用户名: 密码: 验证码:
降钙素基因相关肽对运动心脏重塑和保护作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:“运动员心脏”(athlete’s heart)是指运动员特有的高功能、高储备、大心脏,是机体对长期运动训练良好适应的结果。运动心脏的形成不仅仅是由于血流动力学超负荷导致的心肌细胞体积增大及相应亚细胞结构改变的简单过程,而且是在神经-体液调节下,产生的一系列代谢、结构、功能诸方面的重塑过程。降钙素基因相关肽(calcitonin gene related peptide,CGRP)是目前已知最强的舒血管活性物质,对心肌具有正性变力和变时作用,使心率加快,心肌收缩力增强,心输出量增加;能明显地舒张冠状血管,增加冠状动脉血流量;能有效防治心肌的缺血/再灌注损伤;是心脏重塑和保护作用的重要调节物质。经长期的耐力训练后,心脏和血液中的CGRP显著升高,提示CGRP可能参与运动诱导的心脏重塑和保护作用。目前,有关运动与CGRP的研究主要集中在心脏和血液CGRP含量的变化,这些研究结果不能全面和系统地反映运动对CGRP的影响,而且运动对CGRP合成及CGRP mRNA表达影响的研究少有报道。因此,本研究在运动心脏动物模型的基础上,探讨运动心脏重塑后CGRP的变化和耐力训练诱导的心脏保护作用机制,为科学制定运动训练方案、有效预防运动心脏损伤、提高体育人口心脏健康及制定心血管疾病的运动处方等提供新的理论和实验依据。
     研究方法:雄性健康SD大鼠,随机分为耐力训练组(n=33),对照组(n=33)。耐力训练组大鼠进行持续10 week的耐力跑台训练(75% VO2max)建立运动心脏动物模型。建模成功后,各组随机选取半数大鼠进行连续3 d的力竭运动,以检验大鼠的训练效果和诱导心肌微损伤。力竭运动后即刻麻醉大鼠,取血、心脏和胸腰段背根神经节。采用酶联免疫法检测血清CGRP浓度,免疫化学发光法检测血清心肌肌钙蛋白I含量;用HE染色和碱性复红苦味酸染色法观察心肌组织结构和缺血缺氧改变;用放射免疫法测定心肌组织CGRP含量;用免疫组织化学和计算机图像分析显示心肌、背根神经节CGRP分布与表达;用荧光定量聚合酶链反应检测背根神经节CGRP mRNA表达;用酶还原法、硝酸还原法、亚硝酸盐还原法和硫代巴比妥酸法分别检测血清和心肌乳酸含量、一氧化氮含量、超氧化物歧化酶活性和丙二醛含量。
     研究结果:(1)10 week耐力训练后,耐力训练组大鼠心脏重量与体重比显著大于对照组(P=0.01),升高了9.67%;组织学观察也发现,耐力训练组大鼠心房和心室肌细胞体积有一定程度的增大,提示耐力训练诱导了心脏形态上的肥大。(2)力竭运动测试表明,耐力训练组平均距离显著大于对照组(P<0.01),提示耐力训练诱导的心脏肥大是生理性的。(3)耐力训练组力竭运动时血乳酸较对照组显著升高(P<0.05),但心肌乳酸含量没有显著差异,提示耐力训练诱导的肥大心肌代谢表型改善。(4)与对照组比较,安静状态下耐力训练组大鼠血清CGRP浓度显著升高(P<0.05);心脏CGRP免疫反应活性明显增强,免疫反应阳性面积和平均光密度均显著增大(P<0.05),心室肌组织CGRP含量显著升高(P<0.01);背根神经节CGRP免疫反应阳性神经元数量、阳性反应面积和平均光密度上显著增加(P<0.01),但背根神经节CGRP mRNA表达量显著下降(P<0.01),表明运动心脏CGRP释放、储备、合成增加,但基因表达下调,提示耐力训练可能是在转录后水平上调节心脏CGRP。(5)力竭运动后,两组大鼠心脏CGRP免疫反应活性明显减弱,平均光密度显著下降(P<0.05),耐力训练组心室肌CGRP含量显著下降(P<0.05);背根神经节CGRP免疫反应阳性神经元数量减少,免疫阳性反应面积和平均光密度显著下降(P<0.05)。但两组大鼠血清CGRP和背根神经节CGRP表达的变化不同:耐力训练组血清CGRP显著提高(P<0.01),mRNA表达量没有显著变化,而对照组血清CGRP没有显著变化,CGRP基因表达显著下调(P<0.01)。提示力竭运动损害了CGRP基因表达,减少了CGRP的合成,降低了心脏CGRP储备,但预先的耐力训练可以保持力竭运动时CGRP正常的基因表达和释放,提高心脏对长时间运动的耐受能力。(6)安静状态下,两组大鼠血清和心肌一氧化氮含量没有显著差异,但力竭运动后对照组心肌一氧化氮含量显著下降(P<0.01),提示力竭运动可造成未经训练大鼠心脏一氧化氮合成能力下降。(7)力竭运动后,对照组大鼠血清心肌肌钙蛋白I浓度显著升高(升高11.37倍),心肌组织出现明显的缺血缺氧改变;而耐力训练组血清心肌肌钙蛋白I浓度没有显著变化(升高0.54倍),心肌组织仅出现轻微的缺血缺氧改变。提示力竭运动诱导了心肌损伤,耐力训练具有一定的心肌保护作用。(8)耐力训练后,大鼠心肌超氧化物歧化酶总活性显著上升(P<0.01),但血清超氧化物歧化酶活性以及血清、心肌丙二醛含量没有显著变化,表明耐力训练可以上调心肌超氧化物歧化酶活性。(9)力竭运动后,对照组血清超氧化物歧化酶总活性没有显著变化,心肌超氧化物歧化酶总活性显著上升(P<0.01),血清和心肌丙二醛含量均显著提高(P<0.01)。而耐力训练组血清、心肌超氧化物歧化酶总活性显著降低(P<0.01),血清丙二醛含量并没有显著变化,心肌丙二醛含量显著升高(P<0.01),提示力竭运动显著增强了血液和/或心肌脂质过氧化。
     研究结论:(1)10周耐力跑台训练可以诱导大鼠心系数增加、心肌细胞肥大、心脏泵血功能显著提高,是建立运动心脏动物模型的可靠方法。(2)耐力训练通过增强背根神经节CGRP的合成,提高心脏CGRP的储备,促进CGRP的释放,从而生理性重塑了运动心脏。(3)力竭运动可以降低了背根神经节CGRP基因表达和蛋白合成,减少了心脏CGRP储备,导致降钙素基因相关肽的可释放量减少,心脏保护能力下降,心肌发生微损伤。(4)耐力训练诱导的心脏保护作用可能是通过提高机体CGRP释放能力,上调超氧化物歧化酶活性,降低脂质过氧化以及促进一氧化氮的合成,从而提高冠脉血流量来实现的。
Objective: The profound heart changes including morphological enlargement, functional improvement, capacity elevation that occur in athletes are a normal adaptive response to chronic athletic training, which have been recognized as the athlete’s heart. The notion has been accepted that the process of exercise-induced cardiac remodeling is not only the alternation of myocardium volume and responding ultrastructure by hemodynamic overload, but also the re-establishment of cardiac morphology, function and metabolism under the regulation of nerves and hormones. Calcitonin gene-related peptide (CGRP) is one of the most potent vasodilator substances identified to date. Biological effects of CGRP include increasing cardiac output, elevating coronary blood flow, and significant prevention against ischemia-reperfusion injury. Consequently, CGRP is thought to play a vital role in cardiac remodeling and cardioprotection. The fact that plasma and myocardial concentration of CGRP increased after systematic endurance training has indicated that CGRP is a candidate regulator of exercise-induced cardiac remodeling and cardioprotection. At present, the focus is mostly on the changes of plasma and myocardial content of CGRP during or/ and after exercise, no comprehensive and systematic data exist on the effect of exercise on CGRP, especially for its synthesis and gene expression. The purpose of the present study was to investigate the changes and possible mechanism of CGRP involved with exercise-induced cardiac remodeling and cardioprotection following the establishment of animal model of exercise-induced cardiac hypertrophy, to provide the newer theory and experiment foundation for optimal sports program, effective prevention of cardiac injury, heart health promotion, exercise prescription for cardiovascular disease.
     Methods: Male SD rats were randomly divided into two groups: sedentary control group (CG) and endurance training group (EG). After the animal model establishment of exercise-induced cardiac hypertrophy by graded treadmill training lasting 10 weeks (at the intensity of 75%VO2max), half rats of each group were subjected to consecutive, exhaustive treadmill running three times, to test the effect of endurance training and induce cardiac injury. Blood, heart and dorsal root ganglions were removed immediately after exhaustion. The level of CGRP and cardiac troponin I in serum were determined by methods of enzyme immunoassay and chemiluminescence, respectively. Histological examination of Cardiac muscle was determined by hematoxylin-eosin staining and special dyeing of ischemia and hypoxia. Concentration of CGRP in left ventricular myocardium was detected by radio immunoassay. CGRP-immunoreactivity in heart and dorsal root ganglion tissue were showed by immunohistochemistry method and quantitatively analyzed by the system of computerized image analysis. The expression of CGRP mRNA in dorsal root ganglions were determined by real-time fluorescence quantitative polymerase chain reaction. Spectrophotometry were used to demonstrate the content of lactic acid, nitric oxide and malondialdehyde and activity of superoxide dismutase in serum and left ventricular myocardium.
     Results: (1) The ratio of cardiac weight to body weight and distance of run to exhaustion was greater in EG than in CG after 10-week endurance treadmill training (P=0.01). Meanwhile, histological evidence of heart specimen from EG demonstrated myocyte hypertrophy to some degree. Concentration of lactic acid in blood, not in myocardium, was more significantly increased in EG than in CG after exhaustive exercises. The results showed that cardiac hypertrophy by endurance training is a physiological, not pathphysiological, adaptation to exercise. (2) In EG, CGRP concentration in serum, immunoreactivity in cardiac muscle and dorsal root ganglions and content in left ventricular increased significantly (P<0.05 or 0.01, respectively), but gene expression in dorsal root ganglia decreased significantly (P<0.01), by endurance training. It suggested that CGRP release, reserve and synthesis in exercise-induced hypertrophied heart increased, but gene expression decreased, which demonstrates the fact that endurance training may regulate cardiac CGRP at the post transcription level. (3) After exhaustive exercises, CGRP immunoreactivity in cardiac muscle and dorsal root ganglia was markedly weakened in CG and EG (P<0.05), and CGRP content in left ventricular myocardium of EG decreased (P<0.05). Meanwhile, the CGRP release in EG increased and gene expression of CGRP in EG down-regulated significantly (P<0.01), but results of serum CGRP in CG and CGRP mRNA in EG showed no changes. It was reasonable to conclude that exhaustive exercises do harm to CGRP gene expression, protein synthesis and local store, but pretraining can maintain the normal expression and release of CGRP to improve the tolerance to prolonged exercise. (4) Nitric oxide content in serum and cardiac muscle did not differ between CG and EG after 10-week endurance training. However, lower nitric oxide content in cardiac muscle from CG was found immediately after exhaustive exercises (P<0.01).It showed that exhaustive exercise attenuates the nitric oxide synthesis in cardiac muscle of untrained rats. (4) Serum cTnI concentration ratio of after exhaustive exercise to before was greater in CG than in EG, and evident changes demonstrated by special dyeing of ischemia and hypoxia was found in some rats, so minor cardiac injury by exhaustive exercises occurred. (5) Although cardiac activity of superoxide dismutase in EG increased, serum superoxide dismutase activity and malonaldehyde contents in serum and cardiac muscle did not so, in CG and EG after endurance training, which suggested that endurance training can elevate the activity of superoxide dismutase in heart to reduce lipid peroxidation. (6) In CG, exhaustive exercise could elevate malonaldehyde content in cardiac muscle and serum, superoxide dismutase activity in cardiac muscle, but did not affect superoxide dismutase activity in serum. On the other hand, exhaustive exercise could elevate malonaldehyde content in cardiac muscle, depress superoxide dismutase activity in cardiac muscle and serum, but did not affect malonaldehyde content in serum, and lipid peroxidation in blood and heart was increased by exhaustive exercise.
