用户名: 密码: 验证码:
采用软锰矿强化辉钼矿的氧化分解及联产钼酸铵与硫酸锰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于软锰矿的强氧化性、辉钼矿的还原性和硫酸锰的稳定性,通过氧化-还原反应的耦合,强化辉钼矿的氧化分解过程,同时实现软锰矿的还原分解,联产钼酸铵和硫酸锰,发展出了辉钼矿与软锰矿联产新工艺。
     进行了辉钼矿与软锰矿联合浸出反应的热力学分析,绘制了MoS2-Mn02-H20系的E-pH图,研究结果显示当电势为0.4v-1.0v、pH值小于3,则Mo.Mn可被同时浸出并分别以H2MoO4(MoO3·H20).Mn2+形式存在:
     MOS2+9Mn02+16H+→H2MoO4+9Mn2++2HS04-+6H20
     考察了物料配比、矿浆液固比L/S、硫酸用量以及反应时间与温度对辉钼矿与软锰矿联合浸出过程的影响,发现反应温度与酸用量的影响较大,在软锰矿用量为理论量的1.2倍(nMnO2:nMos2=10.8).L/S为4、硫酸浓度为500g/L、温度为95℃的条件下反应3h,Mo浸出率可以达到85.8%;继续增大软锰矿用量到理论用量的2倍(nMnO2: nMoS2=18.0),Mo浸出率仅增加了1.2%。单纯依靠增大硫酸、软锰矿的用量不能取得较好的浸出效果,而且酸耗、浸出渣量会随之显著增加,锰回收率急剧下降,导致后续除杂难度与药剂消耗增加。
     研究了高锰酸盐、Mn3+/Mn2+氧化还原电对等氧化分解辉钼矿的过程,结果表明NaMn04的氧化效果明显优于软锰矿的,同条件下Mo浸出率可以达到98%以上。尽管Mn3+/Mn2+间接电氧化工艺在强酸介质中可以氧化分解辉钼矿,锰盐可以循环利用,但Mo浸出率只有88%左右。
     为了促进两矿联合浸出,采用高锰酸钠协同软锰矿氧化分解辉钼矿,通过正交试验设计考察了各因素的影响规律,结果表明高锰酸钠的加入有效提高了Mo的浸出率,控制物料配比nNaMn04:nMn02: nMoS2=0.36:10.8:1.0.温度为95℃、时间为240min、搅拌速度为400rpm、液固比L/S为4、硫酸浓度为400g/L,Mn.Mo浸出率分别提高到了83.2%与98.8%。浸出液采用N235溶剂萃取技术分离Mo.Mn,分别得到钼酸铵溶液(反萃液)与硫酸锰溶液(萃余液),然后沿用现行冶金工艺流程制得了合格的钼酸铵和硫酸锰产品,Mo.Mn的最终回收率分别达到了92.8%、72.5%(不计加入的高锰酸钠的量)。
     高锰酸钠协同软锰矿浸出辉钼矿过程中为了保证Mo的浸出效果,软锰矿用量很大,占到所有固体原料的90%,导致了浸出液中Mo含量与Mn回收率低(计入高锰酸盐加入量,Mn回收率不到70%)。另外,为了强化辉钼矿的氧化效果,加入了大量的高锰酸盐,用量达到辉钼矿用量的1/4倍之多,造成原料成本直线上升。
     辉钼矿与软锰矿联合浸出新工艺从实践上证实了软锰矿的强氧化性,以及两矿联产的可行性。为了克服该工艺的上述弊端,采用焙烧方式来实现两矿分解反应的耦合。首先对辉钼矿与软锰矿联合焙烧体系进行了热力学分析,结果表明软锰矿可以通过固-固反应直接氧化分解MoS2、促进MoO2的进一步氧化、吸收转化S02来强化辉钼矿的氧化分解:MoS2+9Mn02=2MnS04+MoO3+7MnO (△rGθ(T)=-0.189T-611.5 kJ-mol-1) Mn02+MoO2=MnO+MoO3 (△,Gθ(T)=-0.104T-1.906 kJ-mol-1) Mn02+S02=MnS04 (△,Gθ(T)=0.184T-246.5 kJ·mol-1)
     研究了焙烧温度、时间、物料配比及空气流量等因素对两矿联合焙烧过程中Mo有效分解率(ηMo)与固硫率(ηs)的影响规律,结果显示采用分段升温焙烧方式(450℃×4h+550℃×4h),控制空气流量为20L/h、物料配比nMnO2:nMoS2=4.0,ηMo、ηs可分别达到97.5%和90.6%。软锰矿的加入不仅强化了MoS2的氧化分解,而且获得了较好的固硫效果,同时实现了自身的还原分解。利用热重分析、XRD分析等揭示了两矿联合焙烧过程的反应机理:MoS2+7/202→MoO3+2S02 MoS2+302→MoO2+2S02 9Mn02+MoS2→MnMoO4+6MnO+2MnS04 Mn02+S02→MnS04 Mn02+Mo02→MnMoO4
     考察了辉钼矿与软锰矿联合焙烧过程中Re的行为,发现软锰矿的加入强化了Re在焙砂中的富集,两矿联合焙烧工艺中铼在焙砂中的回收率要比传统焙烧工艺的高出33.4%,可以达到64.3%。
     采用硫酸浸出含锰钼焙砂,得到的浸出液采用N235萃取回收Mo,负载有机相采用70g/L的硫酸溶液洗涤后再用氨水反萃,Mo的萃取率、反萃率分别达到99.2%与99.1%;反萃液经蒸发、结晶等后续处理可获得八钼酸铵产品,Mo最终回收率为93.9%。含Mn萃余液经黄钠铁钒法除铁、硫化沉淀法去除重金属、净化液蒸发结晶等,制备出了合格的硫酸锰产品(MnSO4·4H2O),Mn的最终回收率达到了83.1%。为了提高Mn产品的附加值和减轻除杂难度,以含Mn萃余液为原料,采用碱式氧化法制备了纯度大于99%的合格化学二氧化锰(CMD)产品,锰转化率大于80%,产品晶型以α-MnO2、γ-MnO2为主。
