用户名: 密码: 验证码:
探地雷达检测中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前快速发展的无损探测技术已经被广泛应用在各个应用领域。作为探地雷达这种先进的无损探测应用技术显得尤为重要。这是因为探地雷达与电阻法、低频电磁感应法及地震法等常规的地下无损探测方法相比,它具有探测速度快、探测过程连续、分辨率高、操作方便灵活、探测费用低、探测范围广(包括金属和非金属)等优点,所以受到国内外广泛的关注。探地雷达中的信号处理技术是一项关键技术,现在成为国内外学者研究的热点问题。探地雷达信号处理包含众多的课题,其中埋地目标的成像、检测和识别技术是一项重要内容,这正是本论文所要完成的主要任务。 
     本文系统地研究了探地雷达的检测及其相关技术,在此基础上,针对探地雷达的重要环节,给出了一些新的技术,并实现了一个原理样机。本文的主要研究工作及创新点如下: 
     1.提出了一种分层均衡放大器的设计方法解决探地雷达成像对深度信号的衰减。该方法采用多测线平均得到回波的平均值,然后对原始测线组和平均回波进行分段,相当于对地下图像进行分层;根据其中最大的一次回波的峰峰值确定均衡放大的最大上限,将该最大值与平均回波各段的峰峰值的比值作为原始测线组的均衡放大矢量因子;使用均衡放大矢量因子对测线组进行矢量点积运算,从而得到均衡放大后的成像数据。该方法可以增强深度信号,利用计算机技术进行实时成像,就可以实现探地雷达深层探测和提高成像的分辨率。 
     2.提出了一种基于先验知识思想的非线性自适应插值算法(Nonlinearly Adaptive Interpolation,简称NLAI)以克服传统的固定插值算法的不足。该算法运用相邻节点的斜率来计算其二次导数,将其作为信号曲率大小判定依据,并根据插值数目的阈值判定插值数目,采取预测分段的方法获得信号的特征信息,从而选择特征级别对应的非线性插值函数,并重新优化分段,以达到最优插值的目的。通过该算法可以提高插值速度及插值效果,便于更好地观察探地雷达的实时波形。 
     3.提出了一种感兴趣目标区域插值算法(Interesting Interpolation Algorithm,简称为IIA)。IIA是通过构造被检测目标的相应模型,采用二次统计检测地下目标的水平位置,再用菱形模板预处理目标测线,用统计的方法自动检测出目标纵深位置,并对目标区域采用相关增强的方法,最后用双线性插值算法对感兴趣的目标区域进行放大而抑制背景,将结果成像出来达到感兴趣目标区域放大和细化。该算法克服采用人工检测识别方法中的判断目标位置比较模糊的局限性,且如果采取传统的图像增强技术,如锐化、直方图等技术,因为噪声及成像灰度级较少等原因而很难奏效。IIA可以实现埋地目标自动检测和感兴趣目标区域自动放大功能,消除人工判断目标区域的模糊性。 
     4.提出一种基于C扫描的基础上自动定位三维埋地目标的一种算法。该算法解决探地雷达对三维埋地目标自动定位问题。该算法采用并行变长滤波器组去除A扫描的直达波;其次对回波进行匹配小波奇异性检测获得目标是否存在的初步结果,检测方法采用基于统计意义下的多尺度小波域模极大值方法;再次对可疑位置采取时空域相关方法进一步确认以消除虚警概率;最后对得到的目标三维位置采取局部SAR聚焦的算法得到最终的目标位置。 
     5.提出一种采用高阶谱(Higher-Order Spectra,HOS)作为目标识别特征依据的多特征融合方法识别三维埋地目标(简称MFR)。多特征包括埋地目标在测线方向的时间和空间域上呈献双曲线特征;三维埋地目标的深度特征,即衰减特性或者说幅度特性和埋地目标的空间相关性。高阶谱具有比功率谱更多的信息,主要是相位和频率信息,因此采用高阶谱作为目标识别的依据在理论上是可行的。从信号变换的角度看,高阶谱的分布特征间接反映了埋地目标对入射电磁波的脉冲响应。
     6.设计实现原理样机,通过实地实验测试所设计的无载波脉冲探地雷达可以实现对埋地目标的检测。该实验样机具有超宽带的天线、窄脉冲源和信号处理机的三个关键技术部分。
The lossless detection technique is widely used in many fields of applications with its development. One of the untouched detection devices, namely ground penetrating radar (GPR), is an important to be used in practice. It possesses many properties than other routine, for instance resistance method, low frequency electromagnetic induction, seismic method, and so on. The properties are made up of fast detection, continuing detection, high resolution, convenient-flexible operation, low cost, wide detected range, and so forth. Therefore GPR is paid attention by people. It is a hot point to be studied that the signal processing of GPR belongs to a key technique in the system of GPR from internal to overseas. The signal processing of GPR includes many of problems, but imaging, detection and recognition about buried targets are important contents, and then they are discussed in the paper in detail.
     The paper studies GPR in the system. The detection and other associated techniques are done in GPR in detail. The paper presents a few of new techniques and realizes a theoretical sample of GPR based on the important parts of GPR. The studied work and innovative points are described in the paper as following.
     Firstly the paper proposes that a novel design method on layered uniform amplifier, which resolves the problem that deep signals of GPR are decayed. The method firstly takes many of measured lines that are averaged to obtain mean of echoes, and then both original-measured lines and averaged echoes are segmented, which is equal to make underground image layer. Secondly it determines uniform-magnified maximum based on maximum peak-peak value of echoes that is compared with the peak-peak value of averaged segments in echoes, and then the ratio is taken as uniform-magnified vector factor to original measured lines. Finally measured lines are operated with uniform-magnified vector factor by dot matrix to get layered-uniform imaging data. Therefore the method can enhance the signals in deep, and then computer technique is made full of imaging with real time to realize deep layer detection and improve resolution in GPR.