     Conclusion: (1) 10 week endurance treadmill training results in greater ratio of cardiac weight to body weight, hypertrophied myocyte, elevated cardiac function, and can be proposed as a reliable animal model of exercise-induced cardiac hypertrophy. (2) By endurance training, CGRP synthesis in dorsal root ganglia is enhanced, content in cardiac muscle raised, level in serum elevated, thereby cardiac hypertrophy is physiologically remodeled. (3) Exhaustive exercise stress impaires gene expression and synthesis of CGRP in dorsal root ganglia, decreases CGRP reserve in heart, and as the result, available release of CGRP reduces, minor cardiac injury occurs due to lowered ability of cardioprotection. (4) Cardiaoprotection by endurance training may be mediated by elevated release of CGRP that up-regulates the activity of superoxide dismutase to lower lipid peroxidation, and promotes nitric oxide synthesis to increase coronary blood flow.
引文
[1] Thompson PD. Exercise and sports cardiology[M]. In New York, McGraw Hill Medical Publishing Division, 2001:30-42.
    [2]常芸.运动心脏的实验研究[M].北京:人民体育出版社,第1版, 1998:63-141.
    [3]曹志发,孟昭琴,姚为俊,等.新编运动生理学[M].北京:人民体育出版社, 2004:146.
    [4]田振军运动心脏生物学研究[M].北京:科学出版社, 2005: 78.
    [5] Tan LB, Hall AS. Cardiac remodeling[J]. Br. Heart J, 1994, 72(4):315-316.
    [6]常芸.运动心脏实验研究Ⅱ-耐力训练大鼠心室肌超微结构及其形态计量学改变[J].体育科学, 1993, 13(4):65-69.
    [7]田振军,夏家骝.不同耐力负荷对左室乳头肌纤维及其血管变化的实验研究[J].体育科学, 1993, 13(5):62-64.
    [8]李春跃,韩补生,南瑞生.降钙素基因相关肽对高血压性与运动性心肌肥厚影响的对比研究[J].内蒙古医学院学报, 2001, 23(2):79-81.
    [9]李昭波,高云秋,唐朝枢.运动性和高血压性心肌肥大重塑时心肌初级和次级应答基因表达的差异[J].生理学报, 1998, 50(5):551-556.
    [10] Chen L, Nohara R, Hirai T, et al. Effects of exercise training on myocardial fatty acid metabolism in rats with depressed cardiac function induced by transient ischemia[J]. Jpn Circ J, 2001, 65(6):550-555.
    [11] Moran M, Delgado J, Gonzalez B, et al. Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training[J]. Acta Physiol Scand, 2004, 180(2):157-166.
    [12] Powers SK, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxidedismutase activity in ventricular myocardium[J]. Am J Physiol, 1993, 265(6Pt2):H2094-2098
    [13] Davidson SR, Burnett M, Laurie HG. Training effects in mice after long-term voluntary exercise[J]. Med Sci Sports Exerc, 2006, 38(2):250-255.
    [14]常芸,林福美.不同类型运动心脏的内分泌改变特征[J].中国运动医学杂志, 1996, 15(3):162-169.
    [15]李昭波,高云秋,李维根,等.运动性和高血压性肥大心脏心肌内皮素及其基因表达的研究[J].中国运动医学杂志, 2000, 19(1):25-26.
    [16] Schaible TF, Scheuer J. Effects of physical training by running or swimming on ventricular performance of rat hearts [J]. J Appl Physiol:Respirat Environ Exercise Physiol, 1979, 46(4):854-860.
    [17]马延超,常芸,张缨.运动心脏重塑过程中心室肌降钙素基因相关肽的变化[J].中国运动医学杂志, 2006, 25(2):168-170.
    [18]陈松娥,彭峰林,邓树勋.有氧耐力训练对大鼠心脏机能和心肌脂肪酸氧化酶基因表达的影响[J].体育科学, 2006, 26(12):70-72.
    [19] Kemi OJ, Loennechen JP, Wisloff U, et al. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy[J]. J Appl Physiol. 2002, 93(4):1301-1309.
    [20] Kaplan ML, Cheslow Y, Vikstrom K, et al. Cardiac adaptations to chronic exercise in mice[J]. Am J Physiol, 1994, 267(3Pt2):H1167-1173.
    [21]彭峰林,曹志发.运动训练对大鼠心脏内分泌和内源性NO的影响[J].中国运动医学杂志, 2003, 22(6):22-39.
    [22]常芸,林福美.运动心脏实验研究-I:耐力训练后大鼠心房超微结构、心房肽免疫细胞化学及血浆心钠素含量的改变[J].体育科学, 1993, 13(2):47-50.
    [23]熊正英,田振军.运动超负荷与压力超负荷大鼠心脏局部RAS系统变化的实验研究[J].体育科学, 1996, 16(4):61-65.
    [24] Fitzsimons DP, Bodell PW, Baldwin KM. Myocardial functional correlates of cardiac myosin ligher chain 2 Phosphorylition[J]. J Appl Physiol, 1990, 68(6):2426-2433.
    [25]李维根,高云秋,张连元,等.运动性和高血压性心肌肥大对再灌注损伤耐受性研究[J].中国运动医学杂志, 1994, 13(2):75-77.
    [26] Allen DL, Brooke CH, Alexander M, et al. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse[J]. J Appl Physiol, 2001, 90(5):1900-1908.
    [27] Wisl?ff U, Helgerud J, Kemi OJ, et al. Intensity-controlled treadmill running in rats: VO2max and cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol, 2001, 280(3): H1301-H1310.
    [28]符民桂,王晓红,姜志胜,等.环孢素A对儿茶酚胺诱导的大鼠心肌肥大的作用[J].中华心血管病杂志, 2001, 29(1):41-45.
    [29]李春跃,郭建增,韩补生.运动性与病理性左室肥厚心肌力学的对比研究[J].中国运动医学杂志, 2001, 20(3):241-244.
    [30]常芸,孙迎,陈小同,等.运动心脏内分泌功能可复性的研究[J].中国运动医学杂志, 1999, 18(1):3-6.
    [31]陈主初.病理生理学[M].北京:人民卫生出版社, 2002:270.
    [32] Michael J, Shastry S. Vascular endothelial growth factor and capillary density in exercise training[J]. Exerc Sport Sci Rview, 2000, 28:97-98.
    [33]李开刚,陆绍中.不同强度的耐力训练后大鼠心肌超微结构适应性变化的研究[J].中国应用生理学杂志, 1997, 13(3):193-197.
    [34]殷仁富,陈金明.心脏能量代谢学-代谢与治疗[M].上海:第二军医大学出版社, 2002:24-75.
    [35] Schaible TF, Scheuer J. Cardiac function in hypertrophied hearts from chronically exercised female rats[J]. J Appl Physiol. 1981, 50(6):1140-1145.
    [36] Opie LH, Sack MN. Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning[J]. J Mol Cell Cardiol. 2002, 34(9):1077-1089.
    [37] Stanley WC. Myocardial lactate metabolism during exercise[J]. Med Sci Sports Exerc. 1991, 23(8):920-924.
    [38] Yan B, Wambolt RB, Mark G, et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart[J]. Am J Physiol Heart Circ Physiol, 2004, 287(3):H1055-1063.
    [39]李昭波,李夏,高云秋,等.运动性和高血压性肥大心脏心肌肌膜乳酸转运特征比较[J].中国应用生理学杂志, 1999, 15(1):1-4.
    [1]常芸.运动心脏的实验研究[M].北京:人民体育出版社,第1版, 1998:63-141.
    [2] Schultzberg M. The peripheral nervous system. In Chemical neuroanatomy. Edited by Emson PC, New York: Raven Press, 1983:1-50.
    [3] Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin[J]. Physiol. Rev., 2004, 84(3):903-934.
    [4] Pandu R, Gangula R, Zhao HW, et al. Increased blood pressure inα-calcitonin gene–related peptide/calcitonin gene knockout mice[J]. Hypertension. 2000, 35(1Pt2):470-475.
    [5] Yamaga N, Kawasaki H, Inaizumi K, et al. Age-Related Decrease in Calcitonin Gene-Related Peptide mRNA in the Dorsal Root Ganglia of Spontaneously Hypertensive Rats[J]. The Japanese Journal of Pharmacology, 2001, 86(4):448-450.
    [6] Bell D, Schluter KD, Zhou XJ, et al. Hypertrophic effects of calcitonin gene-related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes[J]. J Mol Cell Cardiol. 1995, 27(11):2433-2443.
    [7] Bell D, Tamamori M, Marumo F, et al. Calcitonin gene-related peptide (CGRP) increases cell surface area and induces expression of skeletal alpha-actin ANP mRNA in hypertrophying neonatal cardiomyocytes[J]. Regul Pept. 1997, 71(1):1-7.
    [8]邓水秀,秦旭平.降钙素基因相关肽的血管生物学功能多样性[J].国际病理科学与临床杂志, 2006, 26(3):246-249.
    [9] Powers S K, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium[J]. Am J Physiol, 1993, 265(6Pt2):H2094-2098
    [10] Davidson SR.; Burnett M; Laurie HG. Training effects in mice after long-term voluntary exercise[J]. Med Sci Sports Exerc, 2006, 38(2):250-255.
    [11]盛树力.多肽激素的当代理论和应用[M].北京:科学技术文献出版社,第1版, 1998:277-280.
    [12] Wang X, Han C, Fiscus RR. Calcitonin gene related peptide (CGRP) causes endothelium-dependent cyclic cAMP, cyclic GMP and vasorelaxant responses in rat abdominal aorta[J]. Neuropeptides, 1991, 20(2):115-124.
    [13] Hughes S R, Brain S D. Nitric oxide-dependent release of vasodilator quantities of calcitonin gene-related peptide from capsaicin-sensitive nerves in rabbit skin[J]. Br J Pharmacol, 1994, 111(2):425-430.
    [14] Anand IS, Gurden J, Wandet GS , et a1.Cardiovascular and hormonal effects of CGRP in congestive heart failure[J]. J Am Coll.Cardiol, 1991, 17(2):208-213.
    [15] Holzer P, Maggi CA. Dissociation of dorsal root ganglia neurons into afferent and efferent like neurons[J]. Neuroscience. 1998, 86(2):389-398.
    [16]万小华,谭道全.缺氧时大鼠降钙素基因相关肽含量变化与心肌损伤的关系探讨[J].江西医学院学报, 2003, 43(2):43-51.
    [17] Szolcsany I J. Forty years in capsaicin research for sensory pharmacology and physiology[J]. Neuropeptides, 2004, 38(6):377-384.
    [18] Wang X, Fiscus RR, Yang L, et al. Lactate and low pH trigger release of calcitonin gene related peptide (CGRP) from nerves in rat abdominal aorta and spinal cord slices[J]. FASEB J, 1993, 7:A476.
    [19] Alvis AG, Milesi V, Rebolledo A, et al. Influence of calcitonin gene-related peptide release on pH-induced mechanical depression in rat atria[J]. Jpn Heart J, 2001, 42(4):507-517.
    [20]吴中欣,韩启德,白燕,等.机体内环境理化因素对降钙素基因相关肽(CGRP)释放的影响[J].生理学报, 1995, 47(6):573-579.
    [21]王宪,吴中欣,唐跃明,等.内毒素对离体大鼠肠系膜动脉降钙素基因相关肤(CGRP)释放的作用[J].生理学报, 1996, 48(1):37-42.
    [22] Lind H, Brudin L, Lindholm L, et al. Different levels of sensory neuropeptides (calcitonin gene-related peptide and substance P) during and after exercise in man[J]. Clin Physiol, 1996, 16(1):73-82.
    [23] Schifter S, Breum L, Niclasen B, et al. Calcitonin gene-related peptide during exercise and training[J]. Horm Metab Res. 1995, 27(10):473-475.
    [24] Onuoha GN, Nicholls DP, Patterson A. Neuropeptide secretion in exercise[J]. Neuropeptides. 1998, 32(4):319-325.
    [25]李严冰,郑家刚.少年运动员恒定负荷条件下血浆降钙素基因相关肽的变化[J].山东体育科技, 2002, 24(1):29-30.
    [26] Brooks S, Nevill ME, Meleagros L, et al. The hormone responses to repetitive brief maximal exercise in humans[J]. EuJ Appl Physiol Occup Physiol, 1990, 60(2):144-148.
    [27] Fernandez HL, Hodges-Savola CA. Physiological regulation of G4 Ache in fast-twitch muscle: effects of exercise and CGRP[J]. J Appl Physiol, 1996, 80(1):357-362.
    [28]佟长青,张引国,郭建增.游泳训练大鼠血浆生物活性肽含量的变化及意义[J].武警医学院学报, 2001, 10(3):183-185.
    [29]李昭波,高云秋,李维根,等.运动性肥大心脏心肌和血浆降钙素基因相关肽含量变化[J].中国运动医学杂志, 1999, 18(1):7-8.
    [30]金其贯,李宁川,孙新荣,等.不同负荷的运动训练对大鼠心血管系统调节肽分泌影响[J].浙江体育科学, 2000, 22(1):53-56.
