用户名: 密码: 验证码:
电磁波在大气波导环境中的传播特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气波导是由于大气表面层折射指数随高度迅速下降而形成的一种区别于标准大气的异常大气结构,它能够使电波射线向下弯曲的曲率大于地球表面的曲率,从而将电磁能量陷获在波导结构内形成大气波导传播。特别是在贴近海面的几十米高度空间内,大气表面层内海水与大气的双重交互作用使得大气结构变化更加剧烈,蒸发波导就是频繁出现在海洋环境中的一种大气波导形式。大气波导传播现象的出现不仅可以使电磁波偏离原来的传播方向,而且能够使电磁波以较小的衰减沿波导传播到视距以外很远的地方,严重影响了雷达、通信、侦察等基于电磁传播的无线电武器系统。如何充分利用大气波导传播这一现象来提高电子系统的工作效能,同时如何有效克服大气波导传播给电子系统性能带来的负面影响,使大气波导环境中电磁波的传播特性及其在雷达、通信等问题中的应用研究具有重要的理论意义和实用价值。
     本文在大气波导的环境特性参数描述及预测预报技术、大气波导中电磁波的传输特性及其在雷达、通信中的应用等方面进行了研究,主要工作内容及取得的成果如下:
     (1)研究了大气波导的形成、参数特征以及大气波导对电磁波传播的影响;分析了几种大气波导环境的预测预报技术,并对我国大气波导环境的试验测量以及环境特性进行了研究;利用大气边界层理论研究了蒸发波导环境中不同大气层结的修正折射率剖面以及理论分析研究中常用的几种修正折射率剖面参数模型,并对利用雷达海杂波反演大气波导中修正折射率的理论方法进行了分析。
     (2)几何光学理论是高频近似条件下描述电磁波传播问题的有效方法,本文利用射线描迹技术对标准大气、蒸发波导环境中的电波射线传播路径进行了分析,针对大气波导环境中雷达目标探测中的实际问题,利用射线描迹技术对视在距离、视在仰角、视在高度与目标高度间的关系进行了研究,并将大气波导环境中视在距离、视在仰角、视在高度的误差与标准大气中的误差进行了比较。射线描迹技术快速、直观、形象地说明了大气波导环境中电波射线弯曲以及超视距传播特征,并有助于大气波导环境中雷达目标探测的误差修正。
     (3)系统分析了完全可导光滑边界情形的标准抛物型方程及傅立叶分步算法(FSS),并对不规则地形环境中抛物型方程的平化坐标变换及有限可导边界条件的混和傅立叶分步算法(MFT)进行了深入研究,有效解决了大气波导环境中电波传播的重点、难点问题,即在大气折射指数水平分布不均匀、粗糙海面、不规则地形等复杂环境中的电波传播理论和解决方法。根据天线理论分析了辐射场问题中方向性函数与天线孔径分布函数的关系,并对适于大气波导环境中电波传播的低旁瓣、窄波束的波束成形方法进行了初步研究。针对雷达探测中关注的重点问题,利用抛物型方程的傅立叶分步算法以及电波传播理论的传输损耗分析,研究了天线高度、天线发射仰角、波导高度等因素对蒸发波导环境中雷达探测性能的影响。通过利用海浪谱实现了一维粗糙海面的Monte Carlo仿真;采用小波分析方法有效消除了不规则地形的刃形结构,极大地扩展了利用抛物型方程进行精确求解的雷达探测范围;分析了粗糙海面对波导环境中电波传输损耗的影响、不规则地形中的电波传播等复杂地形环境中电波传播的重点、难点问题,从而使抛物型方程方法成为解决非均匀大气环境、不规则地形环境中电磁波传播问题的有效算法。
     (4)针对海上大气波导环境中雷达目标的识别,提出了蒸发波导中基于零记忆非线性变换(ZMNL)的海杂波实现方法。该方法确定了海杂波K分布参数与蒸发波导高度间的关系,得到了不同蒸发波导高度、不同探测距离处的相关K分布杂波序列。应用零记忆非线性变换(ZMNL)方法产生杂波序列的仿真实验证明了该方法用于蒸发波导中海杂波建模的有效性。
     (5)利用我国东南沿海海域夏季微波超视距通信的外场测试数据,统计分析了测试信号的中值电平、衰落幅度、衰落深度、概率分布及信道可靠度,结果表明信号衰落幅度的日变化与我国海上蒸发波导高度的日变化具有显著的相关性。通过信道传输损耗理论值、测试值以及通信系统设备能力的比较,结合我国东南沿海蒸发波导环境,提出微波信号在海上的超视距传播途径主要为海上蒸发波导传播。
     (6)针对大气波导环境中电磁波的多径传播特性,根据容量有限的Markov生灭过程得到了大气波导中到达接收站的射线径数;利用差分时延试验数据的近似瑞利分布提出了大气波导中的三参数模型,并通过最小方差准则确定了模型参数;利用MUSIC算法对多径到达角进行最佳估计,数值仿真结果表明MUSIC算法极大地提高了到达角位置处的信噪比。根据以上参数提出了多特征路径信道模型,通过分析多特征路径信道模型多个时延周期散射分量与多径子特征路径散射分量之间的关系,得到了基于多径信号比(SMR)的子特征路径信号简化算法。最后,利用大气波导中的多特征路径信道模型通过Matlab的Simulink模块化程序设计对ASK、PSK、FSK三种调制方式的通信系统进行了仿真,分析了大气波导环境中通信系统的误码性能,对海上微波超视距通信系统的总体设计有重要参考价值。
Atmospheric duct is a nearly permanent propagation mechanism due to the abrupt changes in the vertical temperature and humidity profiles just above the surface layer and a anomalous structure obviously different from the standard atmosphere, which can cause EM wave rays lying in the evaporation duct refracted towards the surface of the earth and make EM power trapped or guided in a thin tropospheric layer above the earth. Especially at tens of meter height close to the sea surface, interaction between the atmosphere and the sea water in surface layer makes the atmosphere structure more dramatic changes, and evaporation duct is one kind of the atmospheric duct frequently appearing in the marine environment. The resulting effect is an over-the-horizon propagation with less attenuation than in free-space conditions and radar detecting ranges can be greatly extended with duct propagation. The atmospheric duct phenomenon existence greatly strengthens or degrades the capability of the Radar, Communication, and Electronic Support Measures (ESM) system which are radio weapon system depending on electromagnetic radiation. How to overcome the negative impact on the electronic system resulting from the atmospheric duct propagation and how to make good use of the atmospheric duct phenomenon to improve the system performance of Radar, Communication and so on, the researches on the propagation characteristic of electromagnetic wave and its application in atmospheric duct have great theoretical significance and are of great value to the military.
