用户名: 密码: 验证码:
镁合金表面熔盐自发置换扩渗铝涂层制备及其耐腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有比重小、绿色环保等优点,日益成为汽车、航空航天以及电子消费品等领域的重要材料。但是,镁合金的耐腐蚀性能较差,这一直是阻碍其进一步应用的主要因素,也是镁合金研究开发中存在的一个难题。因此,耐腐蚀与防护技术是镁合金应用基础研究的重要研究领域,开展该方面的基础研究工作具有重要的经济和社会意义。
     本文开展了镁合金表面熔盐置换扩渗铝涂层的制备及相关的耐腐蚀性能研究。通过把镁合金基体置于熔融的等摩尔AlCl3和NaCl的混和盐中,进行置换反应并且保温扩散,在镁合金表面形成扩渗铝涂层。其核心是在低于传统的固体扩渗铝的温度条件下利用镁合金自身高活性的特点,在低温熔盐中置换出活性铝原子及形成新的合金相,随着扩散过程的推进,最终形成合金相层状分布的铝涂层,提高镁合金基体的耐腐蚀性能。主要研究结论如下:
     (1)当扩渗温度较低或者扩渗时间较短时,镁合金表面只形成了单一相γ相(Al_(12)Mg_(17))层,并伴随着δ(Mg)固溶体的析出;当扩渗温度较高或者扩渗时间较长时,AZ91D镁合金表面从内到外依次形成了过渡层δ(Mg)固溶体层,灰色渗层γ相(Al_(12)Mg_(17))层,线状结构与亮灰色层ε相(Al_(0.58)Mg_(0.42))层,白亮层β相(Al_3Mg_2)层,以及铝涂层的最外侧零星分布的亮层α(Al)的固溶体。扩渗温度、扩渗时间以及基体中的初始原子浓度是影响扩渗层形成的主要因素。
     (2)对镁合金表面熔盐置换扩渗制备铝涂层进行了热力学分析,其中包含了置换反应的热力学分析、扩散过程的热力学分析和合金相形成的热力学分析。镁合金与熔盐能否发生置换反应产生活性原子可分为二个阶段。第一阶段:镁合金与熔盐的初始接触阶段;第二阶段:镁合金表面形成了一定厚度的扩渗层阶段。上述两个阶段的热力学分析,说明在熔盐环境下镁合金表面置换反应的自发性和Al元素扩散的持续性。通过对扩散过程进行热力学分析,可以得出只要在镁合金表面置换反应在持续进行,镁合金表面与镁合金基体内部就存在Al元素的浓度梯度,那么就存在Al元素的扩散驱动力。对合金相形成过程的进行热力学分析,可以得到在115.86      (3)建立了镁合金/熔盐界面置换扩渗的物理模型。该模型的核心为通过置换反应提供活性的Al原子以及新的合金相析出,扩散过程逐渐推进,在镁合金表面逐步形成了δ(Mg)层→Al_(12)Mg_(17)(γ)层→Al_(0.58)Mg_(0.42)(β)层→Al3Mg2(? )层。其中,扩散过程占主导地位,置换反应提供活性原子始终伴随着扩散过程同时进行。
     (4)对镁合金表面熔盐置换扩渗制备铝涂层进行了动力学分析,通过对扩散过程进行动力学分析得到了镁合金表面熔盐置换扩散过程中不同扩渗温度和不同扩渗时间下Al在Mg中的表观扩散系数和Mg在Al中的表观扩散系数。其Mg在Al中的表观扩散系数比纯镁扩散纯铝过程Mg在Al中的扩散系数有显著提高,而Al在Mg中的表观扩散系数比纯镁扩散纯铝过程Al在Mg中的扩散系数大3~4个数量级。拟合得到了扩渗层的生长活化能为51666 J·mol~(-1);推导了每个相厚度的生长模型,验证了置换扩散过程中,其一相的生成是依靠消耗另一相与活性原子的扩散发生相变得到的,从而导致相界面的移动;建立了镁合金/熔盐界面置换扩渗的数学模型。
     (5)当熔盐置换扩散渗铝试样没有出现大的结构缺陷时,呈连续态的?相可完全隔离镁合金基体与腐蚀介质的接触,对电子的传输构成屏障,使电荷转移极化电阻增加,提高试样的耐蚀性;而当置换扩散渗铝层中出现了脆性β相,导致裂纹等结构缺陷时,由于?相的电极电位低于β相,因此,在腐蚀溶液中就会发生电偶腐蚀,γ相作为有效的微电偶阴极而加速置换扩散渗铝层的腐蚀导致耐腐蚀性能降低。
     本文的主要创新点如下:
     (1)尝试采用熔盐置换扩渗工艺方法,在镁合金表面成功制备了成分呈梯度分布和相结构层状分布的富铝涂层,扩渗温度明显低于传统的镁合金表面固体扩渗铝工艺,其耐腐蚀性能得到了显著提高,有望为镁合金表面防护提供一种新的改性方法。
     (2)通过熔盐置换扩渗热力学和动力学研究和理论分析建模,建立了镁合金熔盐置换扩渗过程机理模型,并对涂层的组织结构和相关材料学基础进行了系统研究分析,为涂层成分、结构的设计,工艺优化奠定了基础。
Owing to their low density and be friendly to the environments, magnesium alloys have been increasingly used in the automobile industry, aerospace components communications. Unfortunately, their poor corrosion resistance not only prevents their further application in many fields, but also is a difficult problem on research and development of magnesium alloys. Therefore, it is very important region to improve the corrosion resistance of magnesium alloys. It also has important economic and social significance to investigate the corresponding basic research.