    [31]孙晓娟,潘珊珊.不同运动强度对心脏降钙素基因相关肽表达的影响[J].中国运动医学杂志, 2006, 25(4):431-438.
    [32] Shoba T, Tay SS. Nitrergic and peptidergic innervation in the developing rat heart[J]. Anat Embryol, 2000, 201(6):491-500.
    [33]常芸,孙迎,陈小同,等.运动心脏内分泌功能可复性的研究[J].中国运动医学杂志, 1999, 18(1):3-6.
    [34]谭建新,李岩松,黄宇戈,等.降钙素基因相关肽对大鼠心肌损伤的影响[J].中国病理生理杂志, 2000, 16(3):226-228.
    [35]吴宏超,钱学贤,李立平.大鼠心肌顿抑时血浆及心肌组织中降钙素基因相关肽含量的变化[J].中国病理生理杂志, 2000, 16(1):33-35.
    [36]裴建明,朱妙章,牛国保,等.正常及缺血心脏组织中含降钙素基因相关肽纤维的分布和意义[J].第四军医大学学报, 1995, 16(4):259-261.
    [37]佘飞,孙威,毛节明,等.降钙素基因相关肽转基因预防小鼠自身免疫性糖尿病发病及其抗氧化应激机制(英文)[J].生理学报, 2003, 55(6):625-632.
    [38].韩凤岳,苏静,刘卫东,等.中药脊髓I号对脊髓损伤大鼠背根节CGRP表达的影响[J].首都医科大学学报, 2000, 21(1):12-15.
    [39] Gillardon F, Morano I, Ganten U, et al. Regulation of calcitonin gene-related peptide mRNA expression in the hearts of spontaneously hypertensive rats by testosterone[J]. Neurosci Lett, 1991, 125(1):77-80.
    [40] Ramana CV, DiPette DJ, Supowit SC. Localization and characterization of calcitonin gene-related peptide mRNA in rat heart[J]. Am J Med Sci. 1992, 304(6):339-344.
    [41]柏树令,应大君.系统解剖学[M].北京:人民卫生出版社,第6版, 2004:440-441.
    [42] Wimalawansa SJ. Calcitonin gene-related peptide: molecular genetics, physiology, pathology and therapeutic potentials[J]. Endocrinol Rev. 1996, 17:533-585.
    [43]张云丽,王林.耐力训练对不同鼠龄大鼠血清T、E2、LH和FSH的影响[J].体育科学, 2004, 24(8):40-43.
    [44]马延超,常芸,张缨.运动心脏重塑过程中心室肌降钙素基因相关肽基因表达的变化[J].中国运动医学杂志, 2006, 25(2):168-170.
    [45]罗艳蕊,贺杰,漆正堂.长时间低强度游泳运动对大鼠心血管系统CGRP mRNA表达的影响[J].中国应用生理学杂志, 2007, 23(1):62-65.
    [46] Kawasaki H, Inaizumi K, Nakamura A, et al. Chronic Angiotensin II Inhibition Increases Levels of Calcitonin Gene-Related Peptide mRNA of the Dorsal Root Ganglia in Spontaneously Hypertensive Rats[J]. Hypertens Res, 2003, 26(3):257-263.
    [47] Li J, Zhao H, Dipette DJ, et al. Reciprocal role of the AT1 receptor in modulating renal and neuronal AT1 mRNA expression[J]. J Am Soc Nephrol, 1999, 10(Suppl11):S18-22.
    [48]陈建国,徐小虎,吴贤英.大鼠急性心肌缺血早期血管内皮生长因子的表达[J].中华医学杂志, 1999, 79(8):63-65.
    [49] Opie LH.著,高天祥,高天礼译.心脏生理学-从细胞到循环[M].北京:科学出版社, 2001:196-2001, 322.
    [50]郑恒兴,武胜昔,吕葆真,等.足底伤害性刺激条件下大鼠腰骸髓背根节内SP mRNA和α-CGRP mRNA的表达[J].神经解剖学杂志, 1997, 13(2):153-160.
    [51]唐跃明,韩启德,邢宇彤,等.大鼠内毒素血症不同时期血浆CGRP和背根神经节CGRP mRNA水平的变化[J].生理学报, 1997, 49(2):160-166.
    [52] Freeland K, Liu YZ, Latchman DS. Distinct signaling pathways mediate the cAMP responseelement (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor[J]. Biochem J, 2000, 345(Pt2):233-238.
    [53] Geppetti P, Del BE, Patacchini R, et al. Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response[J]. Neuroscience, 1991, 41(1):295-301.
    [54] Hasbak P, Lundby C, Olsen NV, et al. Calcitonin gene related peptide and adrenomedullin release in humans:effects of exercise and hypoxia[J]. Regul Pept, 2002, 108(2-3):89-95.
    [55] Kessler F, Habelt C, Averbeck B, et al. Heat induced release of CGRP from isolated rat skin and effects of bradykinin and the protein kinase C activator PMA[J]. Pain, 1999, 83(2):289-295.
    [56]杜艳华,李元建.降钙素基因相关肽介导硝酸甘油的心血管作用[J].中国药理学与毒理学杂志, 2003, 17(2):155-160.
    [57]田振军.运动心脏生物学研究[M].北京:科学出版社, 2005:81.
    [58]郭宝石,刘洪涛.一氧化氮在心肌缺血再灌注损伤中的作用[J].中国应用生理学杂志, 2001, 17(4):370-372.
    [1] Hull SS Jr, Vanoli E, Adamson PB, et al. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia[J]. Circulation, 1994, 89(2):548-552.
    [2] Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart[J]. Am J Physiol Heart Circ Physiol, 1992, 263(3Pt2):H804-H809.
    [3] Bowles DK, Starnes JW. Exercise training improves metabolic response after ischemia in isolated working rat heart[J]. J Appl Physiol, 1999, 76(4):1608-1614.
    [4] Demirel HA, Powers SK, Zergeroglu MA, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat[J]. J Appl Physiol, 2001, 91(5):2205-2212
    [5] Hamilton KL, Powers SK, Sugiura T, et al. Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3): H1346-H1352.
    [6] Hamilton KL, Staib JL, Hess A, et al. Exercise, antioxidants, and protection against myocardial ischemia-reperfusion[J]. Free Radic Biol Med, 2003, 34(7):800-809.
    [7] Harris MB, Starnes JW. Effects of body temperature during exercise training on myocardial adaptations[J]. Am J Physiol Heart Circ Physiol, 2001, 280(5):H2271-H2280.
    [8] Hoshida S, Yamashita N, Otsu K, et al. Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats[J]. J Am Coll Cardiol, 2002, 40(4):826-831.
    [9] Locke M, Tanguay RM, Klabunde RE, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP72[J]. Am J Physiol Heart Circ Physiol, 1995, 269(1Pt2):H320-325.
    [10] Paroo Z, Haist JV, Karmazyn M, et al. Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response[J]. Circ Res, 2002, 90(8):911-917.
    [11] Powers SK, Demirel HA, Vincent HK, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat[J]. Am J Physiol Regul Integr Comp Physiol, 1998, 275(5Pt2):R1468-1477.
    [12] Powers SK, Locke, Demirel HA. Exercise, heat shock proteins, and myocardial protection from I-R injury[J]. Med Sci Sports Exerc, 2001, 33(3):386-392.
    [13] Starnes JW, Bowles DK. Role of exercise in the cause and prevention of cardiac dysfunction[J]. Exerc Sport Sci Rev, 1995, 23:349-373.
    [14] Taylor RP, Harris MB, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content[J]. Am J Physiol Heart Circ Physiol, 1999, 276(3Pt2):H1098-1102.
    [15] Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischaemia-reperfusion injury in the rat through a protein kinase C mediated mechanism[J]. Heart, 2001, 85(3):331-336.
    [16] Wu DM, Van Z, Wieten PA, et al. Effects of calcitonin gene-related peptide and BIBN4096BS on myocardial ischemia in anesthetized rats[J]. Acta Pharmacol Sin, 2001, 22(7):558-594.
    [17]欧阳伟,钱学贤,李志梁,等.降钙素基因相关肤在整体大鼠心肌缺血预适应中的作用及其与ATP敏感钾通道的关系[J].第一军医大学学报, 2001, 21(1):25-28.
    [18] Ren YS,Ma TG,Wang HB,et al. Protective effects of CGRP on myocardial cell injury and calcium and agnesium contents following severe hypoxia and simulated reperfusion[J]. Med Sci Res, 1993, 21(1):177-178.
    [19] Powers SK, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium[J]. Am J Physiol, 1993, 265(6Pt2):H2094-2098
    [20] Davidson SR, Burnett M, Laurie HG. Training effects in mice after long-term voluntary exercise[J]. Med Sci Sports Exerc, 2006, 38(2):250-255.
    [21]崔雪梅,彭瑞云,王德文,等.苏木素碱性复红苦味酸染色法的改进及在缺氧骨骼肌和平滑肌染色中的应用[J].军事医学科学院院刊, 2002, 26(1):54-55.
    [22]陈玉川,刘水平,郭薇.肢体挤压伤大鼠早期心电图及血清cTnI的变化[J].法医学杂志,2002, 18(2):76-77.
    [23] Lucena MC, Paniagua R. Structural changes in the rat myocardium after exhaustive exercise[J]. Acta Cardiol, 1984, 39(1):41-54.
    [24] Lucena MC, Paniagua R. Effects of exercise to exhaustion in rat myocardium. A stereological study[J]. Acta Cardiol, 1984, 39(6):463-477.
    [25] Thomas D P. Effects of acute and chronic exercise on myocardial ultrastructure[J]. Med Sci Sport Exer, 1985, 17(5):546-553.
    [26] Thomas DP, Marshall KI. Effects of repeated exhaustive exercise on myocardial subcellular membrane structures[J]. Int J Sport Med, 1988, 9(4):257-260.
    [27]赵敬国,王福文.大鼠力竭性游泳运动过程中心电图的动态观察[J].现代康复, 2000, 4(8):194-195.
    [28]赵敬国,王福文.力竭性运动后不同时相大鼠心肌形态结构的改变观察[J].中国运动医学杂志, 2001, 20(3):316-317.
    [29]金玉兰,岑浩望,陈钢.衰竭性运动对小鼠心肌结构影响的初步观察[J].中国运动医学杂志, 1992, 11(1):59-61.
    [30] Chen YJ, Serfass RC. Mackey-Bojack SM, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise[J]. J Appl Physiol, 2000, 88(5):1749-1755.
    [31]冯连世,李开刚.运动员机能评定常用生理生化指标测试方法及应用[M].北京:人民体育出版社, 2002:86, 142
    [32]冉贵萍.心肌损伤的早期诊断生化标志物心肌肌钙蛋白I[J].中国综合临床, 2001, 17(6):406-407.
    [33]袁箭峰,常芸.运动心脏重塑过程中细胞凋亡现象的活细胞观察[J].中国运动医学杂志, 2001, 20(4):348-351.
    [34] Koller A. Is exercise induced myocardial injury self- abating ?[J]. Med Sci Sport Exer, 2001, 33(5):850-851.
    [35] Rifai N, Douglas PS, O'toole M, et al. Cardiac troponin T and I, electrocardiographic wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon[J]. American Journal of Cardiology, 1999, 83(7):1085-1089.
    [36] Shave RE, Dawson E, Whyte G, et al. Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T[J]. Br J Sports Med. 2004, 38(1):86-88.
    [37]张冰,杨则宜,刘俊玲,等.模拟高原训练对大鼠血清肌钙蛋白T的影响[J].中国运动医学杂志, 2005, 24(4):472-473.
    [38]常芸,袁箭峰,祁永梅,等.运动心脏重塑与微损伤发生中的细胞凋亡现象[J].中国运动医学杂志, 2003, 22(4):344-349.
    [39] Middleton N, Shave RE, George K, et al. Impact of repeated prolonged exerxise bouts on cardiac function and biomarkers[J]. Med Sci Sport Exer, 2007, 39(1):93-90.
    [40] Hamilton KL, Powers SK, Sugiura T, et al. Short-term exercise training can improvemyocardial tolerance to I/R without elevation in heat shock proteins[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3):H1346-H1352.
    [41]辛东,李辉,李静先,等.力竭性运动时大鼠脑组织自由基产生及氧化、抗氧化能力的动态观察[J].中国运动医学杂志, 1999, 18(4):321-323.
    [42]李爱华,吕望山,戴益明.剧烈运动对自由基影响的实验研究[[J].中国运动医学杂志, 1991, 10(2):79-81.
    [43] Ji L. Exercise and oxidative stress: role of the cellular antioxidant systems[J]. Exe Sport Sci Rev, 1995, 23:135-166.
