用户名: 密码: 验证码:
材料复合技术及其在钻孔密封中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻孔抽采是煤矿瓦斯治理的基础技术手段,应用范围广泛。而打好钻孔后一般都要求对钻孔进行密封,钻孔密封是保持孔底负压或正压的关键因素。封孔质量的好坏直接影响各类钻孔作用的发挥。而我国煤矿各类钻孔的封孔质量均不容乐观,迫切需要开展钻孔密封材料、技术及装备的研究。为了遏制瓦斯突出、瓦斯爆炸等重大事故的发生,提高钻孔抽放效率、煤与瓦斯突出煤层消突速率、减少钻孔数量,节约生产成本,开展复合材料在钻孔密封技术中的应用研究具有十分重要的现实意义。
     本文首先通过对钻孔周围条件的简化,分析了孔周围应力场和裂隙场的分布情况。理论推导得出了钻孔周围破碎区和塑性区半径的表达公式。理论分析结合数值模拟结果认为:从钻孔的中心向外延伸,钻孔周围可分为四个区域,即破裂区、塑性区、弹性区、原岩应力区,钻孔周围存在一个应力大、渗透率小的约束环。钻孔周围岩体内的裂隙密封就是注入的密封浆液在外加压力或自身膨胀压力下扩散进入填充钻孔周边塑性区的范围,使得钻孔到塑性区范围内的渗透率和力学状态发生改变。
     其次,在渗透注浆球形扩散和柱面扩散理论的基础上,根据渗透率与应力状态和注浆参数之间的函数关系,推导出流体密封后钻孔围岩渗流和应力状态变化的理论模型,描述了钻孔周围岩体渗透率和钻孔周围岩体应力应变与各注浆参数之间的关系。
     第三,依据对钻孔微裂隙进行密封的要求,开发出了水泥基聚合物复合密封材料,应用复合材料的界面理论、水泥的膨胀机理、微胶囊化技术、扩散控制的化学反应原理、溶胶相变过程等方面,阐述了水泥基聚合物复合密封材料的反应机理。
     第四,根据钻孔现场应用对密封材料的要求,确定了材料原料的种类和实验工艺流程。实验研究了聚合物对材料致密性的影响、膨胀剂对材料膨胀性能的影响、囊壁质量比对材料膨胀速率的影响、溶胶相变时间的影响因素等,确定了原料的种类和基本的用量。采用正交实验,得到了三种合适的水泥基聚合物复合钻孔密封材料——PD系列,膨胀性能测试显示,三者的膨胀系数分别为1.29,1.31,1.35。分别对PD-I、PD-III进行了密封负压钻孔性能测试和密封正压钻孔性能测试,测试结果表明:针对负压抽采钻孔和正压压裂钻孔密封性能要求,所开发材料的密封性能良好,密封效果均要优于聚氨酯材料。对PD材料和聚氨酯材料的细观图像进行观测及分析,解释了PD材料更加致密的原因。
     第五,将配置好PD材料作为真实流体,研究了其在管路中流动经过阀门时的运动规律。结果认为:密封浆液流动需要驱动设备具有一定的压力,用以克服流动阻力。研制了有液压助力系统往复式柱塞泵系列设备,根据不同的动力来源分为:手动液压注浆泵、风动液压注浆泵、双动力注浆泵和配套的气动搅拌机。
     最后,根据密封材料和注浆设备的性能,开发了压塞-注浆封孔工艺。从材料到结构上,自行设计密封装置的关键部件-堵浆塞。在此基础上,在平煤四矿进行了PD-II密封本煤层钻孔和迎面斜交钻孔的工作,在郑煤崔庙矿采用PD-I和PD-III协同密封穿层钻孔进行条带消突的工作,对相关参数进行了测试、分析。
     通过以上研究,在理论上阐述了钻孔流体密封的实质,推导出流体密封后钻孔围岩渗流和应力状态变化的理论模型,技术上开发了用于钻孔密封的水泥基聚合物复合钻孔密封材料和“压塞—注浆”封孔工艺,装备上研制了用于将密封材料输送到钻孔密封段的注浆设备,实际应用反映了该系统封孔技术具有较大的优越性。
     课题研究期间,作者公开发表学术论文6篇,其中EI检索2篇;取得或申请受理专利8项,其中发明专利4项;获得省部级科研二等奖1项,排名第七。
As a basic technical means for controlling gas, sealing has extensive application ranges in mine areas. In our country, however, the sealing quality of various drillings is unsatisfactory, which needs to research on sealing material, technology and equipment. To improve utilization ratio of sealing, accelerate elimination outburst rate of coal seam, reduce number of drilling and save production cost, the researches on sealing drilling with composite have very important realistic significance for the containment of serious accidents, such as gas outburst and gas explosion.
