用户名: 密码: 验证码:
强化A/O-BAF-IBAC组合工艺处理煤气废水的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气废水是一种水质成分复杂、污染物种类繁多、生物毒性大的高浓度有机废水,具有COD浓度高、可生化性差、水质水量变化大、色度高等特点,是一种极难处理的工业废水。目前,生物法是煤气废水处理的主要方法,采用的工艺主要是活性污泥法,该工艺在处理过程中存在的主要问题是系统运行不稳定、对难降解有机物和NH_4~+-N去除效果差等。本研究试图通过增加物理化学预处理法、改善生物处理的生化环境、添加固体矿物材料(硅藻土)、改变系统反应器构型及采用臭氧预氧化等方法,强化传统煤气废水生物处理效果。
     根据煤气废水的水质特征,本文提出:“酸化预处理-强化A/O-BAF-O_3-固定化生物活性炭(IBAC)”组合工艺处理煤气废水工艺路线,并开展了长时间的小试和中试实验研究。该工艺较好的解决了煤气废水中毒性物质对NH_4~+-N和难降解有机物降解的抑制作用,提高了COD和NH_4~+-N的总体去除效果。强化A/O-BAF生物处理工艺中,第一级好氧单元采用的是普通活性污泥法,在运行中稳定性较差,处理效果不理想,需要采取强化措施。本文采用硅藻土添加剂强化普通活性污泥工艺。由于煤气废水COD和NH_4~+-N含量高、浓度变化幅度大,本研究采用以颗粒活性炭和沸石为生物载体的生物膜反应器构型作为缺氧池和二级好氧反应器构型,利用其对污染物吸附-生物再生和吸附-脱附原理,提高了COD和NH_4~+-N的去除效果,减小了出水COD和NH_4~+-N浓度的变化幅度。煤气废水生物处理出水可生化性较差,而单独采用物理化学法处理成本较高,需要通过化学法预氧化提高废水的可生化性,再接续生物处。本文采用O_3-固定化生物活性炭(IBAC)深度处理煤气废水生物处理出水,取得良好效果。
     煤气废水小试实验结果表明,酸化除油预处理可以有效地去除煤气废水中难生物降解的乳化焦油,改善污泥性状,强化后续生物处理效果;在废水酸化除油过程中添加少量小颗粒矿物材料,可以改善析出有机絮体的结构和密度,加速絮体的沉降,提高沉淀物的脱水率,强化废水处理效果。“强化A/O-BAF”生物处理段在进水COD较高的条件下可以稳定运行,其中一级好氧单元起到至关重要的作用。系统在平均进水COD为2210mg·L~(-1)、NH_4~+-N含量为244mg·L~(-1)的条件下,COD和NH_4~+-N去除率分别可达87.6%和80%,提高了常规的煤气废水生物处理功效;减少系统水力停留时间(HRT)后,对系统COD去除率影响不大,但影响NH_4~+-N去除效果,NH_4~+-N去除率降为67%。臭氧预氧化可以有效地去除废水的色度,对COD有一定的去除作用,在240mg·L~(-1)的投量下可以提高废水的可生化性;废水O_3-IBAC系统对COD去除效果较好,出水平均为87mg·L~(-1),可以达到废水排放标准对COD的要求;对NH_4~+-N的去除效果一般,处理出水的NH_4~+-N平均浓度为45mg·L~(-1),总去除率为49%。
     煤气废水生物处理中试实验表明,生物处理系统运行稳定,有机污染物去除效果好。其中,一级好氧单元的挥发酚的去除率可以达到99%,出水一般低于0.5mg·L~(-1),已达国家一级排放标准,而该单元的COD和总酚的去除效果也很好,分别可达到80%和85%,强于小试实验结果;在进水COD大于2000mg·L~(-1)的条件下,系统总体COD和总酚的去除效果较好,去除率分别为83%和87%;系统COD容积负荷的变化对COD和酚类的去除率影响不大,然而提高负荷后,生物处理反应器中的水温应注意控制;生物处理系统NH_4~+-N去除效果较差,总去除率为45%左右,低于小试实验结果,其中一级好氧单元NH_4~+-N去除率降低了22%,二级好氧单元NH_4~+-N去除率降低了36%,推测主要原因由于曝气生物滤池的操作控制问题引起的。
     本文通过实验考查了硅藻土添加剂对降解煤气废水微生物活性的强化效果,并研究了其强化机制。实验表明,硅藻土添加剂对微生物的活性具有明显的强化作用,每分钟溶解氧消耗量最高可增加27%左右;通过对比分析添加硅藻土及粉末活性炭对废水COD、挥发酚、pH、总酚和溶解氧浓度的影响特征,认为硅藻土对酚类物质的吸附及固体表面对溶解氧的富集作用是其强化微生物活性的主要机制。
     色谱-质谱联机(GC-MS)测试结果表明,废水生物处理过程中,有机物种类明显减少。缺氧单元主要去除一些结构复杂的有机物;废水中的有机污染物经过一级好氧单元处理后,大部分的短链烃和结构较简单的酚、酮、羧酸和脂类被降解,而一些结构复杂的杂环烃类和芳香烃类则残留下来;废水经二级好氧单元处理后,有机物种类进一步减少,主要残留下一些芳香酮和芳香酯类化合物。
Coal gasification wastewater is a kind of high concentrated organic wastewater, which contains complicated ingredients and a great variety of pollutants and which is great toxic. It has the characteristics of high COD, being hard to biodegrade, great diversity quality and quantity and high color. As an industrial wastewater, it is very difficult to treat. At present, biological wastewater treatment method is the primary method used. The main process is mainly activated sludge process. In the process the main problems include the unstable system operation and low removal of persistent organic matters, NH_4~+-N, etc. In this paper, we attempts to use the following ways to enhance biological treatment ratio of coal gas wastewater: to increase physical and chemical pretreatment method, to improve chemical and biological environment of the biological treatment, to add the solid mineral substance (diatomite), to change the configuration of the system reactor, to use ozone pre-oxidation, etc.