    [44]曲绵域,高云秋.实用运动医学[M].北京:北京科学技术出版社, 1995:59-61.
    [45] Lovlin R, Cott1e W, Pyke I, et a1. Are indices of free radical damage related to exercise intensity[J]. Eur.J.Appl.Physiol., 1987, 56(3):313-316.
    [46]许豪文,戴永祯.运动时大学生血浆中脂质过氧化物和血液抗氧化系统的变化[J].体育科学, 1992, (4):50-52.
    [47]李晖,辛东,陈家琦.递增负荷力竭性运动时大鼠血液氧化、抗氧化能力及RBCM生物物理特性的研究[J].中国运动医学杂志, 2001, 20(3):256-258.
    [48]李爱华,吕望山,戴益明.剧烈运动对自由基影响的实验研究[[J].中国运动医学杂志, 1991, 10(2):79-81.
    [49] Jenkins RR, Krause K, Schofield LS. Infuence of exercise on clearance of oxidant stress products and loosely bound iron[J]. Med Sci Sports Exerc, 1993, 25(2):213-217.
    [50]张蕴琨.力竭性游泳对小鼠脑、肝、肌组织自由基代谢和血清CK, LDH活性的影响[J].中国运动医学杂志, 1995, 14(2):112-113.
    [51]史亚丽,任杰.运动训练对小白鼠心肌、肝脏与股四头肌自由基代谢的影响[J].山东体育学院学报, 1994, 13(3):16-18.
    [52]王东辉,熊若虹,郑兵,等.大鼠力竭游泳运动后不同时相心肌和血清SOD、GSH-Px、MDA和Ca2+的变化[J].沈阳体育学院学报, 2004, 23(3):332
    [53] Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice[J]. J Mol Cell Cardiol, 1998, 30(11):2281-2289.
    [54] Liu J, Yeo HC, ?vervik-Douki E, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants[J]. J Appl Physiol., 2000, 89(1):21-28.
    [55] Powers SK, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium[J]. Am J Physiol Heart Circ Physiol, 1993, 265(6Pt2):H2094-H2098
    [56] Wilson DO, Johnson P. Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver[J]. J Appl Physiol, 2000, 88(5):1791-1796.
    [57] Yamashita N, Hoshida S, Otsu K, et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation[J]. J Exp Med., 1999, 189(11):1699-1706.
    [58] Homans DC, Asinger R, Pavek T, et al. Effect of superoxide dismutase and catalase onregional dysfunction after exercise-induced ischemia[J]. Am J Physiol Heart Circ Physiol, 1992, 263(2Pt2):H392-H398
    [59] Vina J, Borras C, Gomez-Cabrera M. Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression role of reactive oxygen species and phytooestrogens in the modulation of adaptive response to stress[J]. Free Radical Research, 2006, 40(2):111-119.
    [60]张敏,浦钧宗,朱全.运动预处理对大鼠心肌CuZn-SOD基因表达的影响[J].中国运动医学杂志, 2001, 20(3):239-241.
    [61] Hoshida S, Yamashita N, Otsu K, et al. The importance of manganese superoxide dismutase in delayed preconditioning: involvement of reactive oxygen species and cytokines[J]. Cardiovasc Res, 2002, 55(3):495-505.
    [62] Kojda G, Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?[J]. Cardiovasc Res, 2005, 67(2):187-197.
    [63] Li YJ, Xiao ZS, Peng CF, et al. Calcitonin gene related peptide induced preconditoning protects against ischemia-reperfusion injury in isolated rat hearts[J]. Eur Pharmacol, 1996, 311(2-3):163-167.
    [64]汤健,徐东,唐朝枢,等.降钙素基因相关肽[J].中国药学通报, 1990, 6(5):453-457.
    [65]万小华,谭道全.缺氧时大鼠降钙素基因相关肽含量变化与心肌损伤的关系探讨[J].江西医学院学报, 2003, 43(2):43-51.
    [66]杨栋梁,汤聿海,李元建,等.降钙素基因相关肽预处置对阿霉素所致离体大鼠心脏损伤的保护作用[J].中国药学(英文版), 1996, 5(3):153-156.
    [67] Bolli R. The late phase of preconditioning[J]. Circulation Research, 2000, 87(11):972-983.
    [68] Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin[J]. Physiol Rev, 2004, 84(3):903-934.
    [1]常芸.运动心脏的实验研究[M].北京:人民体育出版社,第1版, 1998:3.
    [2] David Oakely. General cardiology:the athlete’s heart[J]. Heart, 2001, 86(6):722-726.
    [3]田振军.运动心脏生物学研究[M].北京:科学出版社,第1版, 2005:1-145.
    [4] Jonathan Myers. Exercise and Cardiovascular Health[J]. Circulation, 2003, 107:e2-e5.
    [5] Power SK, Lennon SL, Quindry J, et al. Exercise and cardioprotection[J]. Curr Opin Cardiol, 2002, 17(5):495-502.
    [6] Mittleman MA, Maclure M, Tofler GH, et al. Triggering of acute myocardial infarction by heavy physical exertion - protection against triggering by regular exertion[J]. N Engl J Med, 1993, 329(23):1677-1683.
    [7] Haitsma DB, Bac D, Raja N, et al. Minimal impairment of myocardial blood flow responses to exercise in the remodeled left ventricle early after myocardial infarction despite significant hemodynamic and neurohumoral alterations[J]. CardiovascRes, 2001, 52(3):417-428.
    [8] Powers SK, Locke M, Demirel HA. Exercise, heat shock proteins, and myocardial protection from I-R injury[J]. Med Sci Sports Exerc, 2001, 33(3):386-392.
    [9] Demirel HA, Powers SK, Zergeroglu MA, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat[J]. J Appl Physiol, 2001, 91(5):2205-2212.
    [10] Taylor RP, Harris MB, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content[J]. Heart Circ Physiol, 1999, 276(3 Pt 2):H1098-1102.
    [11] White FC, Bloor CM, Mckirnan MD, et al. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart[J]. J Appl Physiol, 1998, 85(3):1160-1168.
    [12] Powers SK, Demirel HA, Vincent HK, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat[J]. Am J Physiol, 1998, 275(5Pt2):R1468-1477.
    [13] Overholser KA, Laughlin MH, Bhatte MJ. Exercise training-induced increase in coronary transport capacity[J]. Med Sci Sports Exerc, 1994, 26(10):1239-1244.
    [14] Criffin K L, Woodman CR, Price EM, et al. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training[J]. Circulation, 2001, 104(12):1393-1398.
    [15] McKirnan MD, Bloor CM. Clinical significance of coronary vascular adaptations to exercise training[J]. Med Sci Sports Exerc, 1994, 26(10):1262-1268.
    [16] Roth DM, White FC, Nichols ML, et al. Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs[J]. Circulation, 1990, 82(5):1778-17789.
    [17] Laughlin MH, Muller JM. Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs[J]. J App Physiol, 1998, 84(3):884-889.
    [18] Schultzberg M. The peripheral nervous system. In Chemical neuroanatomy. Edited by Emson PC, New York: Raven Press, 1983:1-50.
    [19]常芸,林福美,吕丹云.运动训练对内膜下心肌组织的影响[J].中国运动医学杂志, 1992, 11(1):29-33.
    [20] Plourde G, Rousseau MS, Nadeau A, et al. Adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue[J]. J Appl Physiol, 1991, 70(4):1633-1638.
    [21] Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training[J]. Annu Rev Physiol. 1983, 45:169-189.
    [22] Alvarez R, Terrados N, Ortolano R, et al. Genetic variation in the renin-angiotensin system and athletic performance[J]. Eur J Appl Physiol, 2000, 82(1-2):117-120.
    [23] Schaible TF, Scheuer J. Effects of physical training by running or swimming on ventricular performance of rat hearts[J]. J Appl Physiol: Respirat Environ Exercise Physiol, 1979, 46(4):854-860.
    [24] Chen L, Nohara R, Hirai T, et al. Effects of Exercise Training on Myocardial Fatty Acid Metabolism in Rats With Depressed Cardiac Function Induced by Transient Ischemia[J]. Jpn Circ J 2001, 65(6):550-555.
    [25] Moran M, Delgado J, Gonzalez B, et al. Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training[J]. Acta Physiol Scand, 2004, 180(2):157-166.
    [26]胡亚哲,程邦昌,王和平,等.运动性心脏肥大心肌细胞超微结构改变及意义[J].中华心血管病杂志, 2005, 33(10):936-939.
    [27]常芸.运动心脏实验研究Ⅱ-耐力训练大鼠心室肌超微结构及其形态计量学改变[J].体育科学, 1993, 13(4):65-69.
    [28].田振军,夏家骝.不同耐力负荷对左室乳头肌纤维及其血管变化的实验研究[J].体育科学, 1993, 13(5):62-64.
    [29]李云霞,黄倩霞,刘莉,等.关于左室等容收缩相心肌收缩性能指标的实验研究[J].生理学报, 1980, 32(2):97-109.
    [30]张宝慧,刘少龄,王庆全,等.运动对血浆心钠素影响的初步探讨[J].中国运动医学杂志, 1989, 8(2):65-66.
    [31]田振军,熊正英.过度训练对大鼠心肌肾素-血管紧张素系统及有关酶的影响[J].体育科学, 1999, 19(5):67-70.
    [32]李昭波,高云秋,庞永正,等.心肌血管紧张素Ⅱ在运动高血压性心肌肥大时肌球蛋白重链变化中的作用[J].中国运动医学杂志, 1998, 17(2):111-114.
    [33] Aartsen WM, Schuijt MP, Danser AH, et al. The role of locally expressed angiotensin converting enzyme in cardiac remodeling after myocardial infarction in mice[J]. Cardiovasc Res. 2002, 56(2):205-213.
    [34]庄涛,潘珊珊,李颜合.运动对心脏肾素-血管紧张素系统的影响[J].上海体育学院学报, 2003, 27(4):54-58.
    [35]马延超,常芸,张缨.运动心脏重塑过程中心室肌内皮素基因表达的变化[J].中国运动医学杂志, 2006, 25(4):201-203.
    [36]彭峰林,曹志发.运动训练对大鼠心脏内分泌和内源性NO的影响[J].中国运动医学杂志, 2003, 22(6):558-561.
    [37] Powers SK, Criswell J, Lawler D, et al. Rigorous exercise training increases superoxide dismutase activity in the ventricular myocardium[J]. Am J Physiol, 1993, 265(Heart Circ.Physiol 34):H2094-H2098.
    [38] Wimalawansa SJ. Calcitonin Gene-Related Peptide and Its Receptors: Molecular Genetics, Physiology, Pathophysiology, and Therapeutic Potentials[J]. Endocrine Reviews, 1996, 17(5):533-585.
    [39] Yan B, Richard B. Wambolt, MG, et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol, 2004, 287(3):H1055-1063
    [40]李昭波,高云秋,庞永正,等.运动逆转自发性高血压大鼠左心室肌球蛋白α和β重链变化的研究[J].中国运动医学杂志, 1998, 17(1):2-3.
    [41] Levine SN, Kinasewitz GT. Exercise conditioning increases rat myocardial calcium uptake[J]. J Appl Physiol, 1986, 60(5):1673-1679.
    [42] Fitzsimons DP, Bodell PW, Baldwin KM. Myocardial functional correlates of cardiac myosin light chain 2 phosphorylation[J]. J Appl Physiol, 1990, 68(6):2426-2433.
    [43]. Ferrario CM, Spech MM, Tarazi RC, et al. Cardiac pumping ability in rats with experimental renal and genetic hypertension[J]. Am J Cardial, 1979, 22;44(5):979-985.
    [44] Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension[J]. Hypertension, 1989, 13(6 Pt 2):968-972.
    [45] Tan LB, Hall AS. Cardiac remodiling[J]. Br. Heart J, 1994, 72(4):315-316.
    [46]陈主初.病理生理学[M].北京:人民卫生出版社, 2002:270.
    [47]孙冰,付锦,张一娜.去甲肾上腺素诱导心肌细胞肥大的机制[J].临床心血管病杂志, 2004, 20(4):218-219.
    [48] Baker KM, Chernin MI, Wixson SK, et al. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats[J]. Am J Physiol, 1990, 259(2Pt2):H324-332.
    [49] Ito H, Hirata Y, Hiroe M, et al. Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes[J]. Circ Res, 1991, 69(1):209-215.
    [50] Schaible TF, Scheuer J. Cardiac adaptation to chronic exercise[J]. Prog Cardiovasc Dis, 1985, 27(5):297-324.