     Secondly the paper brings forward a new method of nonlinearly adaptive interpolation (NLAI) to overcome the limitation traditional fixed interpolation. NLAI firstly adopts slope of border upon nodes as its quadric derivative, which is acted as curvature determinant. So based the threshold of interpolated number, the characters of signal are obtained by pre-segment method in the algorithm. According to the nonlinear interpolation function, the algorithm optimizes segments to obtain optimal interpolation. Both the speed and effectiveness of the interpolation operation are improved by the NLAI. So the real-time echoes of GPR are observed better than without NLAI.
     Thirdly the paper puts forward an interesting area interpolation algorithm (IIA). IIA firstly structures a mode of the detected targets, and then adopts quadric statistic to detect the horizon position of the targets. Secondly it takes diamond templates to process measured lines that contain buried targets. Thirdly it detects the depth of buried targets by statistics. Fourthly IIA enhances the area of buried targets with the correlation. Finally it does double linear interpolation to magnify interesting area of targets, and then the results are imaged to obtain interesting area magnified and detailed. IIA overcomes the limitation of localizations by artificial detection and recognition. It is not effective that the traditional enhancing image techniques are adopted, for instance edge process, histogram enhancing image, and so on. The reason is that the gray level of imaging is few in GPR.
     Fourthly the paper presents a method that can locate buried three-dimension (3-D) targets automatically based on C-scan. The method is used to overcome the problem on 3-D targets automatically locating in GPR. It makes parallel filter groups eliminate direct arrival wave of A-scan with varied length. Then echoes are detected with matched wavelet to get its oddity, and then it simply determines buried targets whether or not. The detection method takes maximum mode based on statistics in multi-scale wavelet field. The suspicious positions are determined to decrease false alarm rate by space-time correlation method. Finally the positions of buried targets are obtained by local focus of synthetic aperture radar (SAR) on 3-D position.
     Fifthly the paper presents a method that recognizes 3-D buried targets based on both high-order spectra (HOS) distributing features and multi-feature recognition (MFR) method. Multi-features of GPR include the hyperbola in space-time along measured lines, the depth feature of 3-D buried targets, namely attenuation waves or varied scope of echoes, and correlation of buried targets in space. HOS possesses more properties than power spectrum, for example phase and frequency information. HOS is acted as the rule of recognized targets so that it is feasible in theory. Thus the response of incidence electromagnetic wave is mapped indirectly to the distributing of HOS on buried targets.
     Sixthly the theoretical sample of pulse ground penetrating radar without carrier is completed in the paper. The device is proved to detect buried targets by practical tests. The designed sample possesses key techniques that are ultra-wide antenna, narrow pulse resource and signal processor.
引文
[1] L.P.Jr. Peters, J.J. Daniels, J.D. Young; Ground Penetrating Radar as a Subsurface Environmental Sensing Tool. Proceedings of the IEEE, 1994, Vol.82, No.12: 1802-1822.
    [2] Takashi Kikuta, Hiroaki Tanaka; Ground Probing Radar System. IEEE Transactions on Aerospace and Electronic Systems, Magazine, June 1990: 23-26.
    [3] G.A. Burrell, L.Jr.Peters; Pulse Propagation in Lossy Media Using the Low-Frequency Window for Video Pulse Radar Application. Proceedings of the IEEE. 1979, Vol.67, No.7: 981-990.
    [4] L. Riek, R.K. Crane, K. O'Neill; A Signal-Processing Algorithm for the Extraction of Thin Freshwater-Ice Thickness from Short Pulse Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 1990, Vol.28, No.1: 137-145.
    [5] L. Gurel, U. Oguz; Simulations of Ground-Penetrating Radars over Lossy and Heterogeneous Grounds. IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol.39, No.6: 1190-1197.
    [6] A. Benedetto, F. Benedetto, et al. Reliability of Signal Processing Technique for Pavement Damages Detection and Classification Using Ground Penetrating Radar. IEEE Sensors Journal, 2005, Vol.5, No.3: 471-480.
    [7] S.A. Arcone; Dielectric Constant and Layer-Thickness Interpretation of Helicopter-Borne Short-Pulse Radar Waveforms Reflected from Wet and Dry River-Ice Sheets. IEEE Transactions on Geoscience and Remote Sensing, 1991, Vol.29, No.5: 768-777.
    [8] P. Paillou, G. Grandjean, et al. Subsurface Imaging in South-Central Egypt Using Low-Frequency Radar: Bir Safsaf Revisited. IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol.41, No.7, Part 1: 1672-1684.
    [9] Jerry A. Bradley, David L. Wright; Microprocessor-Based Data-Acquisition System for a Borehole Radar. IEEE Transactions on Geoscience and Remote Sensing. 1987, Vol.25, No.4: 441-447.
    [10] D. Vaccaneo, L.Sambuelli, et al. Measurement System of Complex Permittivity of Ornamental Rocks in L Frequency Band. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.11: 2490-2498.
    [11] D.M. Le Vine, R.H. Lang, Y. Lin; Transient Response of a Layer of DiscreteRandom Media over a Dielectric Half Space. IEEE Transactions on Geoscience and Remote Sensing, 1992, Vol.30, No.5: 1034-1045.
    [12] J. Frolik; On the Feasibility of Impulse Reflection Response Data from One-Dimensional Multilayered Lossy Media. IEEE Transactions on Antennas and Propagation, 2003, Vol.51, No.2: 184-194.
    [13] U. Spagnolini; Permittivity Measurements of Multilayered Media with Monostatic Pulse Radar. IEEE Transactions on Geoscience and Remote Sensing, 1997, Vol.35, No.2: 454-463.