     According to the characteristics of coal gasification wastewater, in the paper it is presented that: Combined Treatment Process Route of Coal Gasification Wastewater including acidification pretreatment enhanced A/O-BAF-O_3-immobilized biological activated carbon (IBAC), and Laboratory-scale and pilot-scale experiments were carried out for long time. In the process solution, the inhibition of the decomposition of NH_4~+-N and persistent organic substances due to toxic substances in coal gasification wastewater is resolved. Thus the total removal ratio of the COD and NH_4~+-N is improved. In the enhanced A/O-BAF biological treatment process, aerobic unit in the first stage utilizes conventional activated sludge method which is less stable in operation without satisfactory treatment effect. Thus it is necessary to adopt the enhanced measures. In this paper, diatomite additives are used to enhance the conventional activated sludge process. As the content of COD and NH_4~+-N in coal gasification wastewater is high and the concentration ranges are wide, in this study biofilm reactor configuration with the biological carrier made with the granular activated carbon and zeolite is used as the configurations of anoxic reactor and two-stage aerobic reactor: through the principle of the adsorption of pollutants biological regeneration and adsorption desorption, removal ratio of COD and NH_4~+-N is increased and their concentration ranges in the output water are reduced. For biological degradability of coal gas wastewater is low and the single use of physical-chemical treatment is high in the cost, it is necessary to improve biological degradability of coal gasification wastewater through chemical pre-oxidation method, and then go on biological treatment. In this paper, advanced treatment of O_3-immobilized biological activated carbon (IBAC) achieved good results.
     Laboratory-scale experiment results show that acidification and degreasing pretreatment can effectively remove persistent emulsified tar in coal gasification wastewater, improve the sludge characteristics and strengthen the follow-up biological treatment ratio; in wastewater acidification and degreasing process, adding a small amount of small mineral particles can improve the structure and density of precipitated organic floc, speed up the settlement of floc, improve the dehydration rate of sediment and strengthen wastewater treatment effect.“Enhanced A/O-BAF”biological treatment section can remain stable operation under conditions of high COD in the input wastewater and the first-stage aerobic unit plays a crucial role. Under the conditions of the average 2210mg·L~(-1) COD and 244mg·L~(-1) NH_4~+-N in the input wastewater, in the system removal ratios of COD and NH_4~+-N are respectively 87.6% and 80%, and performance of conventional biological treatment of coal gasification wastewater is increased; reducing system hydraulic retention time (HRT) has little effect on the COD removal ratio of the system, but removal ratio of NH_4~+-N is affected, reduced to 67%. Ozone pre-oxidation can effectively remove the chroma of wastewater and it is helpful to the removal of COD. With the dosage of 240mg·L~(-1), bilogical degradability of wastewater can be increased; wastewater O_3-IBAC system has good COD removal ratio with the average 87mg·L~(-1) in output water and COD emission standard can be met. While it has ordinary treatment ratio on NH_4~+-N, with the total removal ratio of 49% for 45mg·L~(-1) NH_4~+-N in input wastewater.