     This paper carried out a study on the magnesium alloy by molten salt surface treatment and corrosion resistance of the Mg-Al intermetallic coating. A new process for surface modification of magnesium alloy substrate called for dipping the alloy into molten bath of equal molar mixture of AlCl_3 and NaCl salt, and obtaining the diffusion aluminized coating. Using the characteristics of its high activity of magnesium alloy, active aluminum atoms and new phase were obtained at low molten salt temperatures. These temperatures are lower than the traditional solid diffusion temperatures. With the diffusion process progresses, the phase layered distribution of the Mg-Al intermetallic coating is observed. This coating improved the corrosion resistance of magnesium alloy. The main conclusions are shown as follows:
     (1) When the diffusion temperature is lower or the diffusion time is shorter, only the formation of a single-phase (Al_(12)Mg_(17)) layer, and accompanied byδ(Mg) solid solution precipitation on the magnesium alloy surface; when the temperature is higher or diffusion time is longer, from magnesium substrate to the surface the diffusion alloying layer was mainly composed of Mg-Al intermetallic compounds: a transitionδ(Mg) solid solution layer, gray phase (Al_(12)Mg_(17)) layer, linear structure and light gray phase (Al_(0.58)Mg_(0.42)) layer, white phase (Al3Mg2) layer and the scattered light distribution ofα(Al) solid solution at the outermost layer of intermetallic coating. Diffusion temperature, diffusion time and the initial atoms concentration in substrate were the main factors, which effected the formation of Mg-Al intermetallic coating.
     (2) Thermodynamic analysis on the formation of Mg-Al intermetallic coating of molten salt bath treatment is discussed, which includes thermodynamic analysis on the process of replacement reaction、diffusion and alloy phase formation. The replacement reaction between magnesium alloy and molten salt can produce active atoms, which was divided into two stages. First phase: the initial contact of magnesium alloy and molten salt; Second phase: the formation of a certain thickness Mg-Al intermetallic coating on magnesium alloy surface. The two-stage thermodynamic analysis shows that the displacement reactions spontaneously occur and Al element continually diffuse in the molten salt bath on the magnesium alloy. Thermodynamic analysis on diffusion process shows that Al element has the driving force of diffusion if Al element exist the concentration gradient. Thermodynamic analysis on phase formation shows that Al_(12)Mg_(17) phase can be obtained at 115.86 < T <450°C, as long as there continue to provide the aluminum elements; At T <415.13°C condition, Al_(0.58)Mg_(0.42) phase can be obtained; At 228 .22< T <450°C conditions, Al3Mg2 phase can be obtained.