     This dissertation gives a thorough research in depth on the subject including the parameter description and the forecast or prediction of the atmospheric duct and, and the propagation characteristic of electromagnetic wave and its application on Radar and Communication system in atmospheric duct. The specific investigations are followed below as:
     First, the formal condition and the parameter characteristics of the atmospheric duct and the impact on the EM-wave propagation are studied. Some kinds of the forecast and prediction technologies of the atmospheric duct are discussed, and the experimental measurement and the environment characteristics of the atmospheric duct in China sea are analyzed by some experiment data. By the atmospheric boundary layer theory, the dissertation discusses the modified refractivity profile of the different atmosphere layer in evaporation duct and the some parameter models of the modified refractivity, and the modified refractivity inversion by radar sea clutter are analyzed in atmospheric duct environment.
     Secondly, Geometrical Optics theory is an effective way to describe the electromagnetic-wave propagation problem in a condition of high-frequency approximation. By the ray-tracing technique, the dissertation analyzes the propagation path of the radio-wave rays at standard atmosphere and in evaporation duct for vividly describing the ray curvature and the over-the-horizon propagation. Based on the actual problems of the radar target detection in atmospheric duct environment, the ray-tracing technique is used to analyze the sight range, the sight elevated angle and the sight height. The error modification of the sight range, the sight elevated angle and the sight height respectively at the standard atmosphere and in the evaporation duct is compared, which is important to the radar target detection in atmospheric duct.
     Thirdly, the parabolic equation and the Fourier split-step method (FSS) with perfectly conducted smooth boundary are analyzed, and the flattening transform of the parabolic equation with irregular terrain and the mixed Fourier split-step method (MFT) with finitely conducted boundary are studied further. The radio-wave propagation theory and the solution with non-uniform horizontal refractivity in atmospheric duct, rough sea surface and irregular terrain are obtained. Based on the antenna theory, the relation between the direction function and the aperture distribution for the radiation of the EM field is discussed, and the beam-forming method for low sidelobe and narrow main beam suitable for the atmospheric duct propagation is analyzed. With the parabolic equation method and the basic theory of the radio-wave propagation, the transmission loss was calculated at the neutral atmospheric stratification in the evaporation duct near the sea surface and at standard atmosphere. The space characteristic of the electromagnetic field was presented in evaporation duct. The impaction of the duct height, antenna height and grazing angle on radar detection ability was analyzed under the neutral atmospheric stratification condition in the evaporation duct and at standard atmosphere by the pseudo-color map. The numerical simulation can present the space field distribution effectively rather than the ray-tracing technique. The research offers the reliable basis for predicting the blind area of the radar system. The one-dimension rough sea surface is simulated by Monte Carlo method on the basis of the sea spectrum. The knife-edge clearance of maritime digital terrain is effectively realized by the Wavelet analysis to broaden greatly the radar detection range for the modified parabolic equation. Based on the parabolic equation, the radio-wave propagation with rough sea surface in evaporation duct and with irregular terrain is analyzed.
     Fourthly, A method based on zero memory nonlinearity (ZMNL) is proposed to simulate sea clutter in evaporation duct environment for modeling radar signalling. The method identifies the relation between the K-distributed parameter of sea clutter and the evaporation duct height. The correlated K-distributed sea clutter is simulated at a certain duct height and detecting range. The application process of this method for clutter simulation is described. The simulation results prove the validity of the method for modeling sea clutter in evaporation duct.
     Fifthly, With the experimental data on the over-the-horizon microwave communication in China sea on summer day, the median level of signal, the fading amplitude, the fading depth and probability distribution are analyzed. The results show that the day variation of the fading amplitude has a high degree of significant correlation with the day variation of the evaporation duct height. Comparing with the communication equipment capability and the propagation loss on the basis of the evaporation duct characteristic in southeast sea of China, the propagation mode of the over-the-horizon microwave communication is mainly the anomalous propagation of the evaporation duct. Statistical analysis of the measured data of the over-the-horizon microwave communication is of great value to the system design and optimize the performance of microwave communication systems.