     Pilot-scale experiment results of coal gas wastewater show that the biological treatment system is running stable with good removal ratio of organic pollutants. In the first–stage aerobic unit, removal ratio of volatile phenol can reach 99% and its output concentration in wastewater is generally lower than 0.5mg·L~(-1) which has reached the national emission standard, while in the unit also very good, respectively 80% and 85% which is better than the small-scale test results; under the condition of COD exceeding 2000mg·L~(-1) in the input wastewater, overall removal ratio of COD and total phenol in the system is very good, respectively 83 % and 87%; in the system change in COD volumetric load has little effect on removal ratio of COD and phenol, but with the increased load, it is necessary to pay attention to control water temperature the biological treatment reactor; NH_4~+-N removal ratio in biological treatment system is low with a total removal ratio of about 45% which is lower than the results of small-scale experiments: NH_4~+-N removal ratio in the first-stage aerobic unit was reduced by 22%, and NH_4~+-N removal ratio in the second-stage aerobic unit was reduced by 36%. It is speculated that it is mainly caused by the control operation of BAF.
     In the paper the enhanced effect of diatomite additive on biological activity of the microbe which decomposes coal gasification wastewater as well as its enhancing mechanism is studied through tests. Experiments show that the diatomite additive has significantly enhancing role on the microbial at most, the maximum increase of about 27%; by comparative analysis of the effect characteristics of adding diatomite and activated carbon on wastewater COD, volatile phenol, pH, total phenol and dissolved oxygen concentration, it is believed that the adsorption of phenolic substances by diatomite and the accumulation of dissolved oxygen on the solid surface is the primary mechanism of its enhanced microbial activity.
     GC-MS test results show that in biological wastewater treatment process, the organic substance varieties decrease significantly. Hypoxia unit is mainly used to remove some organic compounds with the complex structure; in organic pollutants in wastewater through an aerobic treatment, most of the short-chain hydrocarbons and phenols, ketones, carboxylic acids and lipids with the relatively simple structure are degraded, while some heterocyclic and aromatic hydrocarbon with complex structure are left; through wastewater treatment in two-stage aerobic units, the organic substance varieties are further reduced with the main residue of some aromatic ketones and aromatic esters.
引文
1王瑗,盛练喜等.中国水资源现状分析与可持续发展对策研究.水资源与水工程学报. 2008, 19(3):10~14
    2 2008年中国环境状况公报
    3张忠祥,钱易.废水生物处理新技术.清华大学出版社.2004:9~12
    4邹家庆.工业废水处理技术.化学工业出版社,2003:6~8
    5 2007-2008年中国焦炭市场研究年度报告
    6寇公.煤气化工程.机械工业出版社.1991:1~15
    7 R.G.Luthy.Treatment of Coal Coking and Coal Gasification Wastewaters. Journal WPCF. 1981,53(3):325~339
    8张艳敏.煤气废水生化处理系统优化与深度处理技术研究.哈尔滨工业大学硕士论文.2002:2~48
    9 R.G.Luthy,S.G..Bruce,R.W.Walters,et al.Cyanide and Thiocyanate in Coal Gasification Wastewaters.Journal WPCF.1979,51(9):2267~2281
    10庞世平.N-503萃取焦化废水的研究田.山西化工,2003, 23 (1):8~12
