments and simulation [J]. Ind. Eng. Chem. Res.,2005,44(20): 7730-7737
    [28]陈建峰.超重力技术及其应用[M].北京:化学工业出版社,2003
    [29]Guo Z, Zhang M, Li H, et al. Effect of ultrasound on anti-solvent crystallization process [J]. J. Crystal Growth 2005,273:555-563
    [30]陈建峰,邹海魁,刘润静.超重力反应沉淀法合成纳米材料及其应用[J].现代化工,2001,21(9):9-12
    [31]Zhong J, Shen Z G, Yang Y, Chen J F. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment [J]. Int. J. Pharm.,2005,301:286-293
    [32]Torrado G, Fraile S, Torrado S, et al. Process-induced crystallite size and dissolution changes elucidated by a variety of analytical methods [J]. Int. J. Pharm,1998,166:55-63