     Sixthly, based on the characteristics of EM multi-path propagation in marine atmospheric duct and the Markov birth-and-death process in finite space, path number in marine atmospheric duct is presented. The excess delay three-parameter model is proposed according to the experimental data with approximate Rayleigh distribution, and the model parameters are determined by the minimum variance criteria. The angles of arrival (AOA) is estimated by MUSIC algorithm and simulation results show MUSIC algorithm can significantly increase the SNR at AOA. Furthermore, a multi-eigenpath channel model is proposed to simulate the microwave transhorizon communication signal in atmospheric duct environment The channel model identifies the relation between multi-periodical delay components and subeigen-components. The simplified algorithm of subeigen-signal is proposed based on signal-to-multipath ratio (SMR). The multi-eigenpath channel model contributes to the system design and performance optimization of marine microwave communication system. Finally, the communication system modulated by ASK, PSK and FSK is simulated at the basis of the multi-eigenpath channel model of the atmospheric duct, and the bit error performance of the system is analyzed for designing the marine over-the-horizon microwave communication system.
引文
[1].熊皓等编著,无线电波传播[M]. 2000,北京:电子工业出版社.
    [2].李自力,钟华等编译,美国国防部基础研究计划[J].国防科技, 1998(2): p. 3-79.
    [3].刘成国,潘中伟,低空大气波导的研究状况及前景[J].电波科学学报, 1996(1): p. 1-6.
    [4]. Patterson, W.L., Ducting climatology summary software(version 2.0,21, January 1992)[CP]. Space and Naval Warfare System Center. San Diego, Calif. . 1993.
    [5].黄小毛,等.,大气波导对电磁波陷获传播影响的数值模拟和试验验证[J].微波学报, 2007. 23(sup): p. 177-184.
    [6].吴晓进,超视距雷达及其防空应用[J].现代防御技术, 2002. 30(5): p. 41-45.
    [7].任香凝,李文计,海面蒸发波导微波超视距通信可行性分析[J].无线电通信技术, 2008(2).
    [8].戎华,曲晓飞,吴秀琴,大气波导对电子侦察设备的影响[J].现代防御技术, 2007. 35(1): p. 92-95.
    [9].宋伟,徐少彬,大气波导对舰载电子装备作战性能的影响[J].舰船电子对抗, 2007. 30(4): p. 46-49.
    [10].戎华,曲晓飞,高东华,大气波导对电子系统作战性能的影响[J].现代雷达, 2005. 27(2): p. 15-18.
    [11].刘成国,黄际英,江长荫,东南沿海对流层大气波导结构的出现规律[J].电波科学学报, 2002. 17(5): p. 509-513.
    [12].刘成国,黄际英,江长荫,我国对流层波导环境特性研究[J].西安电子科技大学学报, 2002. 29(1): p. 119-122.
    [13].蔺发军,刘成国,潘中伟,近海面大气波导探测及与其它研究结果比较[J].电波科学学报, 2002. 17(3): p. 269-272.
    [14].刘成国,蒸发波导环境特性和传播特性及其应用研究[D]. 2003,西安电子科技大学:西安.
    [15]. Paulus, R.A., VOCAR: an experiment in variability of coastal atmospheric refractivity. Geoscience and Remote Sensing Symposium, 1994. IGARSS '94., 1994. 1: p. 386-388.
    [16]. Hitney, H.V., et al., Tropospheric radio propagation assessment. Proceedings of the IEEE, 1985. 73(2): p. 265- 283.
    [17]. Anderson, K.D., 94-GHz propagation in the evaporation duct[J]. IEEETransactions on Antennas and Propagation, 1990. 38(5): p. 746-753.
    [18]. Hitney, H.V. and L.R. Hitney, Frequency diversity effects of evaporation duct propagation[J]. IEEE Transactions on Antennas and Propagation, 1990. 38(10): p. 1694-1700.
    [19]. Anderson, K.D., Radar detection of low-altitude targets in a maritime environment[J]. IEEE Transactions on Antennas and Propagation, 1995. 43(6): p. 609-613.
    [20]. Denny, M. and I. Scott, Anomalous propagation limitations to high-resolution SAR performance. Radar Conference, 2002. Proceedings of the IEEE, 2002: p. 249-254.
    [21]. Denny, M., The influence of atmospheric layering upon radar detection and tracking. RADAR 2002, 2002: p. 75-79.
    [22]. Castella, F.R., Intratropospheric range delay for two refractivity models. IEE Proceedings -Radar, Sonar and Navigation, 1998. 145(2): p. 119-122.
    [23]. Litva, J., Early results: Very low-level propagation measurements on the Ottawa River[J]. IEEE Transactions on Antennas and Propagation, 1987. 35(4): p. 469-473.
    [24]. Devereux, W.E. and J. Van Egmond, Effects of ducting on radar operation in the Persian Gulf. Proceedings of the 1989 IEEE National 29-30, Radar Conference, 1989: p. 174-181.