    11 R.G.Luthy,A.Ramaswaml,S.Ghshal,et al.Interfacial Films in Coal Tar Nonaqueous-Phase Liquid-Water Systems.Environ.Sci.Technol.1993,27 :2914~2918
    12刘荣桂,嵇小玲.生物膜法处理煤气制气废水.工业用水与废水.1999,30(3):27~29
    13 Richard G.L.,James T.L..Biological treatment of a coal gasification process wasterwater.Water Res.1980,14(9):1269-1282
    14刘精金.发生炉煤气洗涤水处理工艺的研究.燃料与化工.1999 , 30(4):192~194
    15王爱英,武志强,李日强等.焦化废水的混凝预处理研究.山西大学学报.2008,31(2):265~268
    16 16李洪仁,王敬涛,胡晓静.湿式催化法处理工业污水的应用与展望.工业水处理.1999,19(3):10~12
    17尹德龙,单忠健,曾锦之.焦化废水处理存在的问题及其解决对策.给水排水.2000,26(6):35~37
    18 Chiang Li-Choung, et al. Electro-Chemical Oxidation Process for the Treatment of Coke-Plant Wastewater.Environ. Sci. Health.1995, A30(4):753~771
    19许初胜.用高浓度活性污泥法处理焦化废水.燃料与化工.1995, 150~152
    20 V.C.Stamoudis and R.G.Luthy.Determination of Biological Removal of Organic Constituents in Quench Waters from High-Btu Coal Gasification Pilot Plants.Wat.Res.1980,14(8):1143~1156
    21 J.E.Abson and K.H. Todhunter.Plant for Continuous Biological Treatment of Carbonization Effluents.Continuous Culture of Micro-organisms.1961, SCI, London
    22佟玉衡.废水处理.化学工业出版社,2004:299~301
    23 J.J. Ganczarczyk.Second-stage Activated Sludge Treatment of Coke-Plant Effluents. Wat. Res. 1979,13(4):337~342
    24 D.G.Hutton and F.L. Robertaccio Waste water trentment [P].US Pat.3904, 518, 1975
    25 B.P.Flynn.A Model for the Powdered Activated Carbon-Activated Sludge Treatment System.Proc.30th Ind.Waste Conf.Purdue University.2005:233~252
    26杨云龙,白晓平.焦化废水中几种典型难降解有机物的特性研究及处理技术.重庆环境科学.2001, 23 (4):39~41
    27赵健夫,钱易,顾夏声.用厌氧酸化预处理焦化废水的研究.环境科学,1990,11(3):30~33
    28邵林广,陈斌,黄霞等.水解(酸化)-缺氧-好氧固定床生物膜系统处理焦化废水的试验研究.环境科学,1994.15 (6):51~55
    29史长苗,陈启斌.水解酸化-好氧生物处理焦化废水的试验研究.科技情报开发与经济,2002,12(1):114~115
    30侯红娟,周琪,杨云龙.焦化废水中难降解有机物处理试验研究.工业用水与废水,2002,33 (4):39~42
    31 M.T.Suidan, C.E.Strubler, S.W.Kao, et al.Treatment of Coal Gasification Wastewater with Anaerobic Filter Technology. J.WPCE. 1983, 55(10):1263~1270
    32 G.F.Nakhla and M.T. Suidan.Anaerobic Toxic Wastes Treatment:Dilution Effects. Hazard. Mater.1995,42:71~86
    33 P.M.Fedorak and S.E.Hrudey. Anaerobic Treatment of Phenolic Coal Conversion Wastewater In Semi-Continuous Cultures.Wat Res.1986, 20:113~122
    34 H.Macarie.Overview of the Application Of Anaerobic Treatment To Chemical And Petrochemical Wastewaters.Wat.Sci.Technol.2000,42(5~6):201~214
    35 G.S.Veeresh,P.Kumar and I.Mehrotra.Treatment of Phenol and Cresols in Up-flow Anaerobic Sludge Blanket(UASB) Process: a Review. Wat. Res. 2005, 39:154~170
    36 H.Q.Yu,G.W.Gu and L.P.Song.Post-treatment of Effluent from Coke-Plant Wastewater Treatment System in Sequencing Batch Reactors. Wat. Environ. Eng. 1997, 3:305~308
    37毋海燕.焦化废水的氨氮处理.太原理工大学硕士论文.2003:2~9
    38李冰.ASBR+SBR(反硝化)+SBR(碳氧化)+BAF(硝化)联合处理焦化废水的研究.太原理工大学硕士学位论文.2003:4~15
    39缺氧-SBR技术处理焦化废水的研究.温桂照.广东工业大学硕士学位论文.2001:3~18
    40张晓健.好氧生物处理对焦化废水中有机物的去除.环境保护.1994,8:7~10
    41何苗,张晓健,瞿福平,顾夏声.焦化废水中有机物在活性污泥法处理中的去除特征.给水排水.1996,22(10):28~30
    42何苗,张晓健,瞿福平,顾夏声.焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特征.中国给水排水.1997,13(1):14~17
    43任源,韦朝海,吴超飞等.生物流化床A/O工艺处理焦化废水过程中有机组分的GC/MS分析2.环境科学学报.2006,26(11):1785~1791
    44张晓健,雷晓玲,何苗.焦化废水中几种难降解有机物的厌氧生物降解特性.环境工程.1996,145(1):10~13