     利用焙烧耦合辉钼矿氧化分解反应与软锰矿还原分解反应,采用酸浸、N235溶剂萃取技术实现了含钼锰焙砂中Mo、Mn的高效浸出与直接分离,获得了合格的Mo、Mn产品,实现了钼酸铵和硫酸锰的联产,发展出了辉钼矿与软锰矿联合焙烧新工艺。对辉钼矿与软锰矿联合新工艺的技术经济进行了分析,与传统焙烧-氨浸工艺相比,新工艺焙烧温度要低50℃以上,焙烧时间也只有传统工艺的一半左右,而Mo的最终回收率提高了3.9%。新工艺在生产一吨钼酸铵的同时多产出硫酸锰(MnSO4·H2O)3.90t,产值要多出14820元,利润空间更大。另外,联合焙烧新工艺中固硫率达到90%以上,相比现有的钼冶金工艺、锰冶金工艺而言,在同时制备出钼酸铵、硫酸锰两种产品的前提下,两矿联产新工艺的流程短得多,生产过程大大降低了SO2、CO2、CO等废气排放,实现了资源、能源的合理化综合利用,达到了减排、降耗的目的。
Based on the strong oxidation of pyrolusite, the reduction of molybdenite and the stability of manganese sulfate, pyrolusite was used to strengthen the oxidation decomposition process of molybdenite concentrates by the coupling of the oxidation-reduction reaction. Meanwhile the reduction decomposition of pyrolusite and the co-production between ammonium molybdate and manganese sulfate were achieved. A novel process of the co-production technology of molybdenite and pyrolusite was developed.
     The thermodynamic analysis on the co-leaching reaction between molybdenite and pyrolusite was studied, and an E-pH diagram of MoS2-MnO2-H2O systems was obtained, which showed that electric potential was varied in the range of 0.4v-1.0v, and pH value was less than 3, while Mo and Mn could be leached simultaneously and existed in H2MoO4 (MoO3-H2O)、Mn2+ form respectively:
     MoS2+9MnO2+16H+→H2MoO4+ 9Mn2++ 2HSO4-+6H2O
     Effects on molybdenite and pyrolusite co-leaching process were investigated, such as the ratio of materials, liquid to solid ratio of slurry (L/S), the amount of sulfuric acid and the reaction time and temperature. It's found that the reaction temperature and the amount of acid had great influences. Under the conditions of nMnO2: nMoS2=10.8, L/S of 4, sulfuric acid concentration of 500g/L, temperature at 95℃and the reaction time of 3h, the leaching rate of molybdenite could reach 85.8%. With the increasing of pyrolusite dosage to nMnO2: nMoS2=18.0, the leaching rate of molybdenite only increased by 1.2%, which indicated that only depended on increasing the amount of acid and pyrolusite a better leaching results could not obtain, and the acid consumption and leaching slag increased significantly, then the recovery of manganese dropped sharply, which results in the removal difficulty of the impurity and an increasing consumption of reagent in the subsequent procedure.