     (3) The physical model of replacement and diffusion at magnesium alloy/molten salt interface has been established. The core of model is using the replacement reaction product active aluminum atoms and the new phase. With the diffusion process gradually advancing, from magnesium substrate to the surface the diffusion alloying layer was mainly composed of Mg-Al intermetallic coating:δ(Mg) layer→γ(Al_(12)Mg_(17)) layer→ε(Al_(0.58)Mg_(0.42)) layer→β(Al3Mg2) layer→α(Al) layer. Among them, the diffusion process is dominant. The displacement reactions which provide active atomics always accompanied the diffusion process to occur at the same time.
     (4) Dynamic analysis on the formation of Mg-Al intermetallic coating of molten salt bath treatment is discussed. At different temperatures and diffusion time, the apparent diffusion coefficients of Mg diffusing in Al and Al diffusing in Mg were obtained. The apparent diffusion coefficient of Mg diffusing in Al with molten salt treatment significantly increased than that of pure magnesium solid diffusion Al powder, while the apparent diffusion coefficient of Al diffusing in Mg with molten salt treatment is lager 3 ~ 4 orders of magnitude than that of pure magnesium solid diffusion Al powder. The activation energy for the growth of layer has been fitted that the value was 51666 J·mol~(-1); Deducing the growth model of each phase. The growth model of each phase had been verified that one phase generation is consumed another phase, leading to the phase boundary movement. The mathematical model of replacement and diffusion at magnesium alloy / molten salt interface has been established.
     (5) When the sample of molten salt treatment without a major structural defects, the continuousγphase can be completely isolated from magnesium alloy substrate and the corrosive media. The coating was an effective barrier to hinder the transmission of electronic, so that the charge transfer polarization resistance increased and improved the corrosion resistance. The sample of molten salt treatment appeared brittleβphase, which would lead to cracks and other structural defects on the surface of magnesium alloy. The electrode potential ofγphase is lower than that ofβphase, the surface of sample would occur galvanic corrosion in the corrosion solution. Theγphase as an effective micro-galvanic cathode would accelerate the corrosion rate and decrease the corrosion resistance of the sample.
     The main innovations are shown as follows:
     (1) The distribution of gradient compositions and layered phases in Mg-Al intermetallic coating on magnesium alloy with molten salt surface bath treatment can be obtained at low temperatures. These temperatures are lower than the traditional solid diffusion temperature. The layered phases distribution of Mg-Al intermetallic coating can remarkably improve the corrosion resistance of magnesium alloy. Molten salt treatment is a new surface modification on magnesium alloy for the surface protection.
     (2) Thermodynamic and dynamic analysis and on the formation of Mg-Al intermetallic coating with molten salt bath treatment is discussed. The physical model of replacement reaction and diffusion at magnesium alloy/molten salt interface has been established. The research on the structure of Mg-Al intermetallic coating and the corresponding basic of materials science had been carried out, which can lay the foundation for structure design and process optimizing.