     The main results in this thesis are as follows:
     Firstly, we analyzed the distribution of stress field and fracture field around the drilling, deduced the expression formulas of fractured zone and plastic zone that around the drilling. Some conclusions were obtained from theoretical analysis and numerical simulation. Sealing rock fracture was formed around the drilling, based on the injected sealing grout spreads and fills the plastic zone by adscititious pressure or swelling pressure itself, which making the permeability and mechanical state change in the drilling to the plastic zone.
     Secondly, according to the permeation grouting theory with the spherical diffusion and cylindrical diffusion, the theoretical model of seepage and stress distribution around the drilling after sealing with fluid was deduced. The model describes the relations between permeability, stress in rock around the boreholes and parameters of different slurry.
     Thirdly, requiring by for micro-fissure sealing, the cement-based polymer composite was developed. . Moreover, the reaction mechanism of the cement-based polymer composite is expounded through researching on the interface theory of composite, expansion mechanism of cement, micro-encapsulation technology, reaction principle of controlling the spread and the process of sol transition.
     Fourthly, the types of target material and technological processes of experiments were established based on requirement of sealing material. The types and quantity of the raw material are determined owing to above researches. After the orthogonal experiments, three cement-based polymers composite were obtained - PD materials. The value of expansion coefficient about three materials is 1.29, 1.31, and 1.35, respectively. The tests of sealing negative pressure drilling character for PD-I material and tests of sealing high pressure drilling character for PD-III material saw a conclusion: The sealing performance of PD was better than polyurethane. The reason is explained that why the PD is denser, by analyzing and observing micro- structure of PD and polyurethane.
     In addition, the analysis indicates that the equipment should have some stress to overcome resistance of the fluid flowing. Furthermore, we developed the reciprocating plunger pumps with hydraulic booster system, including manual hydraulic injection pump, pneumatic hydraulic injection pump, double dynamical injection pump and the matched pneumatic mixer.
     Finally, according to the performances of sealing materials and grouting equipments, a kind of tamponade - grouting sealing process was developed and its key part - plugging slurry plug was designed. Meanwhile, we popularized the technology in Ping Dingshan mine areas with PD-II and used PD-III in Cui Miao mine, evaluated and analyzed the interrelated parameters, simultaneously.
     From the researches above, the essence of sealing drilling was obtained in theory aspect, the theoretical model of seepage and stress distribution around the drilling after sealing with fluid was deduced, while the cement-based polymer composite and the tamponade - grouting sealing process was developed. Meanwhile, the equipment to transport sealing material into drilling developed, too. The studies show that the new hole sealing technology has more superiority in the practical applications and the coming future.
     During the research, the authors published 6 papers, in which 2 were Search by EI; obtain or apply for the processing of 8 patents, 4 of which are invention patents; and won the second prize of a ministerial-level scientific research, ranking seventh.
引文
[1]王显政.以防治瓦斯灾害为重点,开创煤矿安全生产工作新局面:在全国煤矿瓦斯防治现场会上的讲话[ R] . 2002.10
    [2]新华网.中国煤矿将进一步加大瓦斯综合治理工作力度.2008.10.23
    [3]程远平等.中国煤矿瓦斯抽采技术的发展[J],采矿与安全工程学报,2009,26(2),128-139
    [4]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全技术“专家会诊”资料汇编[ G] . 2005.
    [5]FU Jian-hua, CHENG Yuan-ping. Situation of coaland gas outburst in China and cont rol countermeas2ures [ J ] . Journal of Mining & Safety Engineering ,2007 ,24 (3) :253~259.