     The oxidation susceptibility of NaMnO4 and Mn3+/Mn2+ redox couple for decomposition of molybdenite concentrates were studied, results showed that the oxidation of NaMnO4 was higher than that of pyrolusite at the same condition, and the leaching rate of Mo could achieve more than 98%. Although Mn3+/Mn2+ had ability to oxidation-decompose of molybdenite and most of manganese ion could be recycled in strong acid medium, the leaching rate of Mo could only reach about 88%.
     In order to enhance the molybdenite and pyrolusite co-leaching process, NaMnO4 was chosen to co-dissolve the molybdenite with pyrolusite. Some effects had been investigated through Orthogonal test, results showed that the addition of NaMnO4 enhanced the leaching process of Mo efficiently. Under the control of materials ratio nNaMnO4: nMnO2: nMoS2=0.36:10.8:1.0, reaction temperature of 95℃, reaction time of 240 min, stirring speed of 400 rpm, L/S of 4, sulfuric acid concentration of 400g/L, the leaching rate of Mn and Mo increased to 83.2% and 98.8%, respectively. The Mo and Mn were separated by N235 extraction in the leaching solution, and the qualified products of ammonium molybdate and manganese sulfate were generated by existing metallurgical technology. The ultimate recovery of Mo and Mn was 92.8% and 72.5%, respectively (not including the dosage of NaMnO4 added)
     For the sake of ensuring the leaching effect of Mo, a large amount of pyrolusite was used in the novel technology of molybdenite and pyrolusite co-leaching process (co-leaching molybdenite by using pyrolusite and sodium permanganate), which reached to 90% by weight, and resulted in the content of Mo and the recovery of Mn dropping in the leaching solution (including potassium permanganate, the recovery of Mn was less than 70%). In addition, in order to enhance the oxidation effect of pyrolusite, a large amount of NaMnO4 were added, the dosage has reached 1/4 times of molybdenite concentrations, which resulted in a soaring cost of raw materials.
     The novel technology of molybdenite and pyrolusite co-leaching process has approved the strong oxidation of pyrolusite as well as the feasibility of the two mineral co-production technologies in practice. In order to overcome its disadvantages, a roasting process has been used to achieve the coupling of the decomposition reaction of molybdenite and pyrolusite. Thermodynamic analysis on the molybdenite and pyrolusite co-roasting system was studied firstly, results indicated that pyrolusite had the ability to enhance the oxidation decomposition of molybdenite through promoting the further oxidation of MoO2 and absorbing SO2 which generated already. Meanwhile the oxidation of MoS2 could realize directly in a solid-solid reaction: MoS2+9MnO2=2MnSO4+MoO3+7MnO (△rGθ(T)=-0.189T-611.5 kJ·mol-1) MnO2+MoO2=MnO+MoO3 (△rGθ(T)=-0.104T-1.906 kJ-mol-1) MnO2+SO2=MnSO4 (△rGθ(T)=0.1847-246.5 KJ·mol-1)
     Effects such as roasting temperature, roasting time, material ratio and air flow etc. were investigated to characterize the decomposition rate (ηMo) and the the sulfur-retained ratio (ηs) of molybdenite. Under conditions of subsection calefactive mode (450℃x4h+550℃x4h), material ratio nMnO2: nMoS2= 4:1,ηMo andηs could reach 97.5% and 90.6%, respectively. The results indicated that the addition of pyrolusite in molybdenite roasting process, not only enhanced oxidation of molybdenite decomposition, but also could obtain a better sulfur-retained effect. Meanwhile the reduction decomposition of pyrolusite was achieved, and the resources and energy were used reasonablely in this process. The mechanism of molybdenite and pyrolusite co-roasting process was studied by the TGA analysis and the XRD analysis: MoS2+7/2O2→MoO3+2SO2 MoS2+3O2→MoO2+2SO2 9MnO2+MoS2→MnMoO4+6MnO+2MnSO4 MnO2+SO2→MnSO4 MnO2+MoO2→MnMoO4
     Effects on recovery of Re in molybdenite and pyrolusite co-roasting process were investigated. It was found that the addition of pyrolusite strengthened the enrichment of Re in the calcine, and the recovery of Re in the molybdenite and pyrolusite co-roasting process was 64.3%, which was 33.4% higher than that of the traditional roasting process with the same conditions.