引文
[1] E Aghion, B Bronfin. Magnesium alloys development towards the 21st century. Materials Science Forum. 2000, 350: 19-28
    [2] M P Staiger, M A Pietak, J Huadmai, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006, 27(9): 1728-1734
    [3]翟春泉,曾小勤,丁文江等.镁合金的开发应用.机械工程材料. 2001, 25(1): 6-10
    [4]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展,世界科技研究与发展. 2003, 25(1): 72-78
    [5]轻金属材料加工手册编写组.轻金属加工手册(上册).北京:冶金工业出版. 1979
    [6] Michael M. Avedesian, Hugh Baker. ASM Specialty Handbook:Magnesium and Magnesium Alloys. The Materials Information Society
    [7]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社. 2002, 16-18
    [8]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社. 2004
    [9]訾炳涛,王辉.镁合金及其在工业中的应用.稀有金属. 2004, 28(1):229-232
    [10]杨遇春,有色金属在汽车工业中的应用前景.材料导报. 1993, 6(6):19-22
    [11] E.Aghion, B.Bronfin, D.Eliezer. The role of the magnesium industry in protecting the environment[J]. Journal of Materials Processing Technology. 2001, 117 (3):381-385
    [12]刘静安.镁合金加工技术发展趋势与开发应用前景.轻合金加工技术. 2001, 29(11):1
    [13] H. Friedrich, S. Schumann. Research for a "new age of magnesium" in the automotive industry [J]. Journal of Materials Processing Technology. 2001,117 (3):276-281
    [14] T. Mulai, H. Watanabe, K. Higashi. Grain Refinement of Commercial Magnesium Alloy for High-strain-rate-super-plastic Forming. Materials Science. 2000, 350(4):159-170
    [15]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景.航空工程与维修. 2002(4):41-42
    [16]徐小中,刘强,程军.镁合金在工业及国防中的应用.华北工程院学报. 2002, 23(3):190-192
    [17]刘环,周荣,蒋业华等.镁合金成形技术及应用,昆明理工大学学报(理工版). 2002, 27(6):60-65
    [18]陈学琴,黄晓艳.压铸镁合金的应用与开发.甘肃冶金. 2005, 27(4):1-4
    [19] E.F.Emley. Principles of Magnesium Technology. Pergramon Press, 1986, (3):26
    [20] L. Baum, M. Meyer, L. Mendoza-Ze'lis et al. Hydrogen storage properties of the Mg/Fe system, Physica B: Condensed Matter. 2007, 389(1):189-192
    [21] D.W. Zhoua, S.L. Li, R.A. Varin, et al. Mechanical alloying and electronic simulations of 2Mg-Fe mixture powders for hydrogen storage, Materials Science and Engineering A. 2006, 427(2):306-315
    [22] Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai et al. Magnesium and its alloys as orthopedic biomaterials:A review. Biomaterials. 2006, 27(9):1728-1734
    [23]张永君,严川伟,楼翰一,王福会,曹楚南.镁及镁合金阳极氧化工艺综述.材料保护. 2001, 34(9):24-29.
    [24]周婉秋,单大勇,增荣昌,韩恩厚,柯伟.镁合金的腐蚀行为与表面防护方法.材料保护. 2002, 35(7):l-3
    [25]姚美意,周邦新.镁合金耐蚀表面处理的研究进展.材料保护. 2001, 34(10):19-21
    [26] Nadine Pebere, Christian Riera. Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy. Electrochimica Acta. 1990, 35(2):555
    [27] G. L. Song, A. Atrens, D. H. Stjohn, J. Nairn, Y. Lang. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science. 1997, 39:855-875
    [28] Hikmet Altun, Sadri Sen. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials and Design. 2004, 25:637-643
    [29]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报. 2003, l7(10): 29
    [30]余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮. Mg合金的腐蚀与防护.中国有色金属学报. 2002, 12(6):1087-1098
    [31]郝献超,周婉秋,郑志国. AZ31镁合金在NaCl溶液中的电化学腐蚀行为研究.沈阳师范大学学报(自然科学版). 2004, 22(2):117-121