    [14] Robert J. Greaves, David P.Lesmes, et al. Velocity Variations and Water Content Estimated from Multi-offset, Ground-Penetrating Radar. GEOPHYSICS, 1996, Vol.61, No.3: 683-695.
    [15] Peter Meincke; Linear GPR Inversion for Lossy Soil and a Planar Air-Soil Interface. IEEE Transactions on Geoscience and Remote Sensing. 2001, Vol.39, No.12: 2713-2721.
    [16] James R. Wang; Microwave Emission from Smooth Bare Fields and Soil Moisture Sampling Depth. IEEE Transactions on Geoscience and Remote Sensing, 1987, Vol.25, No.5: 616-622.
    [17] Wu, R. Li, X. Li, J.; Continuous Pavement Profiling with Ground-Penetrating Radar. IEE Proceedings Radar, Sonar and Navigation, 2002, Vol.149, No.4: 183–193.
    [18] Jeong Soo Lee. Cam Nguyen. Scullion, T.; A Novel, Compact, Low-Cost, Impulse Ground-Penetrating Radar for Nondestructive Evaluation of Pavements. IEEE Transactions on Instrumentation and Measurement. 2004, Vol.53, No.6: 1502-1509.
    [19] Serbin, G.. Or, D.; Ground-Penetrating Radar Measurement of Soil Water Content Dynamics Using a Suspended Horn Antenna. IEEE Transactions on Geoscience and Remote Sensing. 2004, Vol.42, No.8: 1695-1705.
    [20] Zhu Quan, L.M. Collins; Application of Feature Extraction Methods for Landmine Detection Using the Wichmann/Niitek Ground-Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol.43, No.1: 81-85.
    [21] S. Lambot, E.C.Slob, et al. Modeling of Ground-Penetrating Radar for Accurate Characterization of Subsurface Electric Properties. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.11: 2555-2568.
    [22] G. Grandjean, P. Paillou, and et al. Subsurface Structures Detection by Combining L-Band Polarimetric SAR and GPR Data: Example of the Pyla Dune (France).IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol. 39, No.6: 1245-1258.
    [23] V.P. Prokhorenko, V.E. Ivashchuk, S.V. Korsun; Ground Penetrating Radar VIY-2. IEEE Aerospace and Electronic Systems Magazine, 2005, Vol.20, No.7: 16-18.
    [24] Oguz, U.; Gurel, L.; Frequency Responses of Ground-Penetrating Radars Operating over Highly Lossy Grounds. IEEE Transactions on Geoscience and Remote Sensing, 2002, Vol.40, No.6: 1385-1394.
    [25] Xiaoyin Xu; Miller, E.L.; et al. Statistical Method to Detect Subsurface Objects Using Array Ground-Penetrating Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 2002, Vol.40, No.4: 963-976.
    [26] N. Osumi, K. Ueno; Detection of Buried Plant. IEE Proceedings Radar and Signal Processing, 1988, Vol.135, No.4: 330-342.
    [27] L. Gurel, U.Oguz; Optimization of the Transmitter-Receiver Separation in the Ground-Penetrating Radar. IEEE Transactions on Antennas and Propagation, 2003, Vol.51, No.3: 362-370.
    [28]张春城,周正欧.基于支持向量机的浅地层探地雷达目标分类识别研究,电子学报, 2005, Vol.33, No.6: 1091-1094.
    [29] Sun, Y. Li, J.; Time-Frequency Analysis for Plastic Landmine Detection via Forward-Looking Ground Penetrating Radar. IEE Proceedings Radar, Sonar and Navigation, 2003, Vol.150, No.4: 253-61.
    [30] Gader, P.D. Mystkowski, M. Yunxin Zhao. Landmine Detection with Ground Penetrating Radar Using Hidden Markov Models, IEEE Transactions on Geoscience and Remote Sensing. 2001, Vol.39, No.6: 1231-1244.
    [31] Gader, P. Wen-Hsiung Lee Wilson, J.N. Detecting Landmines with Ground-Penetrating Radar Using Feature-Based Rules, Order Statistics, and Adaptive Whitening. IEEE Transactions on Geoscience and Remote Sensing. 2004, Vol.42, No.11: 2522-2534.
    [32] B.Sai, L.P.Ligthart; GPR Phase-Based Techniques for Profiling Rough Surfaces and Detecting Small, Low-Contrast Landmines Under Flat Ground. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.2: 318-326.
    [33] D. Potin, E. Duflos, P. Vanheeghe; Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering. IEEE Transactions on Geoscience and Remote Sensing, Vol.44, 2006, No.9: 2393-2406.
    [34] D. Potin, P. Vanheeghe, et al. An Abrupt Change Detection Algorithm for Buried Landmines Localization. IEEE Transactions on Geoscience and Remote Sensing,2006, Vol.44, No.2: 260-272.
    [35] Song Jiayu, Song Qing Huo, et al. Two-Dimensional and Three-Dimensional NUFFT Migration Method for Landmine Detection Using Ground-Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol.44, No.6: 1462-1469.
    [36] S. Perrin, E.Duflos, et al. Multisensor Fusion in the Frame of Evidence Theory for Landmines Detection. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2004, Vol.34, No.4: 485-498.
    [37] P. Gader, J.M. Keller, et al. Landmine Detection Using Fuzzy Sets with GPR Images. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on Fuzzy Systems Proceedings, 1998, Vol.1: 232-236.
    [38] P.D. Gader, Lee Wen-Hsiung, A. Mendez-Vasquez, Continuous Choquet Integrals with Respect to Random Sets with Applications to Landmine Detection. IEEE International Conference on Fuzzy Systems, 2004, Vol.1: 523-528.