     The calcine which contained Mo and Mn was leached with sulfuric acid, then Mo was extracted by N235 from the leaching solution. And 70g/L of sulfuric acid solution was used to washing the as-product on organic phase load before ammonia stripping, the extraction rate of Mo and the stripping rate can reach 99.2% and 99.1%, respectively. The ammonium octamolybdate products could be extracted after evaporation, crystallization and other processes from the stripping solution, the overall recovery rate of Mo could achieve to 93.9% in the whole co-roasting process. A research on the properties of raffinate which contained Mn had been studied, a qualified product manganese sulfate (MnSO4·4H2O) was prepared after removaling iron by methods of carphosiderite and natrojarosi, removing heavy metals by sulfide precipitation and purifying the evaporation and crystallization processes, the overall recovery rate of Mn could reach 83.1% in the whole process. In order to increase the value of the Mn as-products and reduce the removal difficulty of the impurity, a chemical manganese dioxide (CMD) was prepared by alkaline oxidation of Mn raffinate, and the ratio of CMD conversion was more than 80%, the main crystalline form in the product wereα-MnO2 andγ-MnO2.
     Coupling the processes of the roasting oxidation reduction reaction of molybdenite and the decomposition reaction of pyrolusite, the acid leaching technology and N235 solvent extraction technology were adopt to obtain the efficient leaching and a direct separation of Mo and Mn, which existed in the two mineral co-roasting process. The qualified products of ammonium molybdate and manganese sulfate were gained in this method, and a novel process of the co-roasting technology of molybdenite and pyrolusite was developed. The technical and economic analysis of the new molybdenite and pyrolusite co-leaching process were carried out. Compared to the traditional process of roasting-ammonia leaching, the roasting temperature of the new process was lower 50℃and the roasting time was only about half of the traditional process's, while the overall recovery of Mo increased by 3.9%. In the new process, when one ton of ammonium sulfate was produced, another 3.90 tons of manganese sulfate (MnSO4H2O) yielded at the same time, and the output value was 14,820 Yuan more than the traditional process, which indicated that there has greater profit space. In addition, the sulfur-retained ratio of the new co-roasting process was higher than 90%. Compared to the existing molybdenum and manganese metallurgical process, ammonium molybdate and manganese sulfate were prepared simultaneously on this condition. The procedure of the new process was much shorter than others. The process also reduced the emission of the waste gas SO2, CO2 and CO significantly, which finally made a reasonable use of resources and energy and achieved the purpose of the reduction of emission and consumption.
引文
1 历山大苏图洛夫著,庄著学译.钼与铼[M].西安:西安交通大学出版社,1991.
    2 Kerfoot F. Hydrometallurgical production of technical grade molybdenum oxide from molybdenite concentrates[P]. US 4988418,1996-10-26.
    3 佟升.钼及其合金的最新发展[J].中国钼业,1993,(4):13-16.
    4 Zhang Jiuxing. The Mechanism of Strengthening and Toughening of Rare Earth Molybdenum Alloy-Proceeding of thel3th International Plansee Seminar[C]. Bildstein:Metallwerk,1993.
    5 贾如宝.钼的生物学双相作用和医疗预防价值[J].中国钼业,1992,(6):25-28.
    6 Balliett H, Robert W. Production of pure molybdenum oxide from low grade molybdenite concentrates [P]. US 20030086864,2003-05-08.
    7 黄海芳.钼精矿焙烧的污染浪费及对策[J].铁合金,2002,(1):16-19.
    8 阎玉琨编著.钼的工业分析[M].西安:西安交通大学出版社,1989.
    9 刘光俊等.钼和钼合金[M].北京:化学工业出版社,1996.
    10李洪桂.湿法冶金学[M].长沙:中南大学出版社,2002.
    11 McHugh L F, Godsschalk J, Kuzior M. Climax conversion III[C]. Vancouver:The ⅩVI Canadian Institute of Mining and Metallurgy Annu. Meeting,1977:08.
    12 Yuill W A, Aria T. Process for converting molybdenite to molybdenum oxide[P]. US 4551312,1985-11-05.
    13 Sharma T. Physico-chemical Processing of low grade manganese ore[J]. Int. J. Miner Process. 1992,35 (3-4):191-203.
    14孙小白.试剂钼酸钠的制备[J].甘肃化工,1990,(4):6-8.
    15赵晓军.提高钼精矿氧化焙饶合格率及钼收得率的几点措施[J].铁合金,1994,(6):32-33.
    16任宝江.回转窑焙烧钼精矿的生产实践[J].有色金属(冶炼部分),1999,(2):18-20.
    17魏守德,李文忠.回转窑焙烧钼精矿[J].铁合金,1989,(4):15-17,22.