    [32] Udhayan R, Devendra Prakash Bhatt. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. Journal of Power Sources. 1996, 63:103-107
    [33] Makar C L, Kruger J. Corrosion of magnesium. International Materials Reviews. 1993, 38(3):138-153
    [34] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, TX:Pergament Press Ltd, 1974
    [35] G.Song, A.Atrens. Corrosion mechanism of magnesium alloys. Advanced Engineering Materials, 1999, 1:11-16
    [36]宋光铃.镁合金的腐蚀与防护.北京:化学工业出版社. 2006
    [37]刘秀晨主编.金属腐蚀学.北京:国防工业出版社. 2002
    [38]曹楚南编著.腐蚀电化学原理.北京:化学工业出版社. 2004
    [39]张永君,严川伟,王福会.镁阳极氧化膜微观结构和防护性能比较.腐蚀科学与防护技术. 2004, 16(1):1-4
    [40]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg合金的最新发展及应用前景.金属学报2001,37(7):673-685
    [41]韦春贝,张春霞,田修波,杨士勤, Ricky Fu, Paul K. Chu.镁合金表面耐蚀改性技术.轻合金加工技术. 2004, 32(6):6-11
    [42]李瑛,余刚,刘跃龙等.镁合金的表面处理及其发展趋势.表面技术. 2003, 32(2):1- 5
    [43]邓志威,薛文斌,汪新福等.铝合金表面微弧氧化技术.材料保护. 1996, 29(2):15-16
    [44] Stippich F, Vera E, Wolf G K, et al. Enhance corrosion protection of magnesium oxide coatings on magnesium deposited by ion Beam-Assisted Evaporation. Surface and Coatings Technology, 1998, 103-104:29-35
    [45] Bruchner J, Gunzel R, Richter E, Moller W. Metal Plasma Immersion Ion Implantation and Deposition (MPIIID):Chromium on Magnesium. Surface and Coatings Technology, 1998, 103-104:227-230
    [46]黄光胜,范永革,汤爱涛,汪凌云.镁和镁合金腐蚀最新研究进展.材料导报. 2002,16(4):38-40
    [47]李晓东,张海.镁合金Ni-P化学镀技术研究.轻合金加工技术. 2003, 31(1):28-30
    [48]李金桂主编.防腐蚀表面工程技术.北京:化学工业出版. 2003
    [49]阎洪.金属表面处理新技术.北京:冶金工业出版社. 1996
    [50]高福麒,高斌,高翔.镁合金及其表面电镀技术.表面技术. 2004, 1:8-10
    [51]韩夏云,郭忠诚,龙晋明,薛方勤,徐瑞东.镁及镁合金表面镀锌工艺.材料保护. 2002, 11: 31-33
    [52]霍宏伟,李瑛,王福会. AZ91D镁合金化学镀镍.中国腐蚀与防护学报. 2002, 1:14-17
    [53] Changdong Gu, Jianshe Lian, Jinguo He. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology. 2006, 200:5413-5418
    [54] Y.F.Jiang, L.F.Liu, C.Q.Zhai. Corrosion behavior of pulse-plated Zn–Ni alloy coatings on AZ91 magnesium alloy in alkaline solutions. Thin Solid Films. 2005, 484:232-237
    [55]周婉秋,单大勇,韩恩厚,柯伟.镁合金无铬化学转化膜的耐蚀性研究.材料保护. 2002, 2:12-14
    [56]霍宏伟,李瑛,王福会.化学转化膜上沉积镍对镁合金耐腐蚀性能的影响.中国有色金属学报. 2004, 2:267-272
    [57] Hongwei Huo, Ying Li, Fuhui Wang. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science. 2004,46:1467-1477
    [58]赵明,吴树森,罗吉荣,毛有武.镁合金无铬化处理现状.铸造. 2003, 52(7):462-465
    [59]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向.特种铸造及有色合金. 2003, 132(3):33-35
    [60]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术.轻合金加工技术. 2003, 31(8):35-38
    [61] H.Guo, M.An, S.Xu, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy. Materials letters. In press
    [62] H.Guo, M.An, H.Huo. Microstructure characteristic of ceramics coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied surface science. In press
    [63] H.F.Guo, M.Z.An. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science. 2005, 246:229-238
    [64]曾爱平,薛颖,钱宇峰,王志杰,黄元伟,陈英.镁合金的化学表面处理.腐蚀与防护. 2000, 21(2):55-56
    [65] J.Danro, P Juliet, A. Rouzaud. MuItiIayer material with an anti-erosion, anti-abrasion and anti-wear coating on a substrate made of aluminum. Magnesium or their alloys. US6159618. 2000
