用户名: 密码: 验证码:
受松材线虫侵染的马尾松抑制消减文库构建与表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球一体化和国际社会交往与贸易往来的与日俱增,外来有害生物随人口流动、动植物及其产品跨国扩散日益严重,给入侵地生态系统和国土安全造成巨大的灾害性损失。松材线虫(Bursaphelenchu xylophilus(Steiner&Buhrer)Nickle)已经成为世界上重要的检疫对象和我国有史以来危害最为严重的林业外来有害生物。作为一种外来入侵物种,该病发现之日起就对中国的松林生态系统造成了巨大的破坏和冲击。基于经典与现代生物学的理论与方法,国内外众多学者对松材线虫的生物学、生态学和致病性等进行了深入研究,并在病害控制研究上取得了积极进展,但在实际生产应用过程中,快捷、简便而又行之有效的控制措施尚有待研究和推广。
     松材线虫病是一个受寄主松树、松材线虫、环境条件、树体内微生物以及媒介昆虫等多方面因素影响的复杂体系,其致病过程也是一个复杂的、受多因素影响的过程。本研究基于前人对松材线虫致病过程的认识,以我国南方乡土树种马尾松为研究对象,利用采自浙江省松材线虫病疫区内马尾松样品中分离得到松材线虫虫株接种供试马尾松苗木,并应用分子抑制性消减杂交技术(SSH)技术,以松材线虫接种24h、72h的马尾松苗为实验方(tester),以接种无菌水为对照的健康马尾松苗为驱动方(driver)构建抗松材线虫差异表达的抑制消减cDNA文库,研究分析了接种前后寄主马尾松苗基因表达的差异。通过BLAST对比分析,获得了一批涉及胁迫响应、信号传递及能量代谢等功能的差异基因。本文的研究结果为揭示松树感染松材线虫后的相关病理学响应的分子机制、论证松材线虫病的致病机理,从而达到对病害的可持续控制都提供了科学依据。
     1.通过预备试验对接种用松材线虫株系进行了有效的筛选。
     采用真菌平板培养法研究了不同松材线虫株系的繁殖能力。实验结果表明,所有的4个线虫株系都在灰葡萄孢平板上表现出了良好的生长繁殖情况。此外,供试的4个松材线虫株系在繁殖结构方面具有明显差异。平板培养10d后,NXY03株系的繁殖倍数最高,达到357倍,而最低的NXY14株系的繁殖倍数仅为193倍;在性比方面,4种松材线虫株系表现出类似的繁殖趋势,平均值为3.34左右;幼虫/成虫比方面,NXY03株系的幼虫/成虫比最高,达到了3.3,而NXY01株系最低,只有1.9。通过人工接种方法,比较了供试松材线虫株系在黑松枝段内的迁移扩散和繁殖能力。结果表明,松材线虫NXY03在黑松枝段内迁移能力更强,表现在以更快的速度和更大的种群数量穿过黑松枝段。通过试验。在繁殖倍数方面,接种20d后,松材线虫NXY03株系的繁殖倍数明显高于其它线虫株系,达到了16倍,最终繁殖线虫数量约为3200.0±100.0条,与其它线虫株系具有显著差异。通过比较发现,接种四个株系的松材线虫的马尾松苗在症状最早出现时间、发病与死亡速度,感病指数几个指标间存在显著差异,经过分析,NXY03株系的感病能力最强。
     通过预备试验证明,供试的四个线虫株系在繁殖能力、迁移扩散能力以及致病性几个方面均具有明显差异,其中松材线虫舟山株系(NXY03)在种群活力、繁殖能力、迁移扩散能力和致病能力方面均明显高于其他3个株系,综合试验分析结果,选取该株系线虫作为后期接种的供试松材线虫株系。
     2.通过试验,构建了马尾松抗松材线虫抑制消减文库,并对接种前后供试马尾松苗基因表达的差异进行了分析
     提取样品总RNA后,通过SMART质检、Rsa I酶切、接头验证、差减杂交、PCR验证等一系列操作,分别成功构建了两组差减文库。斑点杂交后通过信号扫描分析共计得到665个阳性克隆,筛选出150个阳性菌落进行测序,得到144个克隆的有效序列。测序结果在NCBI数据库中经Blast比对共得到141个有效比对结果。其中,27个和已知功能的蛋白有高度的相似性;3个保守待测蛋白;111个为未知功能蛋白和假定蛋白。功能已知的蛋白基因分别来自毛果杨、蓖麻、拟南芥、玉米等物种,功能涉及到:参与植物抗病反应、编码胁迫耐受蛋白、参与结构和功能代谢合成途径、参与信号转导和调节途径以及能量代谢等。
     在本试验构建的SSH文库中,有与细胞分裂生长相关的60s核糖体蛋白L38;参与植物防卫反应的查尔酮合成酶、钙结合蛋白等;参与信号转导和调节途径的NPG1、组氨酸激酶受体等;胁迫耐受蛋白,如热激蛋白(HSP)、金属硫蛋白(MT3)、核糖体蛋白L15等;参与结构和功能代谢合成途径的核糖体框架蛋白(EMB1080)、ATP结合蛋白;参与次生代谢途径的肉桂酸脱氢酶(CAD)等。
     接种具有较强毒力的松材线虫后的很短时间内,当激发子与受体识别后,引起树体内部细胞质Ca2+浓度的变化。Ca2+离子流进入细胞,并产生离子通道,从而发出钙信号。而活性氧随后骤增,由活性氧激活细胞质转录因子,并激活防卫反应基因。之后,胁迫表达基因、抗病基因的表达也随之发生变化,随着病程的加深和寄主自身防卫反应机制的激活,其表达量也逐渐上升。而糖类代谢响应基因的差异表达证明,在接种松材线虫后,供试马尾松苗寄主还会通过加强呼吸作用的糖酵解过程以增强细胞的抗逆性。以上试验结果显示,接种松材线虫强毒株系后,寄主马尾松的基因表达在DNA的转录和翻译水平上的调控、抗性基因的参与、防御激活的次生代谢途径、受体激酶等信号分子的调控作用等方面均产生了不同程度的表达差异。这些差异的出现,可能与松材线虫侵染后寄主与病原互作的分子机制相关联。但是这些差异表达的基因是否真正具有抗病相关功能还需进一步的研究。
     总而言之,通过试验证明了供试马尾松接种松材线虫后,相关的抗逆、抗病基因在病程中得到上调表达,并参与了防卫反应相关信号的传递及能量代谢等机制的调控和表达。相关的研究结果对进一步探索松材线虫与寄主马尾松互作的分子响应机制,阐明该病害的致病机理具有重要意义!