    18 McHugh L F, Barchers D E. Roasting of molybdenit concentrates containing flotation oils [P]. US4523948,1985-06-18.
    19任宝江.钼精矿回转窑隔层焙烧法[J].中国钼业,1999,23(3):40-42.
    20 McHugh L F, Godsschalk J, Kuzior M. Climax conversion III[C]. Vancouver:The ⅩVI Canadian Institute of Mining and Metallurgy Annu. Meeting,1977:08.
    21 Grimes G R, Witkamp G. Climax conversion practice Ⅱ [J]. J. Met.,1971,23 (2):17.
    22 Sasaki I. Method for regenerating molybdenum-containing oxide fluidized-bed catalyst[P]. US 6559085,2003-05-06.
    23 Mahesh C J, May W A. Fluidized-bed roasting of molybdenites concentrates[P]. US6190625, 2001-02-20.
    24张文钲.用高新技术改造钼企业保持钼业可持续发展[J].中国钼业,2002,26(2):3-6.
    25 William A Y, Tucson A. Process for converting molybdenite to molybdenum oxide[P]. US4551312,1985-11-05.
    26 James L L, John E L, Robert B C. Recovery of rhenium and molybdenum values from molybdenite concentration [P]. US3770414,1973-11-06.
    27刘英汉.从含铼钼精矿中提取钼和铼的研究[J].江西大学学报(自然科学版),1989,13(1):88-95.
    28 Trollhattan J W. Conversion of molybdenite concentrates to ferro-molybdenum and simultaneous removal of impurities by direct reduction with sulfide forming reducing [P]. US4101316,1978-07-18.
    29赵业松.钼铁生产用氧化铝的焙烧方法[J].有色金属(冶炼部分),1998,(5):24-26.
    30 Donald O B. Process for thermal dissociation of molybdenum disulfide[P]. US3966459, 1976-06-29.
    31 《化工百科全书》编辑委员会.化工百科全书(第十二卷)[M].北京:化学工业出版社,1996.
    32张相一,雷治州.提高钼酸按回收率的研究及实践[J].中国钼业,1997,21(2-3):76-79.
    33赵天丛等编.有色金属提取冶金手册·总论[M].北京:冶金工业出版社,1992.
    34 Peinhard N L, Frank K F. Process for the production of molybdenum, molybdenum oxide produced from this process and use thereof [P]. WO 02059042A1,2002-01-23.
    35赵中伟.辉钼矿湿法浸出过程某些理论问题之浅见[J].稀有金属与硬质合金,1995,122(6): 1-3.
    36 Derek G E. Hydrometallurgical production of technical grade molybdic oxide from molybdenite concentrates [P]. US 3988418,1976-10-26.
    37 Viclor J. Pressure oxidation process for the production of molybdenum trioxide from molybdenite [P]. US 6149883,2000-11-21.
    38杨雨浓译.С.И.索包里等.很有希望的铜精矿综合处理工艺[J].稀有金属与硬质合金,1991,106(9):24-27.
    39 Ketcham J. Pressure oxidation process for the production of molybdenum trioxide from molybdenite [P]. US6149883,2000-11-21.
    40 Sweetser J, William H, Leonard N. Process for autoclaving molybdenum disulfide [P]. US5804151,1998-09-08.
    41魏绪钧译.用硝酸分解钼精矿[J].国外稀有金属,1983,(6):26-30.
    42黄宝茅,程光荣.用萃取法从尾矿次氯酸钠浸出液中回收钼酸氨研究[J].湿法冶金,1995,56(4):1-8.
    43柯家俊.辉钼矿氧化浸取动力学研究[J].化工冶金,1982,(4):1-7.
    44 Juneja J M. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate [P]. Hydrometallurgy,1996,4 (3):201-209.
    45顾衍,李洪桂.辉钼矿湿法浸出新工艺研究[J].中国钼业,1997,21(5):29-33.
    46 Vanderpool C D. Recovery of molybdenum from molybdenum disulfide [P]. US 4447404, 1984-5-8.
    47 Kruesi P R. Process for the recovery of molybdenum and rhenium from sulfides by electrolytic dissolution [P]. US 3755104,1973-8-28.
    48 Gupta C K. Extractive metallurgy of molybdenum [M]. London:CRC Press,1992.
    49 Kruesi P R. Process for the recovery of molybdenum and rhenium from sulfides by electrolytic dissolution [P]. US 3755104,1973-08-28.
    50 Romano P. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria [J]. FZMS Microbiology letters,2001, 196:71-75.
    51 Romanot P, Lazquez M L, Ballester L A. Reactivity of a molybdenite concentrates against chemical or bacterial attack [J]. Mineral Engineering,2001,14 (9):987-996.