    [39] Benjamin, R. Craddock, I.J. Hilton, G.S. and et al. Microwave Detection of Buried Mines Using Non-contact, Synthetic Near-Field Focusing. IEE Proceedings Radar, Sonar and Navigation. 2001, Vol.148, No.4: 233–240.
    [40] Chi-Chih Chenand, Soumya Nag. A Standoff. Focused-Beam Land Mine Radar. IEEE Transactions on Geoscience and Remote Sensing. 2000, Vol.38, No.1: 507-515.
    [41] Ho, K.C. Gader, P.D. A Linear Prediction Land Mine Detection Algorithm for Hand Held Ground Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing. 2002, Vol.40, No.6: 1374-1384.
    [42] A. Vander Merwe, I.J.Gupta; A Novel Signal Processing Technique for Clutter Reduction in GPR Measurements of Small, Shallow Land Mines. IEEE Transactions on Geoscience and Remote Sensing, 2000, Vol.38, No.6: 2627-2637.
    [43] P.D. Gader, J.M. Keller, B.N. Nelson; Recognition Technology for the Detection of Buried Land Mines. IEEE Transactions on Fuzzy Systems, 2001, Vol.9, No.1: 31-43.
    [44] K.C. Ho, L.M. Collins; Discrimination Mode Processing for EMI and GPR Sensors for Hand-Held Land Mine Detection. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.1, 2004: 249-263.
    [45] M. Le Goff, R. Guillerey, et al. Ultra Wide Band Synthetic Aperture Radar for the Detection of Mined Areas. RADAR, 2002: 526-530.
    [46] D.M. Sheen, D.L. McMakin, T.E. Hall; Three-Dimensional Millimeter-WaveImaging for Concealed Weapon Detection. IEEE Transactions on Microwave Theory and Techniques, 2001, Vol.49, No.9: 1581-1592.
    [47] K. O'Neill; Discrimination of UXO in Soil Using Broadband Polarimetric GPR Backscatter. IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol.39, No.2: 356-367.
    [48] A.P. Freundorfer, K. Iizuka; A Study on the Scattering of Radio Waves from Buried Spherical Targets Using the Step Frequency Radar. IEEE Transactions on Geoscience and Remote Sensing, 1993, Vol.31, No.6: 1253-1255.
    [49] N.H. Farhat, T. Dzekov, E. Ledet; Computer Simulation of Frequency Swept Imaging. Proceedings of the IEEE. 1976, Vol.64, No.9: 1453-1454.
    [50] D.C.K. Chan, N.H. Farhat, et al. New Results in Computer Simulated Frequency Swept Imaging. Proceedings of the IEEE. 1977, Vol.65, No.8: 1214-1215.
    [51] D. Uduwawala, M. Norgren; An Investigation of Some Geometrical Shapes and Selection of Shielding and Lumped Resistors of Planar Dipole Antennas for GPR Applications Using FDTD. IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol.44, No.12: 3555-3562.
    [52] Peter Meincke, Thorkild B. Hansen; Plane-Wave Characterization of Antennas Close to a Planar Interface. IEEE Transactions on Geoscience and Remote Sensing. 2004, Vol.42, No.6: 1222-1231.
    [53] David A. hill, Kenneth H. Cavcey; Coupling between Two Antennas Separated by a Planar Interface. IEEE Transactions on Geoscience and Remote Sensing. 1987, Vol.25, No.4: 422-431.
    [54] Y. Chen, W.T. Joines, et al. Double-Sided Exponentially Tapered GPR Antenna and Its Transmission Line Feed Structure. IEEE Transactions on Antennas and Propagation, 2006, Vol.54, No.9: 2615-2623.
    [55] Kwan-Ho Lee, Chi-Chih Chen, et al. Modeling and investigation of a geometrically complex UWB GPR antenna using FDTD. IEEE Transactions on Antennas and Propagation, 2004, Vol.52, No.8: 1983-1991.
    [56] C.Md.J. van Coevorden, A.R. Bretones, et al. GA Design of a Thin-Wire Bow-Tie Antenna for GPR Applications. IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol.44, No.4: 1004-1010.
    [57] A.A. Lestari, A.G. Yarovoy, L.P. Ligthart; Adaptive Wire Bow-Tie Antenna for GPR Applications. IEEE Transactions on Antennas and Propagation, 2005, Vol.53, No.5: 1745-1754.
    [58] D. Uduwawala, M.Norgren, et al. A Deep Parametric Study of Resistor-LoadedBow-Tie Antennas for Ground-Penetrating Radar Applications using FDTD. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.4: 732-742.
    [59] N.V. Venkatarayalu, Chen Chi-Chih, et al. Numerical Modeling of Ultrawide-Band Dielectric Horn Antennas Using FDTD. IEEE Transactions on Antennas and Propagation, 2004, Vol.52, No.5: 1318-1323.
    [60] Y.Nishioka, O.Maeshima, et al. FDTD Analysis of Resistor-Loaded Bow-Tie Antennas Covered with Ferrite-Coated Conducting Cavity for Subsurface Radar. IEEE Transactions on Antennas and Propagation, 1999, Vol.47, No.6: 970-977.
    [61] Li Le-Wei, Leong Mook-Seng, Huang Yeqin; Electromagnetic Radiation of Antennas in the Presence of an Arbitrarily Shaped Dielectric Object: Green Dyadics and Their Applications. IEEE Transactions on Antennas and Propagation, 2001, Vol.49, No.1: 84-90.
    [62] Kangwook Kim, W.R. Scott; Design of a Resistively Loaded Vee Dipole for Ultrawide-Band Ground-Penetrating Radar Applications. IEEE Transactions on Antennas and Propagation, 2005, Vol.53, No.8, Part 1: 2525-2532.