    [51] Yamzaki T, Komuro I, Kudoh S, et al. Role of ion channels and exchanger in mechanical stretch induced cardiomyocyte hypertrophy[J]. Circ Res, 1998, 82(4):430-437.
    [52]常芸,林福美.不同类型运动心脏交感神经反应性特征与调节机制[J].体育科学, 1995, 15(3):48-52.
    [53] Bell D, Schluter KD, Zhou XJ, et al. Hypertrophic effects of calcitonin gene-related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes[J]. J Mol Cell Cardiol.1995, 27(11):2433-2443.
    [54] Chien KR, Knowlton KU, Zhu H, et al. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response[J]. FASEB J, 1991, 5(15):3037-3046.
    [55] Geenen Dl, Malhotra A, Buttrick PM. Angiotensin receptor 1 blockade does not prevent physiological cardiac hypertrophy in the adult rat[J]. J Appl Physiol, 1996, 81(2):816-821.
    [56]常芸,林福美.不同类型运动心脏的内分泌改变特征[J].中国运动医学杂志, 1996, 15(3):162-169.
    [57] King CE, Melinyshyn MJ, Mewburn JD, et al Canine hindlimb blood flow and O2 uptake after inhibition of EDRF/NO synthesis[J]. J Appl Physiol. 1994, 76(3):1166-1171.
    [58] Nerisemeri GG, Boddi M, Modesti PA, et al. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes[J]. Circ Res, 2001, 89(11):977-982.
    [59]常芸,孙迎,陈小同,等.运动心脏内分泌功能可复性的研究[J].中国运动医学杂志, 1999, 18(1):3-6.
    [60]李维根,李昭波,高云秋,等.运动性与高血压心肌肥大时心源性活性肽变化比较[J].中国运动医学杂志, 2000, 19(1):27-28.
    [61] Gosselin H, Beliveau L, Burelle Y, et al. Disparate regulation of signaling proteins after exercise and myocardial infarction[J]. Med Sci Sports Exerc, 2006, 38(3):455-462.
    [62] McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide3-kinnase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy[J]. Proc. Natl. Aca. Sci, USA, 2003, 100:12355-12360.
    [63] Iemitsu M, Maeda S, Miyauchi T, et al. Gene expression profiling of exercise-induced cardiac hypertrophy in rats[J]. Acta Physiol Scand, 2005, 185(4):259-270.
    [64] Strom CC, Aplin M, Ploug T, etal. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy[J]. FEBS J, 2005, 272(11):2684-2695.
    [65]李昭波,高云秋,唐朝枢.运动性和高血压性心肌肥大重塑时心肌初级和次级应答基因表达的差异[J].生理学报, 1998, 50(5):551-556.
    [66] Won KS, Bodyak N, Yue P, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats[J]. Physiol Genomics, 2005, 21(1):34-42.
    [67] Iemitsu M, Maeda S, Jesmin S. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise[J]. J Appl Physiol, 2006, 101(1):151-163.
    [68] Thompson PD. Exercise and sports cardiology[M]. In New York: McGraw Hill Medical Publishing Division, 2001:30-42.
    [69] Powers SK, Demirel HA, Vincent HK, etal. Exercise training improves myocardial toleranceto in vivo ischemia-reperfusion in the rat[J]. Am J Physiol, 1998, 275(5 Pt 2):R1468-1477.
    [70] Kaplan ML, Cheslow Y, Vikstrom K, etal. Cardiac adaptations to chronic exercise in mice[J]. Am J Physiol. 1994, 267(3 Pt 2):H1167-1173.
    [71]金其贯,李宁川,孙新荣,等.不同负荷的运动训练对大鼠心血管系统调节肽分泌的影响[J].浙江体育科学, 2000, 22(1):53-56.
    [72]李维根,李昭波,高云秋,等.运动性与高血压性心肌肥大时心源性活性肽变化比较[J].中国运动医学杂志, 2000, 19(1):27-28.
    [73]李昭波,高云秋,唐朝枢.运动性和高血压性心肌肥大重塑时心肌初级和次级应答基因表达的差异[J].生理学报, 1998, 50(5):551-556.
    [74] Kemi OJ, Loennechen JP, Wisloff U, et al. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy[J]. J Appl Physiol. 2002, 93(4):1301-1309.
    [75] Wisloff U, Helgerud J, Kemi OJ, et al. Intensity-controlled treadmill running in rats: VO(2max) and cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol. 2001, 280(3):H1301-310.
    [76] Kang PM, Yue P, Liu Z, et al. Alterations in apoptosis regulatory factors during hypertrophy and heart failure[J]. Am J Physiol Heart Circ Physiol, 2004, 287(1):H72-80.
    [77] Alvarez R, Terrados N, Ortolano R, et al. Genetic variation in the renin-angiotensin system and athletic performance[J]. Eur J Appl Physiol, 2000, 82(1-2):117-120.
    [78]田振军.不同运动负荷大鼠心脏血流动力学变化对左心室内皮细胞形态影响的实验研究[J].天津体育学院学报, 1999, 14(1):46-49.
    [79] Sharma S, Whyte G, Mckenna WJ. Sudden death from cardiovascular disease in young athletes: fact or fiction?[J]. Br J Sports Med, 1997, 31(4):269-276.
    [80] Fagard R, Aubert A, Lysens J, et al. Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists[J]. Circulation, 1983, 67(4):896-901.
    [81] Opie LH,著,高天祥,高天礼,译.心脏生理学-从细胞到循环[M].北京:科学出版社, 2001:442.
    [82] Rowe WJ. Extraordinary unremitting endurance exercise and permanent injury to normal heart[J]. The Lancet, 1992, 340(8821):712-714.
    [83] Homans DC., Asinger R, Pavek T, et al. Effect of superoxide dismutase and catalase on regional dysfunction after exercise-induced ischemia[J]. Am J Physiol Heart Circ Physiol. 1992, 263(2Pt2):H392-398.
    [84] Rowe WJ. A world record marathon runner with silent ischemia without coronary atheroslerosis[J]. Chest, 1991, 99(5):1306-1308.
    [85] Whyte GP, George K, Sharma S, et al. Cardiac fatigue following prolonged endurance exercise of differing distances[J]. Med. Sci. Sports. Exerc, 2000, 32(6):1067-1072.
    [86]赵敬国,王福文.大鼠力竭性游泳运动过程中心电图的动态观察[J].现代康复, 2000, 4(8):194-195.
    [87]赵敬国,王福文.力竭性运动后不同时相大鼠心肌形态结构的改变观察[J].中国运动医学杂志, 2001, 20(3):316-317.
    [88] Chen YJ, Serfass RC, Mackey-bojack SM, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise[J]. J Appl Physiol, 2000, 88(5):1749-1755.
    [89] Shave RE, Dawson E, Whyte G, et al. Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T[J]. Br J Sports Med, 2004, 38(1):86-88.
    [90] Bilinska M, Rudnicki S, Beresewicz A. Delayed attenuation of myocardial ischemia with repeated exercise in subjects with stable angina: a possible model for the second window of protection?[J]. Basic Res Cardiol, 2000, 95(5):418-423.
    [91] Shave RE, Dawson E, Whyte G, et al. Evidence of exercise-induced cardiac dysfunction and elevated cTnT in separate cohorts competing in an ultra-endurance mountain marathon race[J]. Int J Sports Med, 2002, 23(7):489-494.
    [92] Thomas DP. Effects of acute and chronic exercise on myocardial ultrastructure[J]. Med Sci Sport Exer. 1985, 17(5):546-553.
    [93] Thomas DP, Marshall KI. Effect of repeated exhaustive exercise on myocardial subcellular membrane structures[J]. Int. J. Sport Med. 1988, 9(4):257-260.
    [94]赵敬国,王福文.力竭性运动后不同时相大鼠心肌形态结构的改变观察[J].中国运动医学杂志, 2001, 20(3):316-317.
    [95] Tibbits GF. Regulation of myocardial contractility in exhaustive exercise[J]. Med. Sci. Sports. Exerc. 1985, 17(5):529-537.
    [96] Inoue M, Hori M, Tsujioka K. Energetics of myocardial function[J]. Med. Sci. Sports. Exerc, 1985, 17(5):538-545.
    [97] Seals DR, Rogers MA, Hagberg JM, et al. Left ventricular dysfunction after prolonged strenuous exercise in healthy subjects[J]. Am. J. Cardiol. 1988, 61(11):875-879.
    [98] Seward SW, Seiler KS, Starnes JW. Intrinsic myocardial function and oxidative stress after exhaustive exercise[J]. J. Appl. Physiol. 1995, 79(1):251-255.
    [99]冯连世.运动与血清酶活性的变化[J].中国运动医学杂志, 1991, 10(2):88-94.
    [100] Whyte GP, George K, Sharma S, et al. Cardiac fatigue following prolonged endurance exercise of differing distances[J]. Med. Sci. Sports. Exerc, 2000, 32(6):1067-1072.
    [101] Koller A. Is exercise induced myocardial injury self- abating?[J]. Med. Sci. Sports. Exerc, 2001, 33(5):850-851.
    [102] Johannes M, Schobersberger W, Koller A, et al. Risk for exercise-Induced Myocardial Injury for Athletes Performing Prolonged Strenous Endurance Exercise[J]. American Journal of Cardiology, 1997, 80(4): 543-544.
    [103] Koller A, Mair J, Schobersberger W, et al. Effects of prolonged strenuous endurance exercise on plasma myosin heavy chain fragments and other muscular proteins:Cycling vs running[J]. J. Sports. Med. Phys. Fitness, 1998, 38(1):10-7-31.
    [104]常芸,袁箭峰,祁永梅,等.运动心脏重塑与微损伤发生中的细胞凋亡现象[J].中国运动医学杂志, 2003, 22(4):344-349.
    [105]高云秋,蒲钧宗,张宝慧,等.运动性心肌梗塞[J].中国运动医学杂志, 1986, 5(3):171-172.
    [106]李继红,辛火,朱国标,等.热暴露附加运动负荷对血浆TXB2, 6-K-PGF1a比值及心肌细胞超微结构的影响[J].中华劳动卫生职业病杂志, 1995, 13(1):12-15.
    [107] Rifai N, Douglas PS, O'toole M, et al. Cardiac troponin T and I, electrocardiographic wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon[J]. American Journal of Cardiology, 1999, 83(7):1085-1089.
    [108]张冰,杨则宜,刘俊玲,等.模拟高原训练对大鼠血清肌钙蛋白T的影响[J].中国运动医学杂志, 2005, 24(4):472-473.
    [109] Koller A. Exercise induced increases in cardiac troponins and prothrombotic markers[J]. Med. Sci. Sports. Exerc, 2003, 35(3):444-448.
    [110] Katzel LI, Fleg JL, Busby-Whitehead MJ, et al. Exercise-induced silent myocardial ischemia in master athletes[J]. American Journal of Cardiology, 1998, 81(3):261-265.
    [111]王晨,朱耀康,封旭华.采用CK-MB、肌钙蛋白评价运动导致的心肌损伤[J].中国运动医学杂志, 2004, 24(3):300-301.
    [112]刘凌,范启国,岳峰.脑钠素(BNP)和心脏肌钙蛋白T(CTnT)在超长时运动负荷后血清浓度的变化及评价[A].见:中国体育科学学会.第七届全国体育科学大会论文摘要汇编(二)[C].北京, 2004:355-356.
    [113]许敬,黄叔怀.运动后大鼠血清中相关酶学变化的比较研究[J].中国临床康复, 2003, 7(18):2522-2523.
    [114]黄玉芝,高天礼,周未艾,等.大鼠离体心脏缺灌和再灌早期乳酸脱氢酶和肌酸激酶的释放规律[J].北京大学学报(自然科学版), 1994, 30(6):747-754.
    [115]卫生部报告显示:中国防治心血管疾病任务艰巨[EB/OL]. :中国新闻网http://news.xinhuanet.com/health/2006-12/02/content_5422468.html, 2006-12-2.
    [116] Hull SS, Vanoli E, Adamson PB, et al. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia[J]. Circulation, 1994, 89(2):548-552.
    [117] Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart[J]. Am J Physiol Heart Circ Physiol, 1992, 263(3Pt2):H804-809.
    [118] Bowles DK, Starnes JW. Exercise training improves metabolic response after ischemia in isolated working rat heart[J]. J Appl Physiol, 1999, 76(4):1608-1614.
    [119] Hamilton KL, Powers SK, Sugiura T, et al. Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3):H1346-1352.
    [120] Hamilton KL, Staib JL, Hess A, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion[J]. Free Radic Biol Med, 2003, 34(7):800-809.