    52张昭,刘立泉.二氧化硫浸出软锰矿[J].化工冶金,2000,21(1):103-107.
    53袁明亮,梅贤功,邱冠周.两矿法浸出软锰矿时元素硫的生成及其对浸出过程的影响[J].化工冶金,1998,19(2):161-164.
    54杨刘晓,许洁瑜.2005年中国钼工业发展状况[J].中国钼业,2006,30(2):3-6.
    55种和洲,许军峰.钼精矿焙烧烟气预处理工艺研究与对策[J].矿山环保,2002,(41):11-13.
    56黄宪法,林冶昆.钼精矿焙烧烟气的综合治理[J].中国钼业,1998,22(1):34-38.
    57 Sahoo R N, Naik P K, Das S C. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution[J]. Hydrometallurgy,2001,62:157-163.
    58袁明亮,梅贤功,陈荩,蒋汉赢.软锰矿浸出工艺的研究及进展[J].矿产保护与利用,1995, (3):39-42.
    59杨幼平,黄可龙.植物粉料-硫酸法直接浸出软锰矿的实践[J].中国矿业,2001,10(5): 54-56.
    60 Das P K, Mishra D, Anand S. Reduction of Mn (IV) oxide by (NH4) 2SO3 in the presence of metal ions in ammoniacal medium[J]. Hydrometallurgy,1999,52:91-104.
    61张启卫.软锰矿制备硫酸锰的工艺原理和技术[J].三明职业大学学报,2000,(3):100-103.
    62梅光贵,钟竹前.硫化锌精矿和软锰矿同时浸出及Zn-Mn同时电解的研究[J].中南矿治学院学报.1982,(1):18-25.
    63李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响[J].贵州工业大学学报,2000,29(3):9-14.
    64宁平,陈亚雄.含锰废渣吸收低浓度SO2生产硫酸锰研究[J].环境科学,1997,18(6):58-60.
    65罗锡如.用锰浆吸收SO2尾气装置的设计[J].无机盐工业,1993, (4):33-36.
    66李春,何良惠.中低品位软锰矿生产硫酸锰的新方法[J].无机盐工业,1999,31(2):16-17.
    67黄祖强,董毅宏,黎铱海等.软锰矿和黄铜矿同时浸出的研究[J].广西化工,1996,25(4):7-11.
    68马双忱,赵英,李守信.先进的烟气脱硫工艺—CT-121[J].电力环境保护,1998,4(1):27-29.
    69 Ma X X, Kaneko T, Tashimo T, et al. Use of lime for SO2 removal from flue gas in the semidry FGD process with a power-particle spouted [J]. Chemical Engineering Science, 2000,55:4643-4652.
    70王健,姜开明.我国烟气脱硫技术现状调查[J].应用能源技术,2004,85(1):9-10.
    71蒋玢.煤中无机硫燃前脱硫技术的进展[J].煤化工,1997,(1):56-58.
    72中国环境科学学会编.脱硫技术[M].北京:中国环境科学出版社,1995.
    73向洋.电力洁净煤生产中的微生物脱硫技术发展[J].煤化工,1995,(2):185-187.
    74王锐兰,王锐刚.煤的微生物脱硫技术[J].能源环境保护,2004,18(1):13-16.
    75曹学锋,蒋玉仁,薛玉兰.烟气脱硫技术进展[J].陕西化工,1998,27(3):10-12.
    76胡海祥,彭会清,赵根成.活性炭用于烟气脱硫的研究进展[J].炭素,2003,116(4):36-40.
    77赵景联,张银元,陈庆云等.微波辐射氧化法联合脱除煤中有机硫的研究[J].微波学报,2002,18(6):80-84.
    78李运姣,李洪桂,孙培梅等.机械活化碱分解钨矿过程钙对杂质磷、砷、硅的抑制效果[J].稀有金属,2001,25(2):103-107.
    79 Boldyrev V V. Hydrothermal reaction under mechanochemical action[J]. Powder Technology, 2002,122 (2):247-254.
    80 Amer A M. Kinetics of acid pressure leaching of mechanically activated cassiterite concentrated [J]. Erzmetall,2001,54 (3):446-449.
    81 Balaz P. Mechanical activation in hydrometallurgy [J]. Int. J. Miner Process,2003,73 (2): 341-354.
    82王少芬,方正,陈阳国.机械活化在方铅矿发电浸出过程中的应用[J].湿法冶金,2003,(1):93-96.