    [25]. Douchin, N., et al., Theoretical study of the evaporation duct effects on satellite-to-ship radio links near the horizon. IEE Proceedings -Microwaves, Antennas and Propagation, 1994. 141(4): p. 272-278.
    [26]. Babin, S.M. and G.D. Dockery, LKB-Based Evaporation Duct Model Comparison with Buoy Data[J]. Journal of Applied Meteorology, 2002. 41(4): p. 434-446
    [27]. Rowland, J.R., J.H. Meyer, and M.R. Neues, Time Scale Refractive Index Measurements Within The Marine Evaporation Duct. Geoscience and Remote Sensing Symposium, 1990. IGARSS '90., 1990: p. 73-73.
    [28]. Ivanov, V.K., V.N. Shalyapin, and Y.V. Levadnyi, Determination of the evaporation duct height from standard meteorological data. Izvestiya Atmospheric and Oceanic Physics, 2007. 43(1): p. 36-44.
    [29]. V.Hitney, H. and R. Vieth, Statistical assessment of evaporation duct propagation[J]. IEEE Trans on Antenna and Propagation, 1990. 38(6): p. 794-799.
    [30]. Phillips, D.M. and C.P. Baker, Refractivity Profile Assimilation Model for the Atmospheric Boundary Layer. 1999, DSTO Electronics and Surveillance Research Laboratory.
    [31]. Fairall, C.W. and A.B. White, Integrated Shipboard Measurements of the Marine Boundary Layer. Journal of Atmospheric and Oceanic Technology, 1997. 14: p. 338-359.
    [32]. Zou, X., Y.-H. Kuo, and Y.-R. Guo, Assimilation of Atmospheric Radio Refractiovity Using a Nonhydrostatic Adjoint Modal. 1995: p. 2229-2249.
    [33]. Lowry, A., et al., Vertical profiling of atmospheric refractivity from ground-based GPS[J]. Radio Science, 2002. doi:10.1029/2000RS002565.
    [34]. Kraut, S., R.H. Anderson, and J.L. Krolik, A generalized Karhunen-Loeve basis for efficient estimation of tropospheric refractivity using radar clutter. IEEE Transactions on Signal Processing, 2004. 52(1): p. 48-60.
    [35]. Rogers, L.T., Statistical assessment of the variability of atmospheric propagation effects in the southern California coastal area. International Symposium on Geoscience and Remote Sensing, IGARSS '94. , 1994. 1: p. 389-393
    [36]. Anderson, K., S. Doss-Hammel, and P. Frederickson, Microwave and infrared propagation over the sea during the rough evaporation duct (RED) experiment[J]. Military Communications Conference, 2003. MILCOM 2003. IEEE, 2003. 2: p. 1416-1421.
    [37]. Tabrikian, J., J.L. Krolik, and S. Vasudevan, Estimating tropospheric refractivity parameters from radar sea clutter. Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, 1999: p. 345-348.
    [38]. Anderson, R., et al., Maximum A Posteriori Refractivity Estimation from Radar Clutter using a Markov Model for Microwave Propagation[J]. 2001.
    [39]. Gerstoft, P., et al., Refractivity Estimation Using Multiple Elevation Angles[J]. IEEE Journal of Oceanic Engineering, 2003. 28(3): p. 513-525.
    [40]. Yardim, C., P. Gerstoft, and W.S. Hodgkiss, Tracking Atmospheric Ducts Using Radar Clutter:Evaporation Duct Tracking Using Kalman Filters. Antennas and Propagation Society International Symposium, 2007 IEEE, 2007: p. 4609-4612.
    [41]. Yardim, C., P. Gerstoft, and W.S. Hodgkiss, Tracking Atmospheric Ducts Using Radar Clutter:Surface-based Duct Tracking Using Multiple Model Particle Filters. Antennas and Propagation Society International Symposium, 2007 IEEE, 2007: p. 4008-4011.
    [42]. Yardim, C., P. Gerstoft, and W.S. Hodgkiss, Tracking Refractivity from ClutterUsing Kalman and Particle Filters[J]. IEEE Trans on Antenna and Propagation, 2008. 56(4): p. 1058-1070.
    [43]. Gerstoft, P., et al., Estimation of radio refractivity structure using radar clutter. OCEANS, 2001. MTS/IEEE Conference and Exhibition, 2001. 1: p. 636-641.
    [44]. Yardim, C., P. Gerstoft, and W.S. Hodgkiss, Estimation of radio refractivity from Radar clutter using Bayesian Monte Carlo analysis[J]. IEEE Transactions on Antennas and Propagation, 2006. 54(4): p. 1318-1327.
    [45]. Vasudevan, S. and J.L. Krolik, Refractivity Estimation from Radar Clutter by Sequential Importance Sampling with a Markov Model for Microwave Propagation[J]. 2001: p. 2905-2908.
    [46]. Gerstoft, P., et al., Estimation of Radio Refractivity Structure Using Matched-Field Array Processing[J]. IEEE Trans on Antenna and Propagation, 2000. 48(3): p. 345-356.
    [47]. Gerstoft, P., et al., Refractivity-From-Clutter Using Global Environmental Parameters[J]. 2001.
    [48]. Bnayahu, Y., A. Cohen, and N. Ben-yosef, Radar wave propagation in an inhomogeneous evaporation duct. Antennas and Propagation, 1989. ICAP 89., Sixth International Conference on (Conf. Publ. No.301), 1989. 2: p. 466-470.