    [63] A Morita; On Nonlinear Dielectric Relaxation. J.Phys.D: Appl., 1978,Vol.11: 1357-1367.
    [64] Hollis C. Chen; Theory of Electromagnetic Waves. McGraw-Hill Book Company, 1983: 1-429.
    [65] A.L. Cullen, V.A. Fock, J.R. Warr; Electromagnetic Diffraction and Propagation Problems. Volume1.Pergamon Press New york.1965:1-391.
    [66] M.V.K. Chari, P.P.Sivester; Finite Elements in Electrical and Magnetic Field Problems. A Wiley-Interscience Publication. New York. 1980:11-212.
    [67] Michael A. Morgan; Finite Element and Finite Difference Methods in Electromagnetic Scattering. Elsevier Science Publishing Co., Inc. New York. 1990:1-369.
    [68] P.P.Sivester, R.L.Ferrari; Finite Elements for Electrical Engineers. Cambridge University Press. Cambridge. 1983:1-205.
    [69] Harold B. Crawford, Susan Thomas, et al. Finite Element Handbook. McGraw-Hill, Inc.1987: 2.3-2.168.
    [70] B. Shanker, Lu Mingyu et al. Plane-Wave Time-Domain Accelerated Radiation Boundary Kernels for FDTD Analysis of 3-D Electromagnetic Phenomena. IEEE Transactions on Antennas and Propagation, 2005, Vol.53, No.11: 3704-3716.
    [71] Fan Guo-Xin, Liu Qing Huo; An FDTD Algorithm with Perfectly Matched Layers for General Dispersive Media. IEEE Transactions on Antennas and Propagation,2000, Vol.48, No.5: 637-646.
    [72] P. Kosmas, C. Rappaport; A Simple Absorbing Boundary Condition for FDTD Modeling of Lossy, Dispersive Media Based on the One-Way Wave Equation. IEEE Transactions on Antennas and Propagation, 2004, Vol.52, No.9: 2476-2479.
    [73] F.L. Teixeira, Chew Weng Cho, et al. Finite-Difference Time-Domain Simulation of Ground Penetrating Radar on Dispersive, Inhomogeneous, and Conductive Soils. IEEE Transactions on Geoscience and Remote Sensing, 1998, Vol.36, No.6: 1928-1937.
    [74] Oguz, U.; Gurel, L.; FDTD Simulations of Multiple GPR Systems. IEEE Antennas and Propagation Society International Symposium, 2003, Vol.4: 764-767.
    [75] Borel, S.; Levadoux, D.P.; Alouges, F.; A New Well-Conditioned Integral Formulation for Maxwell Equations in Three Dimensions. IEEE Transactions on Antennas and Propagation, 2005, Vol.53, No.9: 2995-3004.
    [76] Kangas, J.; Tarhasaari, T.; Kettunen, L.; Maxwell Equations and Finite Element Software Systems: Object-Oriented Coding Needs Well Defined Objects. IEEE Transactions on Magnetics, 2000, Vol.36, No.4, Part 1: 1645-1648.
    [77] Rieben, R.; White, D.; Rodrigue, G.; High-Order Symplectic Integration Methods for Finite Element Solutions to Time Dependent Maxwell Equations. IEEE Transactions on Antennas and Propagation, 2004, Vol.52, No.8: 2190-2195.
    [78] Bo Yang; Rappaport, C.; Response of Realistic Soil for GPR Applications with 2-D FDTD. IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol.39, No.6: 1198-1205.
    [79] Leuschen, C.J.; Plumb, R.G.; A Matched-Filter-Based Reverse-Time Migration Algorithm for Ground-Penetrating Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol.39, No.5: 929-936.
    [80] Xiaoyin Xu; Miller, E.L.; Rappaport, C.M.; Minimum Entropy Regularization in Frequency-Wavenumber Migration to Localize Subsurface Objects. IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol.41, No.8: 1804-1812.
    [81] D.J. Woodhouse, R.H. Middleton; Consistency in Ground Potential Rise Estimation Utilizing Fall of Potential Method Data. IEEE Transactions on Power Delivery, 2005, Vol.20, No.2, Part 2: 1226-1234.
    [82] Lu Tiao, Cai Wei, Zhang Pingwen; Discontinuous Galerkin Time-Domain Method for GPR Simulation in Dispersive Media. IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol.43, No.1: 72-80.
    [83] Yang Hongming, G. Mathew; Joint Design of Optimum Partial Response Targetand Equalizer for Recording Channels with Jitter Noise. IEEE Transactions on Magnetics, 2006, Vol.42, No.1: 70-77.
    [84] P.D. Walker, M.R. Bell; Noniterative Techniques for GPR Imaging through a Nonplanar Air-Ground Interface. IEEE Transactions on Geoscience and Remote Sensing, 2002, Vol.40, No.10: 2213-2223.
    [85] Liu Qing Huo, Fan Guo-Xin; Simulations of GPR in Dispersive Media Using a Frequency-Dependent PSTD Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1999, Vol.37, No.5, Part 1: 2317-2324.
    [86] K. Gray; Transient Reflection from a Plasma Half Space when Losses are Considered. IEEE Transactions on Antennas and Propagation, 1975, Vol.23, No.2: 298-300.
    [87] J.H. Beggs, R.J. Luebbers, B.G. Ruth; Analysis of Electromagnetic Radiation from Shaped-End Radiators Using the Finite Difference Time Domain Method. IEEE Transactions on Antennas and Propagation, 1993, Vol.41, No.9: 1324-1327.
    [88] R.J. James; A History of Radar. IEE Review, 1989, Vol.35, No.9: 343-349.