    [121] Hoshida S, Yamashita N, Otsu K, et al. Repeated physiologic stresses provide persistentcardioprotection against ischemia-reperfusion injury in rats[J]. J Am Coll Cardiol, 2002, 40(4):826-831.
    [122] Locke M, Tanguay RM, Klabunde RE, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP72[J]. Am J Physiol Heart Circ Physiol, 1995, 269(1Pt2):H320-325.
    [123] Paroo Z, Haist JV, Karmazyn M, et al. Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response[J]. Circ Res, 2002, 90(8):911-917.
    [124] Starnes JW, Bowles DK. Role of exercise in the cause and prevention of cardiac dysfunction[J]. Exerc Sport Sci Rev, 1995, 23:349-373.
    [125] Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischaemia-reperfusion injury in the rat through a protein kinase C mediated mechanism[J]. Heart, 2001, 85(3):331-336.
    [126] Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise[J]. Free Radic Biol Med, 1991, 11(3):239-246.
    [127] Konhilas P, Maass AH, Luckey SW. et al. Sex modifies exercise and cardiac adaptation in mice[J]. Am J Physiol Heart Circ Physiol, 2004, 287(6): H2768-H2776.
    [128] Suzuki K, Murtuza B, Sammut IV, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction[J]. Circulation, 2002, 106(supplI):I270-I276
    [129] Suzuki K, Sawa Y, Kagisaki K, et al. Reduction in myocardial apoptosis associated with over expression of heat shock protein70[J]. Basic Res Cardiol, 2000, 95:397-403.
    [130] Ascensao A, Ferreira R, Magalhaes J. Exercise-induced cardioprotection-biochemical, morphological and functional evidence in whole tissue and isolated mitochondria[J]. Int J Cardiol. 2006 Jul 21,[Epub ahead of print].
    [131] Ascens?o A, Magalh?es J, Soares J, et al. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis[J]. Am J Physiol Heart Circ Physio, 2005, 289(2):H722-731.
    [132] Ascens?o A, Magalh?es J, Soares J. Endurance exercise training attenuates morphological signs of cardiac muscle damage induced by doxorubicin in male mice[J]. Basic Appl Myol, 2006, 16(1):27-35.
    [133] Yamashita N, Hoshida S, Otsu K, et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation[J]. J Exp Med., 1999, 189(11):1699-1706.
    [134] Moore RL, Musch TI, Yelamarty RV, et al. Chronic exercise alters contractility and morphology of isolated rat cardiac myocytes[J]. Am. J. Physiol., 1993, 264 (Cell Physiol.33): C1180-C1189.
    [135] Opie LH, Sack MN. Metabolic Plasticity and the Promotion of Cardiac Protection in Ischemia and Ischemic Preconditioning[J]. J Mol Cell Cardiol, 2002, 34(9):1077-1089.
    [136] Coven DL, Hu XY, Cong L, et al. Physiological role of AMP-activated protein kinase in the heart:graded activation during exercise[J]. Am J Physiol Endocrinol Metab, 2003, 285(3):E629-636.
    [137] Wisloff U, Loennechen JP, Currie S, et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[J]. Cardiovasc Res. 2002, 54(1):162-174.
    [138] Belardinelli R, Georgiou D, Ginzton L, et al. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy[J]. Circulation, 1998, 97(6):553-561.
    [139] Mascareno E, Shafei M, Maulik N, et al. JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion[J]. Circulation, 2001, 104(3):325-329.
    [140] Elias CL, Lukas A, Shurraw S, et al. Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and antiarrhythmic consequences[J]. Am J Physipol Heart Circ Physiol, 2001, 281(3):H1334-1345.
    [141] Sasayama S, Fujita M. Recent insights into coronary collateral circulation[J]. Circulation, 1992, 85(3):1197-1204.
    [142] Okazaki Y, Kodama K, Sato H, et al: Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon[J]. J Am Coll Cardiol, 1993, 21(7):1597-1604.
    [143] Lambiase PD, Edwards RJ, Cusack MR, et al: Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment[J]. J Am Coll Cardiol, 2003, 41(7):1174-1182.
    [144] Galang N, Sasaki H, Maulik N. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy[J]. Toxicology, 2000, 148(2-3):111-118.
    [145] Hutter JJ, Mestril R, Tam EK, et al. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo[J]. Circulation, 1996, 94(6):1408-1411.
    [146] Radford NB, Fina M, Benjamin IJ, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice[J]. Proc Natl Acad Sci USA, 1996, 93(6):2339-2342.
    [147] Laughlin MH, Oltman CL, Bowles DK. Exercise training-Induced adaptations in the coronary circulation [J]. Med Sci Sports Exe, 1998, 30(3):352-360.
    [148] Ding YH, Luan XD, Li J, et al. Exercise-induced over-expression angiogenic factors and reduction of ischemia/reperfusion injury in stroke[J]. Curr Neurovasc Res, 2004, 1(5):411-420.
    [149] Anversa P, Ricci R, Olivetti G. Effects of exercise on the capillary vasculature of the rat heart[J]. Circulation., 1987, 75(1Pt2):I12-118.
    [150] Zhang P, March K L, Hou DM. Physical Training and Cardioprotection[J].中国运动医学杂志, 2003, 22(4):378-382.
    [151] Mcelroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat[J].Circulation, 1978, 57(5):958-962.
    [152] Tomanek R J. Exercise-induced coronary angiogenesis: a review[J]. Med Sci Sports Exerc, 1994, 26(10):1245-1251.
    [153] Hutter M, Sievers R, Barbosa V, et al. Heat-shock protein induction in rat hearts:a direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection[J].Circulation, 1994, 89(1):355-360.
    [154] Locke M, Sievers RT, Klabude R, et al. Enhanced postischemic myocardia recovery following induction of hsp72[J]. Am J Physiol, 1995, 269(HeartCirc.Physiol.38):H320-H325.
    [155] Beckmann R, Mizzen L, Welch W. Interaction of HSP 70 with newly synthesized proteins: implications for protein folding and assembly[J]. Science, 1990, 248(4957):850-854.
    [156] Mocanu MM, Steare SE, Evans MC, et al. Heat Stress Attenuates free Radical Release in the Isolated Perfused Rat Heart[J]. Free Rad Bio Med, 1993, 15(4):459-463.
    [157] Mcmillan DR, Xiao X, Shao L, et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-induced apoptosis[J]. BioChem, 1998, 273(13):7523-7528.
    [158] Mosser D, Caron A, Bourget L, et al. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis[J]. Mol Cell. Biol. 1997, 17(9):5317-5327.
    [159] Jennings RB, Murry CE, Steenbergenc JR, et al. Development of cell injury in sustained acute ischemia[J]. Circulation, 1990, 82(Suppl1):2-12.
    [160]王慷慨,邓恭华,肖卫民,等.热休克蛋白70对过氧化氢所致乳鼠心肌细胞核仁损伤的保护作用[J].中国动脉硬化杂志, 2002, 10(5):384-388.
    [161] Currie RW, Karmazyn M, Kloc M, et al. Heat shock response is associated with enhanced postischemic ventricular recovery[J]. Circ. Research, 1988, 63(3):543-549.
    [162] Bradford NB, Fina M, Benjamin IJ, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice[J]. Proc. Natl. Acad. Sci. USA, 1996, 93(6):2339-2342.
    [163] Harris M.B, Starnes JW. Effects of body temperature during exercise training on myocardial adaptations[J]. Am J Physiol Heart Circ Physiol, 2001, 280(5):H2271-2280.
    [164] Powers SK, Locke M, Demirel HA, et al. Exercise, heat shock proteins and myocardial protection from I-R injury[J]. Med. Sci. Sports Exerc, 2001, 33(3):386-392
    [165] Locke M. The cellular stress response to exercise: role of stress proteins[J]. Exercise Sports Science Review, 1997, 25:105-136
    [166] Locke M, Noble E, Tanguay R, et al. Activation of heat-shock transcription factor in rat heart after heat shock and exercise[J]. Am J Physiol, 1996, 268(6Pt1):C1387-1394
    [167] Williams PT. Physical fitness and activity as separate heart disease risk factors:a meta-analysis[J]. Med Sci Sports Exerc, 2001, 33(5):754-761.
    [168] Milne KJ, Noble EG. Exercise-induced elevation of HSP70 is intensity dependent[J]. J ApplPhysiol, 2002. 93(2):561-568.
    [169] Samelman TR. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training[J]. Exp Physiol, 2000, 85(1):92-102.
    [170] Demirel, HA, Hamilton KL, Shanely RA, et al. Age and attenuation of exercise-induced myocardial HSP72 accumulation[J]. Am J Physiol Heart Circ Physiol, 2003. 285(4):H1609-1615.
    [171] Paroo Z, Dipchand ES, Noble EG. Estrogen attenuates postexercise HSP70 expression in skeletal muscle[J]. Am J Physiol Cell Physiol, 2002, 282(2):C245-251.
    [172] Paroo Z, Haist JV, Karmazyn M, et al. Exercise improves post-ischemic cardiac function in males but not females: consequences of a novel gender-specific hsp70 response[J]. Circ Res, 2006, 48(5):992-998.
    [173] Moran M, Delgado J, Gonzalez B, et al. Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training[J]. Acta Physiol Scand, 2004, 180(2):157-166.
    [174]魏勇,陈佩杰,杨德洪.不同周期运动后大鼠心肌细胞热休克蛋白72mRNA的表达.中国运动医学杂志, 2002, 22(2):129-132.
    [175] Noble E G, Moraska A, Mazzeo R S, et al. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training[J]. J Appl Physiology, 1999, 86(5):1696-1701.
    [176] Karyn H, Jessical S,Tracey P, et al. Exercise, antioxidants, and hsp72:Protection against myocardial ischemia/reperfusion[J]. Free Radical Biology Med, 2003, 34(7):800-809.
    [177]许弟群.运动与自由基代谢影响研究进展[J].解放军体育学院学报, 2002, 21(2):47-50.
    [178] Nonomura M, Nozawa T, Matsuki A, et al. Ischemia- induced norepinephrine release, but not norepinephrine-derived free radicals, contributes to myocardial ischemia-reperfusion injury[J]. Circ J, 2005, 69(5):590-595.
    [179]曲绵域,高云秋.实用运动医学[M].北京:北京科学技术出版社, 1995:59-61.
    [180] Lovlin.R.Cott1e.W., Pyke.I, et a1. Are indices of free radical damage related to exercise intensity[J]. Eur.J.Appl.Physiol., 1987, 56(3):313-316.
    [181]许豪文,戴永祯.运动时大学生血浆中脂质过氧化物和血液抗氧化系统的变化[J] .体育科学, 1992, 12(4):50-52.
    [182]曹国华.运动、铜锌营养与自由基[J].中国运动医学杂志, 1991, 11(1):39-40.
    [183]李晖,辛东,陈家琦.递增负荷力竭性运动时大鼠血液氧化、抗氧化能力及RBCM生物物理特性的研究[J].中国运动医学杂志, 2001, 20(3):256-258.
    [184]李爱华,吕望山,戴益明.剧烈运动对自由基影响的实验研究[[J].中国运动医学杂志, 1991, 10(2):79-81.
    [185] Kanter MM, Hamlin RL, Unverferth DV, et al. . Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin[J]. J.Appl.Physiol, 1985, 59(4):1298-1303.
    [186]苏全生.运动后复氧对心脏结构功能的影响[J].成都体育学院学报, 2004, 30(3):61-64.
    [187] Ji L, Fu R, Mitchelle M, et al. Cardiac hypertrophy alters myocardial response to ischaemia and reperfusion in vivo [J]. Acta Physiol Scand, 1994, 151(3):279-290.
    [188]张蕴琨,焦颖,冯炜权,等.力竭性游泳对小鼠脑、肝、肌组织自由基代谢和血清CK、LDH活性的影响[J].中国运动医学杂志, 1995, 14(2):112-113.
    [189]史亚丽,任杰.运动训练对小白鼠心肌、肝脏与股四头肌自由基代谢的影响[J].山东体育学院学报, 1994, 13(3):16-18.
    [190] Laughlin H, Simpson T, Sexton W, et al. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training[J]. J Appl Physiol, 1990, 68(6):2337-2343.
    [191] Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice[J]. J Mol Cell Cardiol, 1998, 30(11):2281-2289.
    [192] Liu JK, Yeo HC, ?vervik-Douki E, et al. Chronically and acutely exercised rats:biomarkers of oxidative stress and endogenous antioxidants[J]. J Appl Physiol., 2000, 89(1):21-28.
    [193] Powers S K, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium[J]. Am J Physiol Heart Circ Physiol., 1993, 265(6Pt2):H2094-2098.