    [49]. Fedele, G., P. Lombardo, and D. Deli, A phenomenological model for radar signal propagation in evaporation ducts. Radar Conference, 2000. The Record of the IEEE 2000 International, 2000: p. 515-2000.
    [50]. Fruchtenicht, H., Notes on duct influences on line-of-sight propagation[J]. IEEE Transactions on Antennas and Propagation, 1974. 22(2): p. 295-302.
    [51].张瑜,袁秋林,雷达至目标的电波射线描迹方法研究[J].河南师范大学学报(自然科学版), 2006(2): p. 50-53.
    [52].张昭泉,陆起涌,黄兴忠,球面分层大气中射线传输轨迹的精确计算[J].电波科学学报2001. 16(2): p. 203-207.
    [53].黄小毛, et al.,射线跟踪技术用于分析波导环境下电波异常折射误差[J].微波学报, 2006(S1): p. 192-198.
    [54]. Imbeau, R., et al., Ray tracing calculation correction for wave propagation inside evaporation ducts. Radar Conference, 1993., Record of the 1993 IEEE National, 1993: p. 223-226.
    [55]. Griesser, T. and C. Balanis, Oceanic low-angle monopulse radar tracking errors[J]. IEEE Journal of Oceanic Engineering 1987. 12(1): p. 289-295.
    [56]. Kuttler, J.R. and G.D. Dockery, Theoretical description of the parabolicapproximation/Fourier split-step method of representing electromagnetic propagation in the troposphere[J]. Radio Science 1991. 26(2): p. 381-393.
    [57]. Donohue, D. and J. Kuttler, Modeling Radar Propagation Over Terrain. Johns Hopkins Apl Technical Digest, 1997. 18(2): p. 279-287.
    [58]. Dockery, D. and J.R. Kuttler, An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation[J]. IEEE Transactions on Antennas and Propagation, 1996. 44(2): p. 1592-1599.
    [59]. Barrios, A.E., A terrain parabolic equation model for propagation in the troposphere[J]. IEEE Transactions on Antennas and Propagation, 1994. 42(1): p. 90-98.
    [60]. Donohue, D.J. and J.R. Kuttler, Propagation modeling over terrain using the parabolic wave equation[J]. IEEE Transactions on Antennas and Propagation, 2000. 48(2): p. 260-277.
    [61]. Sevgi, L., F. Akleman, and L.B. Felsen, Ground wave propagation modeling: problem-matched analytical formulations and direct numerical techniques[J]. Antennas and Propagation Magazine, IEEE 2002. 44(1): p. 55-75.
    [62]. Hitney, H.V., Modeling surface effects with the parabolic equation method. Geoscience and Remote Sensing Symposium, 1994. IGARSS '94., 1994. 4: p. 2322-2325.
    [63]. Barrios, A.E. and W.L. Patterson, Advanced Propagation Model(APM) Ver.1.3.1 Computer Software Configuration Item(CSCI) Documents. 2002: Space and Naval Warfare Systems Center,San Diego,CA.
    [64]. Dockery, G.D., Development and Use of Electromagnetic Parabolic Equation Propagation Models for U.S. Navy Applications. Johns Hopkins APL Tech Dig, 1998. 19(3).
    [65]. Hampton, J.R., The Impact of Evaporative Ducting on Covert Communications. Military Communications Conference, 2007. MILCOM 2007. IEEE, 2007: p. 1-7.
    [66]. Popov, A.V. and V.V. Kopeikin, Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation[J]. Progress In Electromagnetics Research B, 2008. 6: p. 37-64.
    [67]. Zurk, L.M., Experimental Observation and Statistics of Multipath from Terrain with Application to Overland Height Finding[J]. IEEE Trans on Antenna and Propagation, 1999. 47(1): p. 121-131.
    [68]. Popov, A.V., et al., Modelling EM transient propagation over irregular dispersiveboundary[J]. Electronics Letters, 2002. 38(14): p. 691-692.
    [69].陈鹏,吴玲达,杨超,虚拟战场环境中地形影响下雷达作用范围表现[J].系统仿真学报, 2007. 19(7): p. 1500-1503.
    [70].胡绘斌,柴舜连,毛钧杰,基于三维PE方法的雷达波传播损耗估计[J].微波学报, 2005. 21(2): p. 4-7.
    [71]. Sirkova, I. and M. Mikhalev, Influence of Tropospheric Duct Parameters Changes on Microwave Path Loss[J]. Microwave Review, 2003. 19(2): p. 43-46.
    [72]. Akbarpour, R. and A. R.Webster, Ray tracing and parabolic equation method in the modeling of a tropospheric microwave link. IEEE Trans on Antennas and Propagation, 2005. 53(11): p. 3785-3791.
    [73]. Vilar, E., et al., A wide band transhorizon experiment at 11.6 GHz. Eighth International Conference on Antennas and Propagation, 1993. 1: p. 441-445.
    [74]. Kulessa, A.S., et al., Line-of-sight EM propagation experiment at 10.25 GHz in the tropical ocean evaporation duct. IEE Proceedings -Microwaves, Antennas and Propagation, 1998. 145(1): p. 65-69.