    45姚瘿,何苗.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性能的影响.中国环境科学.1998,18(3):276~279
    46帅立兵.A2/O生物膜系统处理焦化废水的影响因素分析.煤化工.2009,(2):65~66
    47张喜悦.焦化废水厌氧-缺氧-好氧工艺生产性试验研究.清华大学硕士论文.1995:1~5
    48邵林广,陈斌,黄霞,钱易.缺氧-好氧固定床生物膜系统处理焦化水试验研究.给水排水.1995,21(2):20~22
    49何苗,张晓健,黄晓玲,顾夏声.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较.给水排水.1997,23(6):31~33
    50于晓丹,杨云龙.厌氧-SBR工艺处理焦化废水的试验研究.山西建筑.2009,35(9):182~183
    51仇雁翎,赵建夫,李咏梅,顾国维.A1-A2-O生物膜系统处理焦化废水试验中好氧段影响因素的研究.重庆环境科学.2001,23(6):16~19
    52李咏梅,彭永臻,顾国维,仇雁翎,赵建夫.焦化废水中有机物在A1-A2-O生物膜系统中的降解机理研究。环境科学学报.2004,24(2):242~248
    53 J.X.Liu,B.Z.Wang and W.G.Li.Removal of Nitrogen from Coal Gasification and Coke Plant Wastewaters in A/O Submerged Biofilm-Actiwated Sludge(SBF-AS)Hybrid System.Wat.Sci.Technol.1996,34(10):17~24
    54 J.X.Liu,W.G.Li and X.H.Wang.Removal of Nitrogen from Coal Gasification Wastewater by Enitrosofication,Wat.Sci.Technol.1998,38(1):39~46
    55 M.Zhang,J.Tay,Y.Qian et al.Coke Plant Wastewater Treatment by Fixed Bio-film System for COD and NH3-N Removal.Wat.Res.1998,32(2):519~527
    56 Han Liping, Wang Jianlong, Shi hanchang, et al.Bioaugmentation: a new strategy for removal of recalcitrant compounds in wastewater-a case study of quinoline. J Environ sci, 2000,12:22-25
    57 Wang Jianlong, Wu Libo, Han Liping, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem, 2005,37:831~836
    58 Yu Z T, Mohn W W. With resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Wat Res,2007,35:883~890
    59 Goldstein R M, Mailory L M, Alexander M. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol, 1985,50:977~983
    60 Limbergen H V, Top E M, Verstrate W.Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol, 1998,50: 16~23
    61 McClure N C, Fry J C, Weightman A J. Survival and catabolic activity of natural and denetically engineered bacteria in a laboratory-scale activated sludge unit. Appl Environ Microbiol, 1991, 57: 336~373
    62 Nuesslein K, Maris D, Timmis K, et al. Expression and transfer of engineered catabolic pathways harboured by Pseudomonas sp. Introduced into activated sludge microcosmos. FEMS Microbiol Ecol, 1992, 58: 3380-3386
    63 Barr D P, Aust S D. Mechanisms white rot fungi used to degrade pollutants. Environ. Sci. Technol, 1994,28(2):78~87.
    64李捍东,王强,田禹等.投菌法处理高浓度焦化废水的研究.哈尔滨工业大学学报,2006,38(10):1801~1805
    65李咏梅,刘淑君,赵建夫等.投菌法处理焦化废水的试验研究阴.同济大学学报,2003, 31(8): 986-~989
    66王璟,张志杰,孙先锋等.应用生物强化技术处理焦化废水难降解有机物阴.城市环境与城市生态,2000, 13 C 6:42-44
    67 M G Kenneth, E Hammel. Initial steps in the degradation of methoxychlor by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbia1.1997, 63(3):1175~1177
    68周海军,卢勇,严莲荷.粉末固定化白腐真菌处理焦化废水的研究.工业水处理,2008, 28(1):54~56
    69任大军,张晓显,颜克亮等.白腐菌对焦化废水中喹啉的降解及机理研究.环境保护科学,2006,32 (1):20-23
    70刘玉敏,许雷,逯博特等.焦化废水处理新工艺.环境工程,2009,27(4):43~46.
    71韦朝海,贺明和,吴超飞等.生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用.环境科学学报,2007,27(7):1107~1111
    72耿艳楼.生物流化床在焦化废水治理中的应用.环境工程,1999, 17(3):11~13.
    73 Paul M. Sutton, Jim Hurvid, Martin Hoe Ksema. Biological Fluided-bed Treatment of Wastewater from Byproduct Coking Operations: Full-Scale Case History. Water Environ. Res., 1999, 71(1):5~9
    74吴立波,王建龙,黄霞等.自固定化高效菌种强化处理焦化废水研究.中国给水排水,1999,15(5):1~4
    75朱柱,李和平,郑泽根.固定化细胞技术处理含酚废水的研究阴.重庆环境科学,2000,22(6):64-67.