    83黄祖强,黎铉海,童张法等.机械活化及其在湿法炼锌中的应用[J].广西大学学报(自然科学版),2002,27(4):287-292.
    84李洪桂.湿法冶金学[M].长沙:中南大学出版社,2002,114-117.
    85杨华明,邱冠周.机械合金化技术的新进展[J].稀有金属,1998,(4):313-316.
    86 Rouff A L. Enhanced diffusion during plastic deformation by mechanical diffusion[J]. J Appl Phys,1967,38 (10):3999-4003.
    87杨华明,王淀佐,邱冠周.矿物表面机械化学改性新工艺研究[J].金属矿山,2000,289(7): 13-17.
    88吴保林,赵中伟.机械活化对辉钼矿浸出的影响[J].稀有金属与硬质合金,2004,32(1):1-5.
    89李希明,陈家镛.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448.
    90杨华明,邱冠周,王淀佐.超细粉碎过程粉体的机械化学变化[J].金属矿山,2000,293(11):24-31.
    91 Dezhkunov N V, Kulak A I. The effect of ultrasonic cavitation on model electrochemical processes [J]. Ultrasonics,1996,34 (4):551-553.
    92 Moholkar V S, Kumar P S, Pandit A B. Hydrodynamic cavitation for sonochemical effects [J]. Ultrasonics Sono-chemistry,1999, (6):53-65.
    93 Romano P. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria [J]. FZMS Microbiology letters, 2001,196:71-75.
    94薛向东,金奇廷.水处理中的高级氧化技术[J].环境保护,2001,(6):13-15.
    1 叶大仑.实用无机物热力学数据库手册[M].北京:冶金工业出版社,2002.
    2 许志宏.无机热力学数据库[M].北京:科学出版社,1987,163.
    1 向铁根.钼冶金[M].长沙:中南大学出版社,2002.
    2 赵天从,傅崇说,何福煦等.有色金属提取冶金手册[M].北京:冶金工业出版社,1999,280.
    3 Sharma T. physico-chemical processing of low-grade manganese ore [J]. Int. J. Miner. Process. 1992,35 (3-4):191-203.
    4 李洪桂.湿法冶金学[M].长沙:中南大学出版社,2002.
    5 Juneja J M. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrates [J]. Hydrometallurgy,1996,41 (3):201-209.
    6 Kerfoot F. Hydrometallurgical production of technical grade molybdenum oxide from molybdenite concentrates [P]. US4988418,1996-10-26.
    7 Vanderpool C D. Recovery of molybdenum from molybdenum disulfide [P]. US4447404, 1984-05-08.
    8 张启卫.软锰矿制备硫酸锰的工艺原理和技术[J].三明职业大学学报,2000,(3):100-103.
    9 A.H.泽里克曼,O.E.克列茵,T.B.萨姆索诺夫,宋晨光,陆雨泽.稀有金属冶金学[M].北京:冶金工业出版社,1982,86-138.
    10大连理工大学无机化学教研室编.无机化学[M].北京:高等教育出版社,2001.
    11 Mao Huang-liu, Su Y O. Electro-catalytic oxidation of alkenes by water-soluble manganese porphyrins in aqueous [J]. Journal of Electro-analytical Chemistry,1997,426(2):197-203.
    12张彰,朱宪,何翔,等.间接电氧化法生产苯甲醛工艺研究[J].上海大学学报(自然科学版),2001,7(1):73-76.
    13 Arslan F, Paul F D. Electro-oxidation of pyrite in sodium chloride solutions[J]. Hydrometallurgy,1997,46 (2):157-169.
    14化工百科全书编辑委员会.化工百科全书(第12卷)[M].北京:化学工业出版社,1996,53-77.
    15 Ureta-Zanartu M S, Bustos P, Diez M C. Electro-oxidation of chlorophenols at a gold electrode [J]. Electrochimica Acta,2001,46 (10):2545-2551.
    16 Peter S N, Anastasio C, Robert J Z. Rapid Photo-oxidation of Mn(II):Mediated by Humic Substances [J]. Geochimica et Cosmochimica Acta,2002,66 (23):4047-4056.
    17 Derek G E. Hydrometallurgical production of technical grade molybdic oxide from molybdenite concentrates [P]. US3988418,1976-10-26.
    18 Gupta C K. Extractive metallurgy of molybdenum [M]. London:CRC Press,1992.
    19 Ketcham J. Pressure oxidation process for the production of molybdenum trioxide from molybdenite [P]. US6149883,2000-11-21.