    [89]刘永坦.雷达成像技术,黑龙江:哈尔滨工业大学出版社,1999: 1-30.
    [90] [美]F.T.乌拉比,R. K.穆尔,冯健超著,黄培康,汪一飞译.微波遥感(第二卷),北京:科学出版社,1987: 1-120.
    [91] S. Kazel; High-Sensitivity Real-Time Microwave Holography and Imaging. Proceedings of the IEEE. 1969, Vol.57, No.6: 1222-1222.
    [92] G. Tricoles, N.H. Farhat; Microwave Holography: Applications and Techniques. Proceedings of the IEEE. 1977, Vol.65, No.1: 108-121.
    [93] J. Nakayama, H. Ogura, M. Fujiwara; Multifrequency Hologram Matrix and Its Application to a Two-Dimensional Imaging. Proceedings of the IEEE. 1978, Vol.66, No.10: 1289-1290.
    [94] K. Ueno, N. Osumi; Pulse-Radar Holography for Underground Object Imaging. IEEE Antennas and Propagation Society International Symposium, 1983, Vol.21: 651-654.
    [95] Noriyoshi Osumi, Keiichi Ueno; Microwave Holographic Imaging Method with Improve Resolution. IEEE Transactions on Geoscience and Remote Sensing. 1984, Vol.32, No.10: 1018-1026.
    [96] J. Gazdag; Extrapolation of Seismic Waveforms by Fourier Methods. IBM J. RES. DEVELOP. 1978, Vol.22, No.5: 481-486.
    [97] Enders A. Robinson; Migration of Seismic Data by the WKBJ Method. Proceedings of the IEEE, 1986, Vol.74, No.3: 428-439.
    [98] Kou-Yuan Huang, King-Sun Fu; Decision-Theoretic Approach for Classification of Ricker Wavelets and Detection of Seismic Anomalies. IEEE Transactions on Geoscience and Remote Sensing. 1987, Vol.25, No.2: 118-123.
    [99] R.H.Stolt. Migration by Fourier Transform, Geophysics, 1978, Vol.43, No.1: 23-48.
    [100]赵永辉,吴健生等.有限差分法探地雷达波动方程偏移成像,物探化探计算技术,2001, Vol.23, No.1: 47-51.
    [101] Ketil Hokstad. Multicomponent Kirchhoff migration.Geophysics, 2000,Vol.65, No.3: 861-873.
    [102]孔令讲.浅地层探地雷达信号处理算法的研究.成都:电子科技大学,2003: 651-654. 78-93.
    [103]张安学,蒋延生,汪文秉.圆周探地雷达测量和成像方法的研究,电子学报,2002, Vol.30, No.6: 853-856.
    [104] Yoshihiro Michiguchi, Kazuo Hiramoto, et al. Development of Signal Processing Methods for Imaging Buried Pipes. IEEE Transactions on Geoscience and Remote Sensing. 1987, Vol.25, No.1: 11-15.
    [105] P. Chaturvedi, R.G. Plumb; Electromagnetic Imaging of Underground Targets Using Constrained Optimization. IEEE Transactions on Geoscience and Remote Sensing, 1995, Vol.33, No.3: 551-561.
    [106] Wu Zhixiong, Liu Ce; An Image Reconstruction Method Using GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 1999, Vol.37, No.1, Part 2: 327-334.
    [107] C. Cafforio, C. Parati, et al. SAR Data Focusing Using Seismic Migration Techniques. IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol.27, No.2: 194-205.
    [108] Jen-Yang Lin, Li Teng, Francis Muir; Comparison of Different Interpolation Methods for Stolt Migration. Stanford Exploration Project, Report 79, November 16, 1997: 269-276.
    [109] William Harlan; Avoiding Interpolation Artifacts in Stolt Migration. SEP-30, 2000: 103-110.
    [110]张安学,蒋延生,汪文秉.探地雷达频率波数域速度估计和成像方法的实验研究,电子学报,2001, Vol.29, No.3: 315-317.
    [111] Vitebskiy, S., Carin,L., Ressler, M.A., and et al. Ultra-wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement. IEEE Trans. Geosci. Remote Sens., 1997,Vol.35, No.3: 762-772.
    [112] Ciien, C.,and Peters,L. Buried Unexploded Ordnance Identification via Complex Natural Resonances, IEEE Trans. Antennas Propag., 1997, Vol.45, No.11: 1645-1654.
    [113] R.Wu, X.Li, J.Li; Continuous Pavement Profile with Ground-Penetrating Radar, IEE Proc.-Radar Sonar Navig., 2002, Vol.149. No.4: 183-193.
    [114] C.R.Liu, J.Li, X.Gan, and et al. New Model for Estimating the Thickness and Permittivity of Subsurface Layers from GPR Data, IEE Proc.-Radar Sonar Navig., 2002, Vol.149. No.6: 315-319.
    [115] Y.Wang, I.D.Longstaff, C.J.Leat; SAR Imaging of Buried Objects from MoM Modelled Scattered Field, IEE Proc.-Radar Sonar Navig., 2001,Vol.148. No.3: 167-172.
    [116] Olhoeft G R, Capron D E; Buried Object Detection with Ground Penerating Radar, Proc.of 5th Internet of Unexploded Ordance Detection and Range Remediation. Conf, 1994: 207-233.
    [117] Ram G. Shenoy; An Optimal Recovery Approach to Interpolation. IEEE Trans. Signal Processing, 1992,Vol.40. No.8: 1987-1996.
    [118] Michael Unser, Akram Aldroubi, and Murray Eden; B-Spline Signal Processing: Part I-Theory. IEEE Trans. Signal Processing, 1993,Vol.41, No.2: 821-833.