    76全向春,韩力平,王建龙等.固定化皮氏伯克霍而德氏菌降解喹啉的研究.环境科学,2000,21(3):74~76
    77孙艳,谭立扬.固定化细胞性能改进的研究.环境科学研究,1999,12(1):59~62
    78孙艳,李京,谭立扬.一株耐酚菌种及其固定化细胞降解含酚废水性能的比较研究.环境科学研究,1999,12(1):1~9
    79肖文胜,徐文国,杨桔才.生物过滤氧化反应器处理焦化废水.环境工程,2005, 23(1):9~11
    80 Drummond C.J.Coal Gasification Wastewater Physioco-chemical Treatment Results.DOE/METc.1984,168-177
    81吴慧英,黄晨.几种混凝剂处理煤气废水的比较.环境污染与防治.1999,21(6):15-16
    82何绪文.煤气发生站洗冷废水治理研究.环境污染与防治.1996,18(5):4~7
    83 L.CaLvsa, A.Monteverdi, B.Rindone, et al. Ozone Oxidation of Compounds Resistant to Biological Degradation. Water Res.1991, 25(8):983~993
    84 W.H.Moerman, D.R.Bamelis, H.L.Vergote, et al. Ozonation of Activated Sludge Treated Carbonization Wastewater.Water Res.1994, 28(8): 1791~1798
    85 H.Nakagawa, A.Namba,B.Marc et al.Hydrothermal Dewatering of Brown Coal and Catalytic Hydrothermal Gasification of the Organic Compound Dissolving in the Water Using a Novel Ni/Carbon Catalyst.Fuel. 2004,83:719~725
    86 L.Gianfreda,F.Sannino,M.A.Rao et al.Oxidative Transformation of Phenols in Aqueous Mixtures.Wat.Res.2005,37:3205~3215
    87 E.Jaime and G.Contreras.Comparison of Different Advanced Oxidation Processes for Phenol Degradation.Wat.Res.2003.6:1034~1042
    88 C.L.Maria,T.Giuseppe and J.G.Guido.Soil-catalyzed Polymerization of Phenolics in Polluted Waters.Wat.Rse.2005,36:3015~3022
    89 G.Aggelis,D.Iconomou and M.P.Christou.Removal in a Model Olive Oil Mill Wastewater Using Pleurotus Ostreatus in Bioreactor Cultures and Biological Evaluation of the Process.Wat.Res.2003,37:3897~3904
    90 L.B.Antizar and N.I.Galil.Biosorption of Phenol and Chlorophenols by Acclimated Residential Biomass under Bioremediation Conditions in a Sandy Aquifer.Wat.Res.2004,38:267~276
    91 Z.H.Yei,Z.Q.Lin and S.N.Whiting.possible Use of Constructed Wetland to remove Selenocyanate,Arsenic,and Boron from Electric Utility Wastewater.Chemosphere.2006,52:1571~1579
    92许海燕.光-Fenton催化氧化法处理焦化废水的研究.同济大学硕士学位论文.2004:4~45
    93 Y.H.Shen.Removal of Phenol from Water by Adsorption Flocculation using Organo-Bentonite.Wat.Res.2002,36:1107~1114
    94 C.Vassilakis,A.Pantidou,E.Psillakis et al.Sonolysis of Natural Phenolic Compounds in Aqueous Solutions:Degradation Pathways and Biodegradability.Wat.Res.2005,38:3110~3118
    95 G.B.Seetharam and B.A.Saville.Degradation of Phenol Using Tyrosinase Immobilized on Siliceous Supports.Wat.Res.2006,37:436~440
    96杨基春.哈依煤气废水处理工程运行现状分析研究.哈尔滨工业大学工学硕士论文.2001:11~16
    97排水设计手册(第六册).中国建筑工业出版社.2002:274~279
    98张自杰.排水工程(第四版).中国建筑工业出版社.2000:242~245
    99李环.组合式工艺处理煤气废水的小试研究.哈尔滨工业大学硕士论文.2003:15~25
    100 100国家环保局.水和废水监测分析方法.北京:中国环境科学出版社,1989.1
    101 J.G.Mueller, P.J.Chapman and P.H.Pritchard. Creosote-contaminated Sites, Environ.Sic.Technol.1989,23(10):1197~1201
    102 S.Ghoshal and R.G.Luthy.Biodegradation of Naphthalene from Coal Tar and Heptamethylnonane in Mixed Batch Systems, Envion.Sci.Technol.2006,30(4):1282~1291
    103 R.Anuradha and R.G.Luthy. Mass Transfer and Bio-availability of PAH Compounds in Coal Tar NAPL-slurry Systems.1. Model Development. Envion.Sic.Technol.1997,31(8):2260~2267
    104 R.Anuradha,G.Subhasis and R.G.Luthy.Mass Transfer and Bio-availability of PAH Compounds in Coal Tar NAPL-slurry Systems.2.Experimental Evaluations.Envion.Sic.Technol.1997,31(8):2268~2276