    [66] A.Yamamoto, A. Watanabe, K. Sugahara, H. Tsuhakino, S.Fukumoto. Improvement of Corrosion Resistance of Magnesium Alloys by Vapor Deposition. Scripta mater. 2001, 44(7):1039-1042
    [67] R.J.P. Dabosi, R. Morancho, D. Pouteau. Process for producing a protective film on magnesium containing substrates by chemical vapor deposition of two or more layers.US49S0203.1990
    [68] Ch.Christoglou, N.Voudouris, G.N.Angelopoulos, M.Pant, W.Dahl. Deposition of aluminium on magnesium by a CVD process. Surface&Coatings Technology. 2004, 184:149-155
    [69] K.-T.Rie, J.Whole. Plasma-CVD of TiCN and ZrCN films on light metals. Surface&Coatings Technology. 1999,112:226-229
    [70] F.Fracassi, R.d’Agostino, F.Palumbo, E.Angelini. Application of plasma deposited organosilicon thin films for the corrosion protection of metals. Surface and Coatings Technology. 2003,174-175:107-111
    [71] Yamada H, Hiraide T, Takezawa N, Ono A, Fusegi T, Kuroda S, Yoshimoto M. Study on improvements of tribological properties of magnesium alloys-Diamond-like carbon film coating with the interface layer of carbonaceous film containing silicon. Journal of Japanese Society of Tribologists. 200,348:667-672
    [72] Kutschera U, Galun R. Wear behaviour of laser surface treated magnesium alloys. The Minerals, Metals and Materials Society. Verlag Wiley:2000,330~335
    [73] Hiraga H, Inoue T, Kojima Y, et al. Surface modification by dispersion of hard particles on magnesium alloy with laser. Materials Science Forum. 2000, 350:253~258
    [74] Yue TM, Wang A H, Man H C. Corrosion resistance enhancement of magnesium ZK60 /SiC composite by Nd: YAG laser cladding. Scripta Materialia. 1999, 40 (3):303~310
    [75] W.Wilson. Method of coating magnesium metal to prevent corrosion.US353T879 (1970)
    [76]曾晓雁,吴平.表面工程学.北京:机械工业出版社. 2001:66
    [77] Shigematsu.M, Nakamura.N, Saitou.k, Shimojima. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letters. 2000, 19:473-475
    [78] ZhangM X, Kelly PM. Surface alloying ofAZ91D by diffusion coating. J Mater Rec.2002, 17 (10):2477-2479
    [79] Aba Rochman. Reducing the corrosivity of magnesium containing alloys. GB Pat: 2376693A, 2002
    [80] Ma Youping, Xu Kewei, Wen Weixin, He Xipeng, Liu pengfei. The effect of solid diffusion surface alloying on properties of ZM5 magnesium alloy. Surface coatings and technology. 2005, 190:165-170
    [81] Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant , W. Dahl. Deposition of aluminium on magnesium by a CVD process. Surface and Coatings Technology. 2004, 184:149-155
    [82]夏兰廷等.影响镁合金腐蚀性能的因素分析.铸造. 2005, 8
    [83]周婉秋等.镁合金的腐蚀行为与表面防护方法.材料保护. 2002, 35(7):1-3
    [84]段淑贞等主编.熔盐电化学-原理和应用.北京:冶金工业出版社. 1990
    [85]冯秋元等.熔融盐电镀铝的研究进展.电镀与环保. 2003, 23 (5):1-4
    [86]曾华梁等主编.电镀工艺手册,第二版.北京:机械工业出版社. 1997
    [87] P Wasserscheid, W Keim. Angew Chem. 2000, 112(21):3926-3945
    [88] T Welton. Chem Rev. 1999, 99(8):2071-2084
    [89] X H Xu, C L Hueesy, Proc. Electrochem. Soc. 1992, 16:445-456
    [90]杜道斌.熔盐电解渗铝沉积过程及渗铝层性能研究.金属热处理. 1993, l0:16-21
    [91] Godshall.N. Molten Salt Metalliding of Nickel Alloys. J. Electrochem Soc. 1976, 123(4):137C-140C