    [75]. Ong, S.-F. and J.-T. Ong, Studies on the refractive index structure in Singapore. Antennas and Propagation Society International Symposium, 2000. IEEE, 2000. 4: p. 2099-2102.
    [76]. Goldhirsh, J. and D. Dockery, Propagation characteristics for coastal region of South Korea and their impact on communication systems. Military Communications Conference, 2004. MILCOM 2004. IEEE, 2004. 1: p. 460-465.
    [77]. Heamskerk, H.J.M. and R.B. Boekema, The influence of evaporation duct on the propagation of electromagnetic waves low above the sea surface at 3-94 GHz[J]. IEEE, 1993: p. 348-351.
    [78]. Keizer, W.P.M.N. and R.B. Boekema, Within the horizon propagation measurements over sea at 10.5 GHz. Antennas and Propagation Society International Symposium, 1992. AP-S. 1992 Digest. , 1992. 2: p. 748-751.
    [79]. Prasad, M.V.S.N., et al., Estimation of signal levels in evaporation ducts using ray theory and their comparison with experimental measurements. Antennas and Propagation, 1989. ICAP 89., Sixth International Conference on (Conf. Publ. No.301), 1989. 2: p. 471-474.
    [80]. Shen, X. and E. Vilar, Path loss statistics and mechanisms of transhorizon propagation over a sea path[J]. Electronics Letters, 1996. 32(3): p. 259-261.
    [81]. Shen, X., J. Austin, and E. Vilar, Modelling enhanced spherical diffraction and troposcattering on a transhorizon path with the aid of the parabolic equation andray tracing methods. Common Modelling Techniques for Electromagnetic Wave and Acoustic Wave Propagation, IEE Colloquium on, 1996: p. 4/1-4/7.
    [82]. Lensson, E.S., et al., Estimation of arrival modes of multipath signals in the tropical evaporation duct. Research and Development, 2002. SCOReD 2002. Student Conference on, 2002: p. 116-119.
    [83]. Akbarpour, R. and A.R. Webster, Ray-Tracing and Parabolic Equation Methods in the Modeling of a Tropospheric Microwave Link[J]. IEEE Transactions on Antennas and Propagation, , 2005. 53(11): p. 3785-3791.
    [84]. Ndzi, D., J. Austin, and E. Vilar., Wideband statistics of signal levels and Doppler spread on an over-the-sea transhorizon link. IEE Seminar Digests 1997, 1997. doi 10.1049/ic:19971356 p. 9-14.
    [85].刘成国,中国低空大气波导出现概率和波导特征量的统计分析[J].电波科学学报, 1996. 11(2): p. 60-66.
    [86].刘成国,用伪折射率和相似理论计算海上蒸发波导剖面[J].电子学报, 2001. 29(7): p. 970-972.
    [87].刘成国,中国低空大气波导的极限频率和穿透角[J].通信学报, 1998. 19(10): p. 90-95.
    [88].蔺发军, et al.,风向对蒸发波导环境特性影响的研究[J].电波科学学报, 2007. 22(3): p. 410-413.
    [89].焦林,张永刚,大气波导条件下雷达电磁盲区的预报研究[J].西安电子科技大学学报, 2007. 34(6): p. 989-994.
    [90].王华,张永刚,黄小毛,舰载雷达在蒸发波导环境下探测掠海导弹的仿真分析[J].兵工学报, 2007. 28(10): p. 1195-1199.
    [91].胡绘斌,预测复杂环境下电波传播特性的算法研究[D]. 2006,国防科学技术大学.
    [92].胡绘斌,柴舜连,毛钧杰,宽角抛物方程在阻抗边界条件下的应用[J].电波科学学报, 2005. 20(4): p. 500-504.
    [93].刘爱国,察豪,刘峰,基于雷达海杂波的大气折射率剖面估计技术[J].电波科学学报, 2007. 22(5): p. 867-871.
    [94].史建伟, et al.,利用高级传输模型分析雷达探测距离对蒸发波导高度的敏感性[J].舰船科学技术, 2006. 28(5): p. 73-76.
    [95].田斌, et al.,蒸发波导特征分析[J].舰船电子工程, 2007(1): p. 153-155.
    [96]. Kukushkin, A., Radio wave propagation in the marine boundary layer. 2004: WILEY-VCH. 204.
    [97].姚展予,大气波导特征分析及其对电磁波传播的影响[J].气象学报, 2000.58(5): p. 605-616.
    [98].戴福山,海洋大气近地层折射指数模式及其在蒸发波导分析上的应用[J].电波科学学报, 1998. 13(3): p. 280-286.
    [99].郑琦,邢文革,大气波导效应及其对低空探测的影响分析[J].现代雷达, 2005. 27(5): p. 19-21,37.
    [100].吕勇,张瑜,电波折射修正中大气剖面的获取方法研究[J].飞行器测控学报, 2000(3).
    [101]. H.T.Dougherty, Recent progress in duct propagation prediction[J]. IEEE Trans on Antenna and Propagation, 1979. 27(4): p. 542-548.
    [102].潘玉萍, et al.,发展新型的海面空气动力学粗糙度参数化方案[J].自然科学进展, 2007(8).
    [103].李诗明, et al.,海上蒸发波导模式研究进展及面临的问题[J].海洋预报, 2005. 22(sup): p. 128-139.