    105 A.G.Ashmore.,J.R.Catchpole and R.L.Cooper.The Biological Treatment of Carbonization Effluents-1.Investigation into Treatment by the Activated Sludge Process, Wat.Res.1967, (1):605~624
    106 S.Suzuki,P.G.Green,R.E.Bumgarner,et al.Benzene forms Hydrogen Bonds with Water.Science.2005,257:942~945
    107 R.G.Luthy,A.Ramaswaml,Ghoshal S.et al.Interfacial Films in Coal Tar Non-aqueous Phase Liquid-water Systems. Envion.Sci.Technol.1993,27:2914~2918
    108 E.C.Nelson,S.Ghoshal,J.C.Edwards,et al.Chemical Characterization of Coal Tar-water Interfacial films.Envion.Sci.Technol.1996,30:1014~1020
    109 W.F.Langelier.Flocculation Phenomena in Turbid Water Clarification.ASCE porc.1958,78:56~63
    110 C.Desjardins,B.koudjonou and R.Desjardins.Laboratory Study of Ballasted Flocculation.Wat.Res.2002,36:744~754
    111 H.W.Ching,T.S.Tanaka and M.Elimelech.Dynamics of Coagulation of Kaolin Particles with Ferric Chloride.Wat.Res.1994,28:559~569
    112 R.A.Shawabkeh,M.F.Tutunji.Experimental Study and Modeling of Basic Dye Sorption by Diatomaceous Clay.App.Clay Sci.2003,24:111~120
    113 H.J.Poeple,M.S.Bregas and M.Wagner.Using of Activated Carbon for the Wastewater Treatment.Part 1.Korrespondenz Abwasser.1988,35:247~255
    114 W.F.De and E.Chian.Biological Regeneration of Activated Carbon Added to Activated Sludge Units.Wat.Res.1977,11:439~446
    115 P.T.Marc,G.M.Veronica,M.A.Banos,et al.Degradation of Chloro-Phenols by Means of Advanced Oxidation Processes:a General Review.App.Catalysis B:Environmental.2004,47:219~256
    116 K.H.Barbara,Z.Maria and N.Jacek.Catalytic Ozonation and Metthods of Enhancing Molecular Ozone Reactions in Water Treatment.App.Catalysis B:Environmental.2003,46:639~669
    117 A.Kyriacou,K.E.Lasaridi,M.Kotsou,et al.Combined Bioremediation and Advanced Oxidation of Green Table Olive Processing Wastewater.Pro.Bio-chem.2005,40:1401~1408
    118 W.H.Moerman,D.R.Bamelis,H.L.Vergote,et al.Ozanation of Activated SludgeTreated Carbonization Wastewater.Wat Res.1994,28(8):1791~1798
    119 L.Calvosa,A.Monteverdi and B.Rindone.Ozone Oxidation of Compounds Resistant to Biological Degradation.Wat.Res.1991,25(8):985~993
    120 P.C.Singer and W.B.Zilli.Ozonation of Ammonia in Wastewater.Wat.Res. 1975,9:127~134
    121 J.L.Guyod.Consider Fenton Chemistry for Wastewater Treatment, Chem.Eng.Prog. 1995,91(12):62~66
    122 I.H.Nilsun and A.G.Izzet.Combination of Activated Carbon Adsorption with Light-Enhanced Chemical Oxidation via Hydrogen Peroxide.Wat.Res.2000, 34:4169~4176
    123 A.Marco,S.Esplugas and G.Saum.How and why Combine Chemical and Biological Processes for Wastewater Treatment.Wat.Sci.Technol. 1997, 35(4):321~327
    124 J.P.Scott and D.F.Ollis Engineering Model of Combined Chemical and Biological Processes.J.Environ.Eng.1996,122:1110~1114
    125 J.P.Scott and D.F.Ollis.Integration of Chemical and Biological Oxidation Processes for Water Treatment:Review and Recommendations.Environ.Prog. 1995,14(2):88~103
    126 S.G.S.chrank , H.J.Jose.R.F.Moreira , et al.Schroder Elucidation of the Behavior of Tannery Wastewater under Advanced Oxidation Conditions.Chemosphere.2004,56:411~423