    [119] Michael Unser, Akram Aldroubi, and Murray Eden; B-Spline Signal Processing:Part II-Efficient Design and Applications. IEEE Trans. Signal Processing, 1993, Vol.41. No.2, PP: 834-848.
    [120] Richard Martin, Ken Lever, And Jeff McCarthy; Hyperbolic Splines and Nonlinear Distortion. IEEE Trans. Signal Processing, 2000, Vol.48. No.6: 1825-1828.
    [121] Yuriy V. Zakharov, Tim C. Tozer, and Jonathan F. Adlard; Polynomial Spline-Approximation of Clarke’s Model. IEEE Trans. Signal Processing, 2004,Vol.52. No.5: 1198-1208.
    [122]冯象初,甘小冰等.数值范函与小波理论,西安:西安电子科技大学出版社,2003: 183-192.
    [123]李庆扬,王能超等.数值分析,武汉:华中理工大学出版社,2000: 19-58.
    [124] Cameron K. Coursey and John A. Stuller; Linear Interpolation Lattice. IEEE Trans. Signal Processing, 1991,Vol.39. No.4: 965-967.
    [125] Masoud R.K. Khansari and A. Leon-Garcia; Linear Interpolation Lattice for Nonstaionary Signals. IEEE Trans. Signal Processing, 1993,Vol.41. No.6: 2262-2264.
    [126] Msoud R.K. Khaunsari and A. Leon-Garcia; A Fast Algorithm for Optimal LinearInterpolation. IEEE Trans. Signal Processing, 1993,Vol.41. No.9: 2934-2937.
    [127] A.J.E.M.Janssen and T.Kalker; A Note on Unser-Zerubia Generalized Sampling Theory Applied to the Linear Interpolator. IEEE Trans. Signal Processing, 1999, Vol.47. No.8: 2332-2335.
    [128] K.A. Michalski, J.R. Mosig; Multilayered Media Green's Functions in Integral Equation Formulations. IEEE Transactions on Antennas and Propagation, 1997, Vol.45, No.3: 508-519.
    [129] P. Yla-Oijala, M. Taskinen; Efficient Formulation of Closed-Form Green's Functions for General Electric and Magnetic Sources in Multilayered Media. IEEE Transactions on Antennas and Propagation, 2003, Vol.51, No.8: 2106-2115.
    [130] E. Simsek, Q. H. Liu, B. Wei; Singularity Subtraction for Evaluation of Green's Functions for Multilayer Media. IEEE Transactions on Microwave Theory and Techniques, 2005, Vol.66, No.99: 1-10.
    [131] Wei Dandan, Xu Xiaowen; A New Method to Solve the Singular Integral in Computation of Electromagnetic Scattering by Surfaces of Arbitrary Shape. Proceedings. Microwave and Millimeter Wave Technology, 2002: 626-629.
    [132] K.A. Michalski, D. Zheng; Electromagnetic Scattering and Radiation by Surfaces of Arbitrary Shape in Layered Media. I. Theory. IEEE Transactions on Antennas and Propagation, 1990, Vol.38, No.3: 335-344.
    [133] M.-H. Yaou, W.-T. Chang; Wavelet Transform in Scattering Data Interpolation. IEEE Electronics Letters, 1993, Vol.29, No.21: 1835-1837.
    [134] Takuya Sakamoto, Toru Sato; A Target Shape Estimation Algorithm for Pulse Radar Systems Based on Boundary Scattering Transform. PAPER Special Issue on Radar Signal Processing, 2003, Oct. 31: 1-10.
    [135] Raffaele Persico; On the Role of Measurement Configuration in Contactless GPR Data Processing by Means of Linear Inverse Scattering. IEEE Transactions on Antennas and Propagation. 2006, Vol.54, No.7: 2062-2071.
    [136] Y. Altuncu, A. Yapar, I. Akduman; On the scattering of Electromagnetic Waves by Bodies Buried in a Half-Space with Locally Rough Interface. IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol.44, No.6: 1435-1443.
    [137] N. Dasgupta, N. Geng, et al. On the Extended-Born Technique for Scattering from Buried Dielectric Targets. IEEE Transactions on Antennas and Propagation, Vol.47, 1999, No.11: 1739-1742.
    [138]杨应辰,徐明聪.工程数学——数学物理方程*特殊函数,北京:国防工业出版社,1980: 1-265.
    [139]石峻,郭宝龙.一种新的图像插值方案——子带插值,西安电子科技大学学报,1998, Vol.25, No.5: 684-688.
    [140] Daubechie I. Ten Lectures on Wavelets. Philadelphia: SIAM Publication, 1992: 7-101.
    [141] Said A, Pearlman W A. Reversible Image Compression Via Multiresolution Representation and Predictive Coding. Proc SPIE Visual Communications and Image Processing,1993: 664-674.
    [142] Geronimo J, Hardin D P, Massopust P. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions. Journal of Approximation Theory, 1994, Vol.78, No.4: 373-401.
    [143] Strela V, Heller P N, Strang G, et al. The Application of Multiwavelet Filterbanks to Image Processing. IEEE Transactions Image Processing, 1999, Vol.8, No.4: 548-563.
    [144] P Pentland. Fractal-Based Description of Natural Scenes. IEEE Trans. On PAMI, 1984,vol.6, No.6: 661-674.
    [145] Mark Grasmueck. 3-D Ground-penetrating Radar Applied to Fracture Imaging in Gneiss. Geophysics, 1996, Vol.61, No.4: 1050-1064.
    [146]张安学,蒋延生,汪文秉.探地雷达交叉测线目标搜索和成象方法的研究,电波科学学报, 2002, Vol.17, No.1: 59-63.