    [92]牛洪军等. AlCl-NaCl熔盐电解渗铝及其耐蚀性.腐蚀与防护. 1994, (2):61-63
    [93]吕玲敏,杨昇,栗万仲.镁合金表面低温熔盐电镀铝研究进展.材料保护. 2007, 40(8):59-61
    [1] Shigematsu.M, Nakamura.N, Saitou.k, Shimojima. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letters. 2000, 19:473-475
    [2] Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant, W. Dahl. Deposition of aluminium on magnesium by a CVD process. Surface and Coatings Technology. 2004, 184:149-155
    [3] He Meifeng, Wu Yating, Tang Zhixin, Hu Wenbin. Thermochemical computations and experimentation on deposition of aluminium and zinc on magnesium alloy. Journal of Alloys and Compounds. 2009, 469(1-2):407-411
    [4]叶大伦,胡建华编著.实用无机物热力学数据手册(第2版).北京:冶金工业出版社. 2002
    [5]潘金生,仝键民,田民波.材料科学基础.北京:清华大学出版社. 1998
    [6]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社. 2002
    [7] Stull D R Edition. JANAF Thermochemical Tables. Michigan:Midland. 1965
    [8] Berg R W et al. Inorg. Chem. 1984, 23:557
    [9] Boston C R. Advances in Molten Salt Chemistry. New York:Plenum press. 1971, 1:129
    [10] Boxall I,G et al. J. Electrochem. Soc. 1973, 120:223
    [11]刘新田.表面工程.郑州:河南大学出版社. 2000
    [12]段淑贞等主编.熔盐电化学-原理和应用.北京:冶金工业出版社. 1990
    [13]徐萃章主编.电子探针分析原理.北京:科学出版社. 1990
    [14] Jian-WeiChang, Xing-Wu Guo, Peng-Huai Fu, Li-Ming Peng, Wen-Jiang Ding. Effect of heat treatment on corrosionand electrochemical behaviou of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochim Acta. 2007, 52:3160-3167
    [15]张祖训,汪氏康.电化学原理和方法.北京:科学出版社. 2000
    [1]李庆峰,邱竹贤.氯化铝-氯化钠熔盐体系及其应用.矿冶工程. 1996, 16(1):54-57
    [2]徐恒钧主编.材料科学基础.北京:北京工业大学出版社. 2001:137-138
    [3] Pranevicius L., Milcius D., Pranevicius L.L. The role of grain boundaries in the mechanism of plasma immersion hydrogenation of nanocrystalline magnesiumfilms. Applied Surface Science. 2006, (252) 4202-4208
    [4]苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定.电镀与环保. 2004, 24(2):6-11
    [5] Shigematsu, M.Nakamura, N.Saitou, K.Shimojima. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letters. 2002, 19:473-475
    [6]左演声,陈文哲,梁伟主编.材料现代分析方法.北京:北京工业大学出版社. 2000
    [7]刘楚明,朱秀荣,周海涛.镁合金相图集.长沙:中南大学出版社. 2006
    [8]胡庚祥,蔡珣.材料科学基础.上海:上海交通大学出版社. 2000:125-126
    [9] K. Spencer, M.-X. Zhang. Heat treatment of cold spray coatings to form protective intermetallic layers. Scripta Materialia. 2009, 61:44-47
    [10]刘奋成.纯镁表面真空扩散渗铝层结构和性能研究.太原:太原理工大学硕士学位论文. 2007 48
    [1]叶大伦,胡建华编著.实用无机物热力学数据手册(第2版).北京:冶金工业出版社. 2002
    [2]张承侃. Al-Mg系合金相图计算.广东工学院学报. 1988, 5(2):25-27
    [3]孙振岩,刘春明编著.合金中的扩散与相变.沈阳:东北大学出版社. 2002
    [4]黄守伦主编.实用化学热处理与表面强化新技术.北京:机械工业出版社. 2002:152
    [5]段淑贞等主编.熔盐电化学-原理和应用.北京:冶金工业出版社. 1990
    [6] Danckwerts, P.V.. Trans. Faraday Soc. 1950, 46:701
    [7]李敬生.传输原理及冶金过程计算机模拟.西安:陕西科技出版社. 1997:217-219
    [8]徐祖耀.相变原理.北京:科学出版社. 1988:61-114
    [9] Hillert M.. The Formation of Pearlite. Decomposition of Austenite by Diffusional Process. 1962:197-247
    [10]戚正风.固态金属中的扩散与相变.北京:机械工业出版社. 1998
    [11]胡庚祥,蔡珣.材料科学基础.上海:上海交通大学出版社. 2000:122-123
    [12]程晓农,戴启勋,邵红红.材料固态相变与扩散.北京:化学工业出版社. 2006
    [13] Hung LS, Gyulai J, Mayer JW. J Appl Phys. 1983, 54:5076
    [14]于家斗.关于反应扩散速度的计算(二).稀有金属合金加工. 1980, (4):26-31