    [104]. ITU-R, R., Radio-wave Propagation[S]. 2000. Volume 2000 P(Series-Part 1, 2).
    [105]. Gerstoft, P., et al., Inversion for refractivity parameters from radar sea clutter[J]. Radio Science, 2003. 38(3): p. 8053, doi:10.1029/2002RS002640.
    [106].阮颖铮编著,复射线理论及其应用[M]. 1991,北京:电子工业出版社. 36-70.
    [107]. Orfanidis, S.J., Electromagnetic Waves & Antennas, 2004, www.ece.rutgers.edu /~orfanidi/ewa. 169-193.
    [108].江长荫等,雷达电波传播折射与衰减手册,GJB/87-97,国防科工委军标出版发行部,. 1997.
    [109]. Dockery, G.D., Modeling electromagnetic-wave propagation in the troposphere using the parabolic equation[J]. IEEE Trans on Antenna and Propagation, 1988. 36(10): p. 1464-1470.
    [110]. K.H.Craig, Parabolic equation modeling of the effects of multipath and ducting on radar systems. IEE Proceedings-F, 1991. 138(2): p. 153-162.
    [111].王增和,卢春兰,钱祖平,天线与电波传播[M]. 2003.7,北京:机械工业出版社.
    [112].周海京,阮颖铮,刘万明,一种用高斯波束进行方向图模拟的新方法[J].电子科技大学学报, 1996. 25(8): p. 201-204.
    [113]. Stutzman, W.L. and G.A. Thiele, Antenna theory and design[M]. 1981, Canada: John Wiley & Sons.
    [114]. Beilis, A. and F.D. Tappert, Coupled mode analysis of multiple rough surface scattering. J. Acoust. Soc. Amer., 1979. 66: p. 811-826.
    [115]. J.Kerans, A., A.S. Kulessa, and G. S.Woods, Implications of anomalouspropagation in the evaporation duct for radars at X and Ku band[J]. Journal of battlefield technology, 2003. 6(3): p. 25-28.
    [116]. Musson-Genon, L., S. Gauthier, and E. Bruth, A Simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio Science, 1992. 27(5): p. 635-644.
    [117]. K.Anderson, K., Radar measurements at 16.5GHz in the oceanic evaporation duct[J]. IEEE Trans on Antenna and Propagation, 1989. 37(1): p. 100-106.
    [118]. Kalantar-Zadeh, K. and K. M., Applying normal mode method for calculation of acoustic wave propagation in the muddy bottom coastal regions. IEEE Conference Proceedings, 1997. 1: p. 612- 617.
    [119].黄兴忠,熊惠芳,李彦佐,一种改进的随机起伏海面的仿真方法[J].海洋学报, 2006. 28(6).
    [120].李彦佐,金亚秋,随机粗糙海面的多路径海杂波频谱数值模拟[J].微波学报, 2005. 21(4): p. 6-11.
    [121].吴振森,衣方磊,一维动态海面的电磁散射杂波模拟和参数估计[J].电波科学学报, 2003. 18(2): p. 8-12.
    [122].姚纪欢,张延冬,肖景明葛德彪,随机粗糙海面的统计模型和分形模型电磁散射的比较研究[J].微波学报, 2000(2): p. 47-51.
    [123].贾建坤,冯莉,地理空间信息数字化战场的基石[J].现代军事, 2006(6): p. 53-57.
    [124].黄世奇,刘代志,陈亮,基于合成孔径雷达成像的景像与地形匹配制导研究[J].战术导弹控制技术, 2006. 53(2): p. 46-49.
    [125].陈鹏,吴玲达,杨超,虚拟战场环境中地形影响下雷达作用范围表现[J].系统仿真学报, 2007. 19(7): p. 1500-1503.
    [126].赵小龙,黄际英,弓树宏,海上数字地形的刃形消除[EB/OL].中国科技论文在线/www.paper.edu.cn, 2007. 10-559.
    [127].李志林,朱庆,数字高程模型[M]. 2001,武汉:武汉大学出版社. 1-28.
    [128]. Boggess, A. and F. J.Narcowich,小波与傅立叶分析基础[M]. 2004,北京:电子工业出版社.
    [129]. Raghavan, R.S., A model for spatially correlated radar clutter[J]. IEEE Trans on Aerospace and Electronic Systems, 1991. 27(2): p. 268- 275.
    [130]. L.J., M., Correlated K-distributed clutter generation for radar detection and track[J]. IEEE Trans on Aerospace and Electronic Systems, 1995. 31(2): p. 568 - 580.
    [131].曹宁,鹿浩,胡居荣,基于ZMNL经验迭代法的相关非高斯雷达杂波仿真[J].系统工程与电子技术, 2006. 28(10): p. 1592- 1594.
    [132]. Leonard, T.P., A. I, and W. K.D., A comparison of radar sea clutter models[J]. the IEE Savoy Place, London WC2R OBL, UK, 2002: p. 429-433.
    [133].赵小龙,黄际英,蒸发波导环境中基于ZMNL的海杂波仿真[J].系统工程与电子技术, 2008. 30(5): p. 813-815.
    [134]. Paulus, R.A., Evaporation duct effects on sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1990. 38(11): p. 1765-1771.