    [147] Joaquim Fortuny-Guash; A Novel 3-D Subsurface Radar Imaging Technique. IEEE Transactions on Geoscience and Remote Sensing. 2002, Vol.40, No.2: 443-452.
    [148]宣雷,邹理和.探地雷达回波信号的三维物体图象重建,电子学报,1991, Vol.10, No.3: 121-123.
    [149] Mallat,S.G. Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R),Trans. American Mathematical Society, 1989, Vol.315: 69-87.
    [150] Daubechies I. The Wavelet Transform Time-Frequency Localization and Signal Analysis. IEEE Trans Inform Theory, 1990, Vol.36, No.9: 961-1005.
    [151] J.Gazdag. P.Sguazzero. Migration of Seismic Data. Proceedings of the IEEE. 1984, Vol.72, No.10: 1302-1315.
    [152]于景兰,王春和.探地雷达探测地下目标时的波速估计,地球物理学进展,2003, Vol.18, No.34: 477-480.
    [153] J.Gazdag. Wave Equation Migration with the Phase-Shift Method. Geophysics. 1978, Vol.43, No.7: 1342-1351.
    [154] C.Cfforio, C.Prati, et al. SAR Data Focusing Seismic Migration Techniques, IEEETrans. on Aerospace and Electronic Systems. 1991, Vol.27, No.2: 194-205.
    [155]郭汉伟,王岩.小波插值在机载超宽带合成孔径雷达成像中的应用,航空学报,2003, Vol.24, No.6: 551-554.
    [156] K.Gu, G.Wang and J.Li. Migration Based on SAR Imaging for Ground Penetrating Radar Systems, IEE Proc. Radar Sonar Navig. 2004, Vo.151, No.5: 317-325.
    [157]张春城,周正欧.基于Stolt偏移的探地雷达合成孔径成像研究,电波科学学报,2004, Vol.19, No.3: 316-320.
    [158] Eide Egil S. Radar Imaging of Small Objects Closely Below the Earth Surface. Norwegian University of Science and Technology, Norway, 2000: 127-128.
    [159]史凌峰,郭宝龙.一种感兴趣目标区域插值算法,西安电子科技大学学报(自然版),2006, Vol.33, No.2: 195-199.
    [160] B. Scheers, M. Piette, A. Vander Vorst; The Detection of AP Mining Using UWB GPR. IEE Conference Publication, October 1998, No.458: 50-54.
    [161] Young-Jin Park, Kwan-Ho Kim, et al. Buried Small Objects Detected by UWB GPR. IEEE Aerospace and Electronic Systems Magazine, 2004, Vol.19, No.10: 3-6.
    [162] Gamba,P. Lossani,S. Neural Detection of Pipe Signatures in Ground Penetrating Radar Images. IEEE Transactions on Geoscience and Remote Sensing. 2000, Vol.38, No.2: 790-797.
    [163] Chih-Chung Yang. Bose, N.K. Landmine Detection and Classification with Complex-Valued Hybrid Neural Network Using Scattering Parameters Dataset. IEEE Transactions on Neural Networks. 2005, Vol.16, No.3: 743-753.
    [164] Hon Keung Kwan, Chi Kin Lee; A Nueral Network Approach to Pulse Radar Detection. IEEE Transactions on Aerospace and Electronic Systems, 1993, Vol.29, No.1: 9-21.
    [165]王群,何云龙等.基于神经网络的探地雷达探雷研究,电波科学学报,2001, Vol.16, No.3: 398-403.
    [166] S. Caorsi, G.Cevini; An Electromagnetic Approach Based on Neural Networks for the GPR Investigation of Buried Cylinders. IEEE Geoscience and Remote Sensing Letters, 2005, Vol.2, No.1: 3-7.
    [167] Delbo, S. Gamba, P. Roccato, D. A Fuzzy Shell Clustering Approach to Recognize Hyperbolic Signatures in Subsurface Radar Images. IEEE Transactions on Geoscience and Remote Sensing. 2000,Vol.38,No.3: 1447-1451.
    [168] Roth, F. van Genderen, P. Verhaegen, M. Convolutional Models for Buried Target Characterization with Ground Penetrating Radar. IEEE Transactions on Antennasand Propagation. 2005,Vol.53, No.11: 3799-3810.
    [169] Peter, A. Chandra, S. Leslie, M. Performance of an Adaptive Feature-Based Processor for a Wideband Ground Penetrating Radar System. IEEE Transactions on Aerospace and Electronic Systems. 2006, Vol.42, No.2: 644-657
    [170] http://basalt.geos.vt.edu/mgi/4124/g41/lab-g41/fig/Ricker_Comparison2.html, 2006
    [171]史凌峰.基于小波分析的一种红外弱小目标检测新方法.系统工程与电子技术.2003, Vol.25, No.8: 1024-1027.
    [172] Boashash, B.; O'Shea, P.; Polynomial Wigner-Ville Distributions and Their Relationship to Time-Varying Higher Order Spectra. IEEE Transactions on Signal Processing, Vol.42, No.1, 1994: 216-220.
    [173] Chi Chong-Yung, Chi Chi-Horng; Two-Dimensional Frequency-Domain Blind System Identification Using Higher Order Statistics with Application to Texture Synthesis. IEEE Transactions on Signal Processing, Vol.49, No.4, 2001: 864-877.
    [174] S.Ramo,J.R.Whinnery,T.Van-Duzer. Fields and Waves in Communication Electronics(Ed.2). John Wiley and Sons,1984: 33-102.
    [175] Schelkunoff S. Advanced Antenna Theory. NJ. D. Van Nostrand, Princeton, 1952: 25-189.
    [176] N. Niltawach, Chen Chi-Chih; A Numerical Study of Buried Biomass Effects on Ground-Penetrating Radar Performance. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42, No.6: 1233-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700