    [6]中华人民共和国国家发展和改革委员会.煤矿瓦斯治理与利用总体方案(发改能源[ 2005 ]1137号) [ S] .2005
    [7]陈锦辉,蔡成功.三软厚煤层瓦斯抽放技术的研究[J],山西建筑,2008,34 (5)142 ~143
    [8]姚尚文.改进抽放方法提高瓦斯抽放效果[J]煤炭学报,2006,31(6) 721~726
    [9]张景飞,郭德勇,丁开舟.高位钻孔瓦斯抽放技术应用的研究[J],煤矿安全,2004,35(7) 5~7
    [10]王继仁,丁百川,李海涛.瓦斯抽放钻孔优化技术的探讨[J],煤矿安全,2004,35(8)34~36
    [11]刘耀忠.采空区瓦斯抽放半径的确定[J],煤炭工程:2005(3)45~49
    [12]马跃龙,林柏泉.煤层透气性系数的测定及其分析[J],辽宁工程技术大学(自然科学版):1998(10)17(3)240~243
    [13]何书建.煤层瓦斯压力测定新技术[J],矿上压力与顶班管理:2003(3)116~117
    [14]李铁磊,张仁贵,王本强.黄泥封孔测定煤层瓦斯压力方法的改进[J],煤炭工程师:1994(3)41~42
    [15]杨忠,张东伟.利用瓦斯抽放钻孔进行煤层注水试验[J],煤炭技术:2003,122 (8)38~39
    [16]翟华,王怀新.浅孔动压注水在“三软”不稳定厚煤层中的应用[J],煤炭技术:2004,123 (1)36~37
    [17]王志坚,王国芳,陈旭东,赵栋.煤层注水封孔工艺浅谈[J],机械管理开发:2004(10)54~55
    [18]陈沅江,吴超.注水煤层透气性的影响因素分析及其改善对策[J],煤矿安全:1997(12)15~18
    [19]李会良.深孔控制卸压爆破防突措施理论探讨[J],煤矿安全:1994(6) 22~27
    [20]李博章.深孔控制预裂爆破提高瓦斯抽放效率[J],江西煤炭科技:2007(3) 39~40
    [21]李同林.煤岩层水力压裂造缝机理分析[J],天然气工业:1997,17(4)53~56
    [22]段康廉等.低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J],煤炭学报: 2002,27 (1)50~53
    [23]张英华.“三软”煤层注水防尘封孔技术研究[J],东北煤炭技术:1999(4)37-39
    [24]吕闰生,张子戌.提高测压钻孔瓦斯压力测定成功率分析[J],煤炭工程:2004(11)32-37
    [25]孟贤正等.水力化高效防突集成技术及应用[J],矿业安全与环保:2009(8)49-53
    [26]马新仿.张士诚.水力压裂技术的发展现状[J]河南石油:2002,16(1)24-28
    [27]王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨[J],煤矿安全:2005,36(3)29~44
    [28]徐龙仓.提高煤层气抽采钻孔封孔效果研究与应用[J],中国煤层气:2008,5(1)8,23~24
    [29]张宗涛,方敏.纳米ZrO2-Al2O3复合粉末注浆成型与烧结行为研究[J],硅酸盐通报:1996,15(3)12~17
    [30]管学茂,陈明祥.等超细水泥基注浆材料性能研究[J],煤矿设计:2001(3) 43~48
    [31]亓中立.煤的孔隙系统介形规律研究[J],煤矿安全:1994(6)2~5
    [32]罗新荣.煤的孔隙结构与容渗性[J],煤炭转化:1998,21(4)
    [33]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J],电子显微学:2000,19(4)531~532
    [34]王恩元,何学秋.煤岩等多孔介质的分形结构[J],焦作工学院学报:1996,15(4)19~23
    [35]胡耀清,赵阳升,杨栋,段康廉.煤体的渗透性与裂隙分维关系[J],岩石力学与工程学报:2002,21(10)1452~1456
    [36]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M],北京:科学出版社.2008
    [37]林柏泉,周世宁,张仁贵.钻孔密封段密封介质渗漏的探讨[J],辽宁工程技术大学学报:1993(4)2,25~30
    [38]林柏泉.三相泡沫密封理论与应用[M],徐州:中国矿业大学出版社,1998
    [39]禹东方,陈学习,马尚权,柏松.测压钻孔三相泡沫密封液的试验研究[J],金属矿山:2009(9)5~10
    [40]林柏泉,张仁贵.钻孔的流体密封机理及其影响因素分析[J],中国矿业大学学报:199625(1)25~30
    [41]唐俊,蒋承林.钻孔测定瓦斯流量泄露率的影响因素分析[J],煤矿安全:2009(9) 38~42
    [42]刘三钧等.钻孔密封机理及新型煤层瓦斯压力测定技术研究[J],中国煤炭2009(9)13~18
    [43]尹洪峰等.复合材料及其应用[M],西安:陕西科学技术出版社,2003
    [44]闻荻江等.复合材料原理[M],武汉:武汉工业大学出版社,1998.11
    [45]管学茂.超细高性能灌浆水泥研究,2002,10,5~7