    127 L.Stanislaw,S.Monika and Z.Renata.Biodegradation,Decolourisation and Detoxification of Textile Wastewater Enhanced by Advanced Oxidation Processes.J.Biotechnology.2001,89:175~184
    128 S.Kamenev , J.Kallas and R.Munter.Chemical Oxidation of Biologically Treated Phenolic Effluents.Waste Management.1995,15(3):203~208
    129 C.K.Lin,T.Y.Tsai,J.C.Liu,et al.Enhanced Biodegradation of petrochemical Wastewater Using Ozonation and BAC Advanced Treatment System. Wat.Res.2001,35(3):699~704
    130 K.L Sublette,E.H. Snider and N.D.Sylvester.Areview of the Mechanism of Powdered Activated Carbon Enhancement of Activated Sludge Treatment.Wat.Res.1982,16:1075~1082
    131 V.Specchia , B.Ruggeri and A.Gianetto.Mechanisms of Activated Carbon Bioremoval.Chem.Eng.Commun.1988,68:99~117
    132 M.C.Marquez and C.Costa.Biomass Concenteation in PACT Process.Wat.Res. 1996:30:2079~2085
    133黄成彦,姚以俭,张若愚.中国硅藻土及其应用.科学出版社.1993:18~129
    134 M.A.Al-Ghouti, M.A.Khraisheh, S.J.Allen, et al. The Removal of Dyes from Textile Wastewater, a Study of the Physical Characteristics and Adsorption Mechanisms of Diatomaceous Earth. Environment Management. 2003,69:229~238
    135 P.Aysegul and T.Enis.Color Removal from Cotton Textile Industry Wastewater in an Activated Sludge System with Various Additives. Wat.Res. 2002,36:2920~2925
    136 B.H.Cho,H.Chino,H.Tsuji,et al.Laboratory-Scale Bioremediation of Oil Contaminated Soil of Kuwait with Soil Amendment Materials. Chemosphere. 2007,35:1599~1611
    137 Pollock John.Treatment of Contaminated Soils. [P]WO 97?00129
    138 B.M.Wilen , K.Kristian and P.H.Nielsen.Flocculation of Activated Sludge Flocs by Simulation of the Aerobic Biological Activity.Wat.Res.2004,38:3909~3919
    139 A.F.Rozich,A.F.Jr Gaudy and P.D.D.Adamo.Predictive Model for Treatment of Phenolic Wastes by Activated Sludge.Wat.Res.1983,17:1453~1466
    140 A.F.Rozich,A.F.Jr Gaudy and Adamo.Selection of Growth Rate Model forActivated Sludge Treating Phenol.Wat.Res.1985,19:481~490
    141 C.T.Goudar,S.H.Ganji,B.G.Pujar et al.Substrate Inhibition Kinetics of Phenol Biodegradation.Wat.Envir.Res.2000,72:50~54
    142 V.Specchia , B.Ruggeri and A.Gianetto.Mechanisms of Activated Carbon Bioremoval.Chem.Eng.Commun.1988,68:99~117
    143 143 R.S.Boethling,P.H.Howard and W.Meyland. Group Contribution Method for Predicting Probability and Rate of Aerobic Biodegradation.Environ.Sic. Technol.1994,28:459~465
    144 E.Rorije,H.Loonen,M.Muller。Evaluation and Application of Models or the Prediction of Ready Biodegradability in the Miyi-I test.Chemosphere,1999,38:1409~1417
    145 H.Loonen , F.Lindgren and B.Hansen.Prediction of Biodegradability from Chemical Structure : Modeling of Read Biodegradation Test Data.Environ.Toxicol.Chem.1999,18:1763~1768
    146 J.P.Tunkel,P.H.Howard and R.S.Boethling.Predicting Ready Biodegradability in the Japanese Ministry of International Trade and Industry test.Environ. Toxicol. Chem.2000,19:2478~2485
    147 147施瓦茨巴赫瑞恩P.,施格文菲利普M.和英博登迪特尔M.环境有机化学.王连生,毛媛媛译.化学工业出版社.2003:461~477
    148 B.M.Wilen, K.Kristian and P.H.Nielsen.Flocculation of Activated Sludge Flocs by Simulation of the Aerobic Biological Activity.Wat.Res. 2004,38:3909~3919

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700