    [194] Rush WE, Laughlin MH, Woodmen CR, et al. SOD-1 expression in pig coronary arterioles is increased by exercise training[J]. Am J Physiol Heart, 2000, 279:H2068-H2076.
    [195] Ji L. Exercise and oxidative stress: role of the cellular antioxidant systems[J]. Exe Sport Sci Rev, 1995, 23:135-166.
    [196] Wilson DO, Johnson P. Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver[J]. J Appl Physiol, 2000, 88(5):1791-1796.
    [197] Kumar CT, Reddy VK, Prasad M, et al. Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidant stress[J]. Mol. Cell. Biochem. 1992, 111(1-2):109-115.
    [198] Frankiewicz-Jozko A, Faff J, Sieradzan-Gabelska B. Changes in concentrations of tissue free radical marker and serum creatine kinase during the post-exercise period in rats[J]. Eur. J. Appl. Physiol. 1996, 74(5):470-474.
    [199]黄丽英.游泳训练对高脂膳食大鼠超氧化物歧化酶基因表达的作用[J].广州体育学院学报, 2004, 24(2):41-43.
    [200] Lennon SL, Quindry JC, Hamilton KL, et al. Elevated Mn-SOD is not required for exercise-induced cardioprotection against myocardial stunning. Am J Physiol Heart Circ Physiol., 2004, 287(2): H975-H980.
    [201]刘雪芹,范晓晨,李万镇,等. L-NAME对病毒性心肌炎小鼠心肌保护机制的探讨[J].中华儿科杂志, 1999, 37(9):547-550.
    [202] McGowan FX, Davis PJ, Nido PJ, et al. Endothelium-dependent regulation of coronary tone in the neonatal pig[J]. Anesth. Analg, 1994, 79(6):1094-101
    [203] Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium[J]. Lancet, 1987, 2(8567):1057-1058.
    [204] Finkel MS, Oddis CV., Jacob T.D, et al. Negative inotropic effects of cytokines on the heart mediated by nitric oxide[J]. Science, 1992, 257(5068):387-389.
    [205] Dimmeler S, Haendeler J, Nehls M, et al. Suppression of Apoptosis by Nitric Oxide Via Inhibition of Interleukin-1beta-converting Enzyme (ICE)-like and Cysteine Protease Protein(CPP)-32-like Proteases[J]. J Exp Med., 1997, 185(4):601-607.
    [206] Sasaki N, Sato T, Ohler A, et al. Activation of Mitochondrial ATP-dependent Potassium Channels by Nitric Oxide[J]. Circ, 2000, 101(4):439-445.
    [207]郭宝石,刘洪涛.一氧化氮在心肌缺血再灌注损伤中的作用[J].中国应用生理学杂志, 2001, 17(4):370-372.
    [208] Loke KE, McConnell PI. Tuzman JM, et al, Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption[J]. Cir. Res., 1999, 84(7):840-845.
    [209] Cuevas PA, Carceller FA, Gimnez-Gallego GB. Fibroblast growth factors in myocardial ischemia/reperfusion injury and ischemic preconditioning[J]. J.Cell.Mol.Med., 2001, 5(2): 132-142.
    [210] Lizasoain I, Moro MA, Knowles RG, et al. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose [J]. Biochem J, 1996, 314(Pt3):877-880.
    [211] Maulik N, Sato M, Price BD, et al. An essential role of NF-kB in tyrosine kinase signaling of p38 MAPkinase regulation of myocardia ladaptation to ischemia[J]. FEBS Lett., 1998, 429(3):365-369.
    [212] Bolli R, Shinmura K, Tang XL, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning [J].Cardiovasc. Res, 2002, 55(3):506-519.
    [213] Bolli R. Cardioprotective Function of Inducible Nitric Oxide Synthase and Role of Nitric Oxide in Myocardial Ischemia and Preconditioning: an Overview of a Decade of Research[J]. Journal of Molecular and Cellular Cardiology, 2001, 33(11):1897-1918.
    [214] Ferdinandy P, Csont T, Csonka C, et al. Capsaicin-sensitive local sensory innervation is involved in pacing-induced preconditioning in rat hearts: role of nitric oxide and CGRP?[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 1997, 356(3):356-363.
    [215] Zdrenghea D, Bodizs GY, Ober MC, et al. Plasma nitric oxide metabolite levels increase during successive exercise stress testing - A link to delayed ischemic preconditioning?[J]. J Exp Clin Cardio, 2003, 8(1):26-29.
    [216] Babai L, Szigeti Z, Parratt J R, et al. Delayed cardioprotective effects of exercise in dogs are aminoguanidine sensitive: possible involvement of nitric oxide[J].Clin Sci, 2002, 102(4):435-445.
    [217]郭宝石,刘洪涛,窦兰君,等.一氧化氮在心肌缺血再灌注损伤中的作用[J].中国运动医学杂志, 2002, 22(2):183-194.
    [218]吴光明,于彦铮.心脏的肽能神经支配[J].神经解剖学杂志, 1995, 11(1):75-80.
    [219] Mulderry PK. Ghatei MA. Rodrigo J. et al. Calcitonin gene-related peptide in cardiovascular tissues of the rat[J]. Neuroscience, 1985, 14(3):947-954.
    [220] Wimalawansa SJ, MacIntyre I. Calcitonin gene-related peptide and its specific binding sites in the cardiovascular system of rat[J]. Int J Cardiol, 1988, 20(1):29-37.
    [221] Wharton J, Gulbenkian S, Mulderry PK, et al. Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea-pig and rat[J]. J Auton New Syst, 1986, 16(4):289-309.
    [222] F-Cereceda A. Henke H, Lundberg JM, et al. Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin[J]. Peptides, 1987, 8(2):399-410.
    [223]方秀斌,王铁民,赵斌,等.心脏的降钙素基因相关肤免疫反应纤维[J].中国医科大学学报, 1991, 20(2):106-109.
    [224] Richardson R J, Grkovic I, Anderson CR. Immunohistochemical analysis of intracardiac ganglia of the rat heart[J]. Cell Tissue Res, 2003, 314(3):337-350.
    [225] Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev, 2004, 84(3):903-934.
    [226]祝善乐,王健本.大鼠心内降钙素基因相关肤免疫反应神经细胞—免疫组织化学PAP法研究[J].解剖学报, 1991, 22(1):377-379.
    [227] Onuoha GN, Alpar EKaya, Nicholls DP, et al, Calcitonin Gene-related Peptide, Neuropeptide Y and Atrial Natriuretic Peptide Distribution in Guinea Pig Heart from Paraffin wax-embedded and Formalin-cryoprotected Tissues[J]. Journal of Molecular Histology, 1999, 31(9):617-622.
    [228] Shoba T, Tay SS. Nitrergic and peptidergic innervation in the developing rat heart[J]. Anat Embryol, 2000, 201(6):491-500.
    [229] Szolcsany IJ. Forty years in capsaicin research for sensory pharmacology and physiology[J]. Neuropeptides, 2004, 38(6):377-384.
    [230] Ramana CV, Dipette DJ, Supowit SC. Localization and characterization gene-related mRNA in rat heart[J]. Am J Med Sci, 1992, 304(6):339-344.
    [231] Schmalbruch H. The number of neurons in dorsal root ganglia L4-L6 of the rat[J]. Anat Rec. 1987, 219(3):315-322.
    [232] Wimalawansa SJ. Age-related increase of calcitonin gene related peptide in rat thyroid and circulation[J]. Peptides, 1991, 12(5):1143-1147.
    [233] Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials[J]. Endocrine Reviews, 1996, 17(5):533-585.
    [234] Holzer P, Maggi CA. Dissociation of dorsal root ganglia neurons into afferent and efferent like neurons[J]. Neuroscience, 1998; 86(2):389-398.
    [235]汤健,唐朝枢.循环系统的内分泌功能[M].北京:北京医科大学中国协和医科大学联合出版社,第1版, 1998:122-132.
    [236] Ando K, Ito Y, Ogata E, et al. Vasodilating actions of calcitonin gene-related peptide in normal man: comparison with atrial natriuretic peptide[J]. Am Heart J, 1992, 123(1):111-116.
    [237] Saito A, Kimura S, Goto K. Calcitonin gene-related peptide as potential neurotransmitter in guinea pig right atrium[J]. Am J Physiol, 1986, 250(4Pt2):H693-698.
    [238] Anand IS, Gurden J, Wandet GS, et a1. Cardiovascular and hormonal efects of CGRP in congestive heart failure[J].J Am Coll.Cardiol, 1991, 17(2):208-213.
    [239] Nozaki K, Okamoto S, Uemura Y, et al. Vascular relaxation properties of calcitonin gene-related peptide and vasoactive intestinal polypeptide in subarachnoid hemorrhage[J]. J Neurosurg, 1990, 72(5):792-797.
    [240]邓水秀,秦旭平.降钙素基因相关肽的血管生物学功能多样性[J].国际病理科学与临床杂志, 2006, 26(3):246-249.
    [241]谭盛,黄如训.高血压脑动脉硬化大鼠血液流变学, CGRP, ET及c-sis基因表达研究[J].血栓与止血学杂志, 1998, 5(2):72-75.
    [242] Ohhashi Y, Shindo T, Kurihara Y, et al. Elevated sympathetic nervous activity in mice deficient in alpha CGRP[J]. Circ Res, 2001, 89(11):983-990.
    [243] Salem N, Dunbar JC. The insulin-mediated vascular and blood pressure responses are suppressed in CGRP-deficient normal and diabetic rats[J]. Diabetes Metab Res Rev, 2002, 18(3):238-344.
    [244] Zoceali C, Mallamaci F, Parlongo S. The influence of salt intake on plasma Caleitonin gene-related peptide in subjects with mild essential hypertension[J]. Hypertension, 1994, 12(11):1249-1252.
    [245] Shen YT, Pittman TJ, Buie PS, et al. Functional role of alpha-calcitonin gene-related peptide in the regulation of the cardiovascular system[J]. J Pharmacol ExpTher, 2001, 298(2):551-558
    [247] Franco-cereceda A, Gennari C, Nami R, et al. Cardiovascular effects of calcitonin gene-related peptides I and II in man[J]. Circ Res, 1987, 60(3):393-397
    [248] Chang Y, Stover SR, Hoover DB. Regional localization and abundance of calcitonin gene-related peptide receptors in guinea pig heart[J]. J Mol Cell Cardiol, 2001, 33(4):745-754.
    [249] Li JL, Zang YM, Niu GB, et al. Effect of calcitonin gene-related peptide on rat heart in vitro and its mechanism[J]. Pace and Heart, 1993, 7(1):41-43.
    [250]付世杰. CGRP与NE和ACh对心肌细胞影响作用的研究[D].济南:山东大学, 2005年11月.
    [251] Supowit SC, Rao A, Bowers MC, et al. Calcitonin gene-related peptide protects against hypertension-induced heart and kidney damage[J]. Hypertension, 2005, 45(1):109-114.
    [252] Wu DM, Van Z, Wieten PA, et al. Effects of calcitonin gene-related peptide andBIBN4096BS on myocardial ischemia in anesthetized rats[J]. Acta Pharmacol Sin, 2001, 22(7):558-594.
    [253]欧阳伟,钱学贤,李志梁,等.降钙素基因相关肤在整体大鼠心肌缺血预适应中的作用及其与ATP敏感钾通道的关系[J].第一军医大学学报, 2001, 21(1):25-28.
    [254] Zhou ZH, Deng HW, Li YJ. Improvemert of preservation with cardioplegic solution by nitroglycerin induced delayed preconditioning is mediated by calcitonin gene-related peptide[J]. Int J Cardiol, 2001, 81(2-3):211-218.
    [255] Li YJ, Xiao ZS, Peng CF et al. Calcitonin gene related peptide induced preconditoning protects against ischemia-reperfusion injury in isolated rat hearts[J]. Eur J Pharmacol, 1996, 311(2-3):163-167.
    [256] Peng CF, Li YJ, Deng HW, et al. The protective effects of ischemic and calcitonin gene-related peptide induced preconditioning on myocardial injury by endothelin-1 in the isolated perfused rat heart[J]. Life Sci, 1996, 59(18):1507-1514.
    [257] Standen NB. KATP Channels in Vascular Smooth Muscle:Structure, Regulation and Functional Roles[J]. Journal of Clinical and Basic Cardiology. 2003, 6 (1-4):7-14
    [258] Guo YR, Jones WK, Xuan YT, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene[J]. Medical Sciences, 1999, 96(20):11507-11512.
    [259] Braunwald E, Kloner RA. The stunned myocardium:prolonged postischemic ventricular dysfunction[J]. Circulation, 1983, 66(6):1146-1149.