    20 Sasaki I. Method for regenerating molybdenum-containing oxide fluidized-bed catalyst [P]. US6559085,2003-05-06.
    21 Balliett H, Robert W. Production of pure molybdenum oxide from low grade molybdenite concentrates [P]. US20030086864,2003-05-08.
    1 Gerhardt N I, Palant A A, Dungan S R. Extraction of tungsten VI, molybdenum VI and rhenium VII by diisododecylamine [J]. Hydrometallurgy,2000,55(1):1-15.
    2 Hyung-Sun Kim, Hyun-Joong Kim, Won Cho. Discharge characteristics of chemically prepared MnO2 and electrolytic MnO2 in non-aqueous electrolytes [J]. Journal of Power Sources,2002,112(4):660-664.
    3 Palant A A, Iatsenkl N A, Petrova V A. Solvent extraction of molybdenum (VI) by diisododecylamine from sulphuric acid solution [J]. Hydrometallurgy,1998,48(1):83-90.
    4 李文华,杨永会,孙思修.伯胺N1923萃取钼(Ⅵ)的研究[J].稀有金属与硬质合金,1998,(133):1-4.
    5 Basualto C, Marchese J, Valenzuela F, etc. Extraction of molybdenum by a supported liquid membrane method [J]. Talanta,2003,59:999-1007.
    6 曾平.伯胺N1923萃取钼的机理研究[J].高等学校化学学报,1994,15(11):1589-1591.
    7 向铁根著.钼冶金[M].长沙:中南大学出版社,2002.
    8 阎玉琨编著.钼的工业分析[M].西安:西安交通大学出版社,1989.
    9 张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005.
    10贺周初,刘昱霖,郑贤福,等.化学二氧化锰生产工艺[J].电池,2003,33(3):171-172.
    11靖滨,李晓冰.吸水树脂脱除重金属离子的研究[J].化学工程师,2002,(3):9-9,26.
    12李秀芬.硫化钠从稀土矿淋出液中除重金属离子[J].矿产综合利用,2000,(3):46-47.
    13崔锦舫.沉淀浮选从冶金废水中去除重金属和氰化物[J].国外金属矿选矿,1994,31(7):21-27.
    14汪群慧.用复极性粒子群电极从稀溶液中去除重金属离子[J].南京化工学院学报,1991,13(3):59-62.
    15郭敏杰.淀粉衍生物在除重金属离子方面的应用[J].淀粉与淀粉糖,2001,(4): 18-22.
    16钟康年.改性磷灰石的造粒和去除重金属离子[J].中国矿业,2001,10(6):18-21.
    17 Presisler E. Activated metal anode[P]. EP148439,1985-05-24.
    18曹风华,韩明臣.生产电解二氧化锰用钛合金阳极的抗钝化性能[P].稀有金属材料与工程,1996,25(6):40-43.
    19 Noguchi, Takehiro. Positive electrode active material positive electrode and non-aqueous electrolyte secondary battery using thereof [P]. US270946,2001-10-18.
    20 Wang E. Process for producing manganese dioxide[P]. US5391365,1995-2-21.
    21 Hyung-Sun Kim, Hyun-Joong Kim, Won Cho, et al. Discharge Characteristics of Chemically Prepared MnO2 and Electrolytic MnO2 in Non-aqueous Electrolytes[J]. Journal of Power Sources,2002,112(4):660-664.
    22 Yamamoto, Sadaaki. Manufacture of MnO2[P]. Jpn Kokai Tokkyo Koho 0769640, 1995-03-14.
    23 Takahashik. Dry cell and battery industry and power technology with emphasis on powder ed manganese dioxide [J]. Electrochim Acta.,1981,26:1476-1482.
    24 Jorg R H, Clive M F, Margaretha H R. Understanding g-MnO2 by molecular modeling[J]. Journal of Solid State Chemistry,2004,177:165-175.
    25贺周初,刘昱霖,郑贤福,等.化学二氧化锰生产工艺[J].电池,2003,33(3):171-172.
    26 Tanaka Y, Tsuji M. Thermodynamic study of alkali metal ion exchanges on a manganese dioxide with hexagonal structure[J]. Materials Research Bulletin,1997,32 (4):461-475.
    27 Liangjie Yuan, Zicheng Li, Jutang Sun, et al. Synthesis and characterization of activated MnO2[J]. Materials Letters,2003,57:1945-1948.
    28 Johnson C S, Dees D W, Mansuetto M T, et al. Structure and electrochemical studies of a-Manganese dioxide (a-MnO2)[J]. Journal of Power Source,1997,68:570-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700