    [15]潘金生,仝键民,田民波.材料科学基础.北京:清华大学出版社. 1998
    [16]石德坷主编.材料科学基础.北京:机械工业出版社. 1999:214-224
    [17]黄继华.金属及合金中的扩散.北京:冶金工业出版社. 1996:1230
    [18]赵文轸主编.材料表面工程导论.西安:西安交通大学出版社. 1998:54
    [19]王渠东,丁文江.镁合金研究开发现状与展望.世界有色金属. 2004, (7):8-9
    [20] Shatynski SR, Hirth JP, Rapp RA. Acta Metallurgica. 1976, 24:1071
    [21] Philibert J. Appl Sur Sci. 1991, 53:74
    [1]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社. 2006
    [2]常建卫. Mg-Nd-Zn-Zr稀土镁合金腐蚀行为的研究[博士论文].上海:上海交通大学. 2007
    [3] Jeng-Kuei Chang, Su-Yau Chen, Wen-Ta Tsai, Ming-Jay Deng, I-Wen Sun. Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications. 2007, 9:1602-1606
    [4] G Baril, N Pebere. The corrosion of pure magnesium in aerated and derated and deaerated sodium sulphate solutions. Corrosion Science. 2001, 43:471-484
    [5] C M A Brett, L Dias, B Trindade, et al. Characterization by EIS of ternary Mg alloys synthesized by mechanical alloying. Electrochimica Acta. 2006, 51:1752-1760
    [6] J Chen, J Q Wang, E H Han, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution. Electrochimica Acta. 2007, 52:3209-3309
    [7] Jian-WeiChang, Xing-Wu Guo, Peng-Huai Fu, Li-MingPeng, Wen-Jiang Ding. Effectof heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochimica Acta. 2007, 52:3160-3167
    [8] G Song, A Atrens, X Wu, et al. Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science. 1988, 40:1769-1791
    [9] G. L. Song, A. Atrens, D. H. Stjohn, J. Nairn, Y. Lang. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science. 1997, 39:855-875
    [10] Hikmet Altun, Sadri Sen. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials and Design. 2004, 25:637-643
    [11]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报. 2003, l7(10): 29
    [12]余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮. Mg合金的腐蚀与防护.中国有色金属学报. 2002, 12(6):1087-1098
    [13]郝献超,周婉秋,郑志国. AZ31镁合金在NaCl溶液中的电化学腐蚀行为研究.沈阳师范大学学报(自然科学版). 2004, 22(2):117-121
    [14] Udhayan R, Devendra Prakash Bhatt. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. Journal of Power Sources. 1996, 63:103-107
    [15] Kiryl A, Yasakau, Mikhail L, Zheludkevich, Sviatlana V. Lamakaa, Mario G.S. Ferreira. Electrochimica Acta. 2007, 52:7659
    [16] Y Li, T Zhang, F H Wang. Effect of microcrystallization on corrosion resistance of AZ91D alloy. Electrochimica Acta 2006, 51:2845-2850
    [17] G Song, A Atrens. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials. 1999, 1:11-32
    [18] G Song, A Atrens. Understanding magnesium corrosion. Advanced Engineering Materials. 2003, 5:837-858
    [19] G. L. Song, A. Atrens, M Dargusch, Influence of microstructure on the corrosion of diecast AZ91D.Corrosion Science. 1999, 41:249-273
    [20] R Ambat, N N Aung, W Zhou. Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy. Corrosion Science. 2000, 42:1433-1455
    [21] O Lunder, J E Lein, T Kr Aune, et al. The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91.Corrosion.1989, 45:741-748
    [22] G L Song, A L Bowles, D H StJohn, Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering A. 2004, 366:74-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700