    [46]Xiong Hou-jin.China's Achievements in Chemical Grouting, International Progress of Rock Anchoring and Grouting, China Architectural Press, 1996:41~50
    [47]董建军,尹作仿,化学灌浆现场施工中的劳动保护和环境保护。第八届化学灌浆会议论文,2002:248~2251
    [48]陈继虎.浅谈水泥卷在快速封孔中的应用[J],矿业快报:2005(427):50~53
    [49]中梁山煤矿通风科仪表组.WYF-I型液压封孔器[J],煤矿安全:1980(3)53~55
    [50]张铁岗.矿井瓦斯综合治理技术[M],北京:煤炭工业出版社,2003
    [51]林柏泉,张建国编著.矿井瓦斯抽放理论与技术.徐州:中国矿业大学出版社,1996年
    [52]林柏泉,崔恒信编著.矿井瓦斯防治理论与技术.徐州:中国矿业大学出版社,1998年9月
    [53]李永德等.双组份反应性聚氨酯建筑密封材料的研究[J],化学建材,1998(2):31~35
    [54]王铭琦.浇注型低透水聚氨酯密封材料的研制[J],化学工程师,2004(12):14~16
    [55]林柏泉著.三相泡沫流体密封技术及其应用.徐州:中国矿业大学出版社,1997年10月
    [56]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.
    [57]罗新荣,煤的孔隙结构与容渗性,煤炭转化,1998,21,(4)
    [58]胡耀清、赵阳升、杨栋、段康廉,煤体的渗透性与裂隙分维关系,岩石力学与工程学报,2002,21(10):1452~1456
    [59]张兴华,煤的原生孔结构对煤层渗透性的影响,煤矿安全,2005,36(11):4-7
    [60]钱鸣高等.岩层控制的关键层理论[M],徐州:中国矿业大学出版社,2003:11~17
    [61]董方庭.巷道围岩松动圈支护理论及应用技术[M],北京:煤炭工业出版社,2001
    [62]唐春安等.含瓦斯煤岩突出过程及其瓦斯抽放防治突出机理的数值试验模拟研究[M],东北大学,2005.12:31-34
    [63]Louis C. Rock Hydroulies. ln:Rock Mechanics.Muller L(eds).1974
    [64]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文工程地质,1995.12(2):30-35
    [65]Chen Zu-an,Wu Xiang-yang.The Research of The Relation Between Permeability and Changes of Hydrostatic Pressure for Rocks [J].Chinese Journal of Rock Mechanics and Engineering.1995, 2, 155-159
    [66]Bernabe Y.The effective pressure law for permeability in Cheimsford granite and Barre granite[J].iint.J.Rock Min.Sci.&Geomec.Abstr.1986, 23(3):267-275,
    [67]李世平.岩石渗透性实验研究与工程应用.国际自然基金项目研究报告
    [68]Tan Xue-shu,Xian Xue-fu,Zhang Guang-yang. Researth on The Permeability of Coal [J]. Journal of Xi'an University of Science and Technology, 1994, 1:21-25
    [69]彭文斌.FLAC 3D实用教程[M].北京:机械工程出版社,2008
    [70]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究,硕士学位论文,辽宁工程技术大学,2003,12
    [71]Schmertmanm JH.Henry JF.A Design Theory for Compaction Grouting.In: Borden RH,Holtz RD,Juran I,editors.Proceedings of Grouting.soil Improvement and Geosynthetics.New York:ASCE,1992
    [72]李长洪.碎裂岩体注浆理论及应用研究[D].北京科技大学,1999:1-10
    [73]Liu J.C. The Research On Diffusion Radius of Crack Grouting [A]. Symposium of China Institute of Water Resources and Hydro-power Research(8)[C].Bejing:Hydraulic Press,1982,186-195
    [74]赵林.基于分形理论的裂隙岩体注浆扩散规律研究[D].西安交通大学,2008:4-8
    [75]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.