    [260]吴宏超,钱学贤,李立平.大鼠心肌顿抑时血浆及心肌组织中降钙素基因相关肽含量的变化[J].中国病理生理杂志, 2000, 16(1):33-35.
    [261]吴宏超,钱学贤,刘宏.顿抑心肌组织CGRP的免疫组织化学研究[J].心功能杂志, 1999, 11(2):77-79.
    [262] Wang W, Jia LY, Wang TK, et al. Endogenous Calcitonin Gene-related Peptide Protects Human Alveolar Epithelial Cells through Protein Kinase Cand Heat Shock Protein[J]. J. Biol. Chem., 2005, 280(21)20325-20330.
    [263]任雨笙,吴宗贵,俞世强,等.降钙素基因相关肽对培养的内皮细胞缺氧再给氧的影响[J].中国病理生理杂志, 2001, 17(2):101-103.
    [264]林平,赵守琪,刘洋,等. CGRP对葡萄糖诱导血管内皮细胞凋亡保护作用的研究[J].哈尔滨医科大学学报, 2005, 39(2):118-123.
    [265] Coupe MO, MakJ CW, Yacoub M, et al. Autoradiographic mapping of calcitonin gene-related peptide receptors in human and guinea pig heart[J]. Circulation, 1990, 81(3):741-747.
    [266]李晓艳,黄从新,孙有刚,等.降钙素基因相关肽对人血管平滑肌细胞增殖的抑制作用[J].中国病理生理杂志, 2000, 16(1):24-26.
    [267] Kawasaki H, Inaizumi K, Nakamura A, et al. Chronic angiotensin II inhibition increases levels of calcitonin gene-related peptide mRNA of the dorsal root ganglia in spontaneouslyhypertensive rats[J]. Hypertens Res, 2003; 26(3):257-263.
    [268] Ito H, Bell D, Tamamori M, et al. Calcitonin gene related peptide (CGRP) and hypertrophy of cardiomyocytes[J]. Heart Res, 1997. Suppl12:15-17.
    [269] Bell D, Tamamori M, Marumo F, et al. Calcitonin gene-related peptide (CGRP) increases cell surface area and induces expression of skeletal alpha-actin ANP mRNA in hypertrophying neonatal cardiomyocytes[J]. Regul Pept, 1997, 71(1):1-7.
    [270]李春跃,韩补生,南瑞生.降钙素基因相关肽对高血压性与运动性心肌肥厚影响的对比研究[J].内蒙古医学院学报, 2001, 23(2):79-81.
    [271] Zvara A, Bencsik P, Fodor G, et al. Capsaicin-sensitive sensory neurons regulate myocardial function and gene expression pattern of rat hearts: a DNA microarray study[J]. FASEB J, 2006, 20(1):160-162.
    [272] Jonhagen S, Ackermann P, Saartok T, et al. Calcitonin gene related peptide and neuropeptide Y in skeletal muscle after eccentric exercise: a microdialysis study[J]. Bri J Spor Med, 2006, 40(3):264-267.
    [273] Homonko DA, Theriault E. Downhill running preferentially increases CGRP in fast glycolytic muscle fibers[J]. J Appl Physiol, 2000, 89(5):1928-1936.
    [274]许愿忠,王瑞,张建伟,等.不同延迟时间后修复大鼠坐骨神经缺损对CGRP表达的影响[J].中国临床解剖学杂志, 2005, 23(6):648-651.
    [275] Hotta H, Sato A, Sato Y, et al. Stimulation of saphenous afferent nerve produces asodilatation of the vasa nervorum via an axon reflex-like mechanism in the sciatic nerve of anesthetized rats [J]. Neurosci Res, 1996, 24(3):305-308.
    [276] Ebersberger A, Charbel IP, Vanegas H, et al. Differential effects of calcitonin gene-related peptide and calcitonin generelated peptide 8-37upon responses to N-methyl-D-aspartate or (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate in spinal nociceptive neurons with knee joint input in the rat[J]. Neuroscience, 2000, 99(1):171-178.
    [277] Morara S, Wimalawansa SJ, Rosina A. Monoclonal antibodies reveal expression of the CGRP receptor in Purkinje cells, interneurons and astrocytes of rat cerebellar cortex [J]. Neuroreport, 1998, 9(16):3755-3759.
    [278] Hiruma H, Saito A, Ichikawa T, et al. Effects of substance P and calcitonin gene-related peptide on axonal transport in isolated and cultured adult mouse dorsal root ganglion neurons [J]. Brain Res, 2000, 883(2):184-191.
    [279] Chang HM, Wei IH, Tseng CY, et al. Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats[J]. J Chem Neuroanat, 2004, 28(4):239-251.
    [280]车向新,卢金活朱长庚,等.鞘内注射神经生长因子对大鼠痛阈、脊神经节脊髓后角CGRP免疫反应的影响[J].九江医学, 2002, 17(2):68-73.
    [281]朱金明,赖西南.感觉神经肽在生长因子网络调控中的信号介导作用[J].中华创伤杂志, 2001, 17(9):574-575.
    [282] Freeland K, Liu YZ, Latchman DS. Distinct signaling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor[J]. Biochem J, 2000, 345(Pt2):233-2338.
    [283] Wang X, Fiscus R R, Yang L, et al. Lactate and low pH trigger release of calcitonin gene related peptide (CGRP) from nerves in rat abdominal aorta and spinal cord slices[J]. FASEB J, 1993, 7:A476
    [284] Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain producing stimuli[J]. Neuron, 1998, 21(3):531-543.
    [285] Alvis AG, Milesi V, Rebolledo A, et al. Influence of calcitonin gene-related peptide release on pH-induced mechanical depression in rat atria[J]. Jpn Heart J, 2001, 42(4):507-517.
    [286]赵敏,王宪.降钙素基因相关肽的新近研究进展[J].生理科学进展, 2001, 32(2):163-164
    [287] Lind H, Brudin L, Lindholm L, et al .Different levels of sensory neuropeptides (calcitonin gene-related peptide and substance P) during and after exercise in man[J]. Clin Physiol, 1996, 16(1):73-82.
    [288] Schifter S, Breum L, Niclasen B, et al..Calcitonin gene-related peptide during exercise and training[J]. Horm Metab Res, 1995, 27(10):473-475.
    [289]覃乔静,李荣亨.气虚血瘀证血浆NPY、ET、CGRP的改变及相关性研究[J].重庆医科大学学报, 2003, 28(2):202-204.
    [290]程光华,张新路,王荣鑫,等.糖尿病患者血浆CGRP RIA[J].放射免疫学杂志, 1999, 12(4):207-209.
    [291]马延超.降钙素基因相关肽与运动研究[J].体育与科学, 2004, 25(3):61-64.
    [292]齐莉,吴胜吉,佟长青,等.高血压性心肌肥大逆转过程中降钙素基因相关肽含量的变化[J].武警医学院学报, 2003, 12(3):173-176.
    [293] Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation[J]. Pharmacol Exp Therapeut, 2002, 302(3):839-845.
    [294]李昭波,高云秋,李维根,等.运动性肥大心脏心肌和血浆降钙素基因相关肽含量变化[J].中国运动医学杂志, 1999, 18(1):7-8.
    [295]佘飞,孙威,毛节明,等.降钙素基因相关肽转基因预防小鼠自身免疫性糖尿病发病及其抗氧化应激机制(英文) [J].生理学报, 2003, 55(6):625-632.
    [296]李昭波,高云秋,庞永正,等.心肌血管紧张素Ⅱ在运动高血压性心肌肥大时肌球蛋白重链变化中的作用[J].中国运动医学杂志, 1998, 17(2):111-114.
    [297] Pandu R, Gangula R, Zhao HW, et al. Increased blood pressure inα-calcitonin gene–related peptide/calcitonin gene knockout mice[J]. Hypertension. 2000, 35(1Pt2):470-475. [3298] Yamaga N, Kawasaki H, Inaizumi K, et al. Age-related decrease in calcitonin gene-related peptide mrna in the dorsal root ganglia of spontaneously hypertensive rats[J]. The Japanese Journal of Pharmacology, 2001, 86 (4):448-450.
    [299]金其贯,方明,黄叔怀,等.过度训练对大鼠血浆内皮素和降钙素基因相关肽水平的影响[J].体育科学, 1998, 18(2):62-65.
    [300] Duncker DJ, Van Zon NS, Altman JD, et al. Role of K+-ATP channels in coronary vasodilation during exercise[J]. Circulation, 1993; 88(3):1245-1253.
    [301] Duncker DJ, Van Zon NS, Pavek TJ, et al. Endogenous adenosine mediates coronary vasodilation during exercise after K+-ATP channel blockade[J]. J Clin Invest 1995, 95(1):285-295.
    [302] Ishibashi Y, Duncker DJ, Zhang J, et al. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise[J]. Circ Res, 1998, 82(3):346-359.
    [303] Melchert PJ, Duncker DJ, Traverse JH, et al. Role of K(+)(ATP) channels and adenosine in regulation of coronary blood flow in the hypertrophied left ventricle[J]. Am J Physiol, 1999, 277(2Pt2):H617-625.
    [304] Duncker DJ, Oei HH, Hu F, et al. Role of K+-ATP channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine[J]. Am J Physiol Heart Circ Physiol, 2001, 280(1):H22-33.
    [305]吴中宪,韩启德,白燕,等.机体内环境理化因素对降钙素基因相关肽(CGRP)释放的影响[J].生理学报, 1995, 47(6):573-579.
    [306] Alvis A G, Milesi V, Rebolledo A, et al. Influence of calcitonin gene-related peptide release on pH-induced mechanical depression in rat atria[J]. Jpn Heart J, 2001, 42(4):507-517.
    [307] Hasbak P, Lundby C, Olsen NV, et al. Calcitonin gene-related peptide and adrenomedullin release in humans: effects of exercise and hypoxia[J]. Regul Pept, 2002, 108(2-3):89-95.
    [308]张敏,张植学,王可敬.主动运动和被动运动对飞行员血浆几种抗氧化物和血管活性物质含量的影响[J].中华航空航天医学杂志, 1999, 10(4):223-225.
    [309] Wolfrum S, Nienstedt J, Heidbreder M, et al. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul Pept, 2005, 127(1-3):217-224.
    [310]张蕾,邓树勋.运动对心脑血管系统内皮素及降钙素基因相关肽的影响[J].体育与科学, 2002, 23(4):59-61.
    [311] Song QJ, Li YJ, Deng HW. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 1999, 359:477-483.
    [312]佟长青,张引国,郭建增.游泳训练大鼠血浆生物活性肽含量的变化及意义[J].武警医学院学报, 2001, 10(3):183-185.
    [313] Tang ZL, Dai W, Li YJ, et al. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine[J]. Naunyn Schmiedebergs Arch Pharmacol. 1999, 359(3):243-247.
    [314]谭建新,李岩松,黄宇戈,等.降钙素基因相关肽对大鼠心肌缺血损伤的影响[J].中国病理生理杂志, 2000, 16(3):226-228.
    [315]任雨笙,马挺光,李德友,等.不同浓度的降钙素基因相关肽对培养的乳鼠心室肌细胞的影响[J].第四军医大学学报, 1995, 16(4):254-256.
    [316]裴建明,臧益民,牛保国,等.降钙素基因相关肽的心肌电生理作用[J].中国应用生理学杂志, 1996, 12(1):41-44.
    [317] Gisiger V, Belisle M, Gardiner PF. Acetylcholinesterase adaptation to voluntary wheel running is proportional to the volume of activity in fast, but not slow, rat hindlimb muscles[J]. Eur J Neurosci, 1994, 6(5):673-680.
    [318] Popper P, Ulibarri C, Micevych PE. The role of target muscles in the expression of calcitonin gene-related peptide mRNA in the spinal nucleus of the bulbocavernosus[J]. Mol Brain Res, 1992, 13(1-2):43-51.
    [319] Carson LD, Korzick DH. Dose-dependent effects of acute exercise on PKC levels in rat heart: is PKC the heart's prophylactic?[J]. Acta Physiol Scand, 2003, 178(2):97-106.
    [320]马延超,常芸,张缨.运动心脏重塑过程中心室肌降钙素基因相关肽基因表达的变化[J].中国运动医学杂志, 2006, 25(2):168-170.
    [321]罗艳蕊,贺杰,漆正堂.长时间低强度游泳运动对大鼠心血管系统CGRP mRNA表达的影响[J].中国应用生理学杂志, 2007, 23(1):62-65.
    [322] Young ME, Okerberg KA, Wilson CR, et al. Calcitonin gene-related peptide is not essential for the development of pressure overload-induced hypertrophy in vivo[J]. Mol Cell Biochem, 2001, 225(1):43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700