    [135].韩文焌,张喜镇,实测大气模型下雷达定位公式的解析式兼论有效地球半径[J].电子与信息学报, 2005. 27(2): p. 269-273.
    [136].张树京,张思东,统计信号处理[M]. 2003,北京:机械工业出版社. 10-25.
    [137]. Zhao, X.-L., J.-Y. Huang, and S.-H. Gong, Statistical Analysis Of An Over-The-Sea Experimental Transhorizon Communication At X-Band In China [J]. Journal of ElectroMagnetic Waves and Applications, 2008. 22: p. 1430-1439.
    [138].李道本,散射通信[M]. 1982,北京:人民邮电出版社.
    [139].赵小龙,黄际英,王海华,蒸发波导环境中的雷达探测性能分析[J].电波科学学报, 2006. 21(6): p. 891-894+920.
    [140].肖景明,王元坤,电波传播工程计算[M]. 1989,西安:西安电子科技大学出版社.
    [141]. Hitney, H.V., Hybrid Ray Optics and Parabolic Equation Methods for Radar Propagation Modeling. Radar 92. International Conference, 1992: p. 58-61.
    [142]. Hashemi, H., Simulation of the urban radio propagation channel[J]. IEEE Trans on Vehicular Technology, 1979. 28(3): p. 213-225.
    [143].高式昌,钟顺时,陆地移动通信多径传播中电波径数的分布及模拟[J].通信学报, 1998. 19(2): p. 66-72.
    [144].赵小龙,黄际英,大气波导中多径信道的参数研究[J].西安电子科技大学学报, 2008. 35(2): p. 314-318.
    [145].陈明,信息与通信工程中的随机过程[M]. 2005,北京:科学出版社. 253-299.
    [146].高式昌,钟顺时,江长荫,陆地移动通信多径传播的差分时延分布[J].上海大学学报, 1998. 4(1): p. 67-71.
    [147]. Webster, A. and T. Merritt, Multipath angles-of-arrival on a terrestrial microwave link[J]. IEEE Trans on Communications, 1990. 38(1): p. 25-30.
    [148]. Schmidt, R., Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans on Antennas and Propagation, 1986. 34(3): p. 276-280.
    [149]. Geng, X. and A. Zielinski, An eigenpath underwater acoustic communication channel model. OCEANS'95 MTS/IEEE, 1995: p. 1189-1196.
    [150].曹志刚,钱亚生,现代通信原理[M]. 1992,北京:清华大学出版社. 252-321.
    [151].邢猛,朱联祥,无线通信系统中的空时编码技术[J].电脑知识与技术, 2007(16): p. 953-954.
    [152].苟迎华,杜兴民,田岩,基于时频编码的伪噪声通信信号性能分析及仿真的研究[J].中国电子科学研究院学报, 2007. 2(3): p. 264-270.
    [153].鄂一鸣,殷玮玮,吴乐南,信源-信道联合编码/调制中映射方式的优化[J].无线通信技术, 2007(1): p. 1-5.
    [154].朱凤,刘乃安,适用于宽带无线通信的正交频分复用技术[J].现代电子技术, 2004(10).
    [155].赵珺洁,张海林, OFDM系统原理及关键技术[J].现代电子技术, 2007(3): p. 43-45.
    [156].孙山林,侯春萍,李精华, OFDM系统的训练符号同步改进算法[J].无线电通信技术, 2007. 33(1): p. 27-33.
    [157].叶晟,基于导频的OFDM系统信道估计[J].中山大学研究生学刊(自然科学、医学版), 2007. 28(2): p. 83-90.
    [158]. Tan, Z.H. and Y.R. Zhang, Antiing multipath multiaddress interference technology in spread spectrum communications. 1996 Proceedings of the International Conference on Communication Technology, 1996. 1: p. 115-118.
    [159].朱永松,张海勇,直接序列扩频通信抗干扰性能分析[J].现代防御技术, 2005. 33(4): p. 50-53.
    [160].唐琬,扩频通信在强噪声环境中的应用[J].电子工程师, 2006. 32(12): p. 15-17.
    [161].张在琛,毕光国,超宽带无线通信技术及其应用[J].移动通信, 2004(1-2): p. 110-114.
    [162].张继东,郑宝玉,基于导频的OFDM信道估计及其研究进展[J].通信学报, 2003. 24(11): p. 116-124.
    [163].王小林,微波滤波技术在通信系统中的应用[J].空间电子技术, 2001(4): p. 52-55.
    [164].李平安,胡奕,李佳靖, CDMA通信中空间滤波和波束赋形的性能[J].武汉理工大学学报, 2005. 27(9): p. 84-87.
    [165].梁涛,赖仪一,卫星移动通信中的抗多径衰落技术[J].电信科学, 1997(12).
    [166].许光斌,周围, 4G中的MIMO-OFDM技术[J].信息通信, 2007(1).
    [167].邓华等编著, MATLAB通信仿真及应用实例详解[M]. 2003,北京:人民邮电出版社.
    [168]. E.Ziemer, R. and W. H.Tranter,通信原理:系统、调制与噪声,第5版. 2004,北京:高等教育出版社,276-311.
    [169]. Sklar, B.,数字通信-基础与应用[M].第二版,2002,北京:电子工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700