With the development of the global integration and international exchanging and trading, the invasive alien species dispersal causes a large damage to the ecology system of the country invaded. Pine wood nematode (Bursaphelenchus xylophilus), as an agent of pine wilt disease and the important quarantine target of many countries around the world, has been the most serious invasive pest in China. As an invasive alien species, this disease caused great destruction and impact to pine forest ecosystems since it had been found in China. Based on the classic and modern biology theory and method, many scientists focused on the biology, ecology and pathogenicity and so on from all over the world, but until recently there were no effective controlling measures to the pine wilt disease.
     The pine wood nematode disease is a complex system which would be influenced both by nematodes, host pine, environmental conditions, associated fungi, vector insects and other factors. The pathogenic process of this disease can also be influenced by a number of factors. Based on the prophase understanding of pine wilt disease, the genetic expression difference of native tree species Pinus massoniana seedlings before and after artificial inoculation had been analyzed with the method of molecular suppression subtractive hybridization in this study. A suppression subtractive hybridization (SSH) cDNA library was constructed with Pinus massoniana induced by Bursaphelenchus xylophilus. The branch was induced with 24 and 72 hour as tester, the non-induced branch as driver. The pine wood nematode strains for vaccination were isolated from Zhejiang Province in the South of China. The BLAST homology search revealed that these genes played varies functions in response to stress, signal transduction, energy metabolism and transportation etc. The results of the study could provide the scientific basis for demonstrating the pathology response mechanism of the disease as well as the molecular mechanism of pathogenicity. In addition, the results of this study could also give science data to provide an academic support for the sustainable management of pine wilt disease accordingly.
     Through preliminary tests, the results are as follows.
     Firstly, the population propagation ability of different B.xylophilus strains was analyzed. The population propagation ability of four B.xylophilus species was analyzed with culture method. The results of the test showed that both four B.xylophilus species have high propagation rate, suitable sex ratio and larvae/adult proportion on the Botrytis cinerea culture. In addition, four B.xylophilus strains have significantly different in propagating structure. B. xylophilus strain NXY03 exhibited the potential high propagating ability with ten days growth on the Botrytis cinerea culture. The propagation multiples of NXY03 reached a maximum of 357 times while the strain NXY14 is only 193 times as the lowest. Four species of pine wood nematode strains showed a similar trend of propagation in sex ratio mean 3.34. At the end, NXY03 lines a maximum of 3.3 on larvae/adult proportion, and NXY01 lines the minimum of 1.9.
     Secondly, the dispersal and propagation ability of different B.xylophilus species were compared.The dispersal and propagation ability of four B.xylophilus strains in Pinus thunbergii shoot section were analyzed with artificial inoculation. Compared with other strains, NXY03 could pass through the shoot section of P.thunbergii with a higher speed and less time. The reproduction multiple of NXY03 is 16 which was significantly higher than that of other strains in the section for 20 days. The final number of NXY03 strain was obviously different with other three strains as 3200±100.
     Thirdly, the virulence of different strains was compared. By comparison, the time of symptom appeared, infection rate and decease infection index of Pinus massoniana seedlings with the inoculation of four strains were all showed significantly different. NXY03 strain has the strongest virulence after analysis.
     The pilot experiment proved that the four nematode strains had significantly different in the reproduction ability, dispersal ability and virulence. The strain of NXY03 that isolated from Zhoushan city showed the highest ability in the population dynamics, proliferation ability, dispersal ability and pathogenic capabilities. With the analysis of the test result the author select the strain of NXY03 as the test sample in the latter part of the experiment.
     Tow suppression subtractive hybridization (SSH) cDNA libraries were constructed to Pinus massoniana seedlings that were induced with NXY03 selected from preliminary tests.Through testing, the