    [76]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M],北京:中国轻工业出版社,2001,102-107
    [77]Ke Y.C., Pete S.Z., Polymer - Inorganic Nanocomposites,Beijing: Chemical Industry Press,2003
    [78]郑水林.粉体界面改性.北京:中国建材出版社,1995
    [79]吴伟端.硅灰石/橡胶复合材料界面行为.武汉:中国地质大学出版社,2001
    [80]赵玉庭,姚希曾.复合材料基体与界面.上海:华东化工学院出版社,1991
    [81]尹洪峰,任耘,罗发.复合材料及其应用.西安:陕西科学技术出版社,2003
    [82]闻荻江,吴人杰,赵昌正.复合材料原理.武汉:武汉工业大学出版社,1998
    [83]沈钟,赵振国,王果庭.胶体与表面化学.北京:化学工业出版社,2004年8月
    [84]乔家英等.特种水泥与新型混凝土.哈尔滨:哈尔滨工程大学出版社,1997:35-57
    [85]胡曙光.特种水泥.武汉:武汉工业大学出版社,1999:37-70
    [86]向才旺,郭俊才,姚大喜.水泥应用.北京:中国建筑工业出版社,1999:25-32
    [87] Hiemenz, P.C., Principles of Colloid and Surface Chemistry [M].Beijing: Beijing University Press, 1986
    [88]唐有祺.当代化学前沿.北京:中国致公出版社, 1997
    [89]江龙.胶体化学概论.北京:科学出版社,2002
    [90]冯绪胜等.胶体化学[M].北京:化学工业出版社,2005
    [91]薛峰,黄晓青.微胶囊技术主要方法概论[J].食品科学,1990(11)35~39
    [92]Hou W.G., Sun D.J., Zhang C.G., Applied Colloid Chemistry. Beijing: Science Press ,1998
    [93]王湛.膜分离技术基础.北京:化学工业出版社,2002
    [94]郑忠.胶体科学导论.北京:人民卫生出版社,1989
    [95]胡英主编,吕瑞东,刘国杰.物理化学.北京:高等教育出版社,1999年10月
    [96]陈宗淇,戴闽光.胶体化学.北京:高等教育出版社,1996年
    [97]李健鹰.泥浆胶体化学.东营:石油大学出版社,1988年12月
    [98]吴树森.应用物理化学—界面化学与胶体化学.北京:高等教育出版社,1993年
    [99]宋世谟,庄公慧,王正烈.物理化学.北京:高等教育出版社,1982年7月
    [100]IRA N.LEVINE, Physical Chemistry. Bejing: Beijing University Press,1983
    [101]Slurry Transportation Research Association of Japan. Paste and Sealed Container Transport Technical Manuals.Beijing: Metallurgy Industry Press, 1990
    [102]费祥俊.浆体与粒状物料输送水力学.北京:清华大学出版社,1994年5月
    [103]张庆云,牟国焘,陈晓晖. QYB03型便携式注浆泵研制.煤矿机械,2005年第4期
    [104]吴三友,张庆云,郑澈. QZB18双液化学注浆泵的设计.煤矿机械,20O6年2月,第27卷第2期
    [105]张捷迁,章光华,陈允文.真实流体力学.北京:清华大学出版社,1986年11月
    [106]J.F.Douglas. Fluid Mechanics.Fearon-Pitman Publishers Inc,San franciso,California,USA, 1979
    [107]Massey, B.S.,Mechanies of Fluids,1975
    [108]Streeter, V.L. and Benjamin, W.E., Fluid Mechanics,1975
    [109]G.K. Batchelor, An Introduction to Fluid Dynamics Cambridg University Press,1967
    [110]Ascher H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow.Vol.1, the Ronald press company, New York, 1953
    [111]赵学端,廖其奠.粘性流体力学.上海:机械工业出版社,1981年11月
    [112]Dr. Hermann Schlichting, Boundary-Layer Theory, Mc GRAN-HILL BOOK COMPANY, New York,1986
    [113]Schowalter W.R. Mechanics of non-Newtonian Fluids, Oxford, Porgamon Press, 1978
    [114]Janson.Grouting of jointed rock-A casestudy.Grouting in Rock Concrete Widmann(ed)[J].Balkema, Rotterdam, 1993
    [115]叶青,林柏泉,张建国.工作面卸压区浅孔瓦斯抽放机理及其影响因素分析[J],煤层气勘探开发理论与实践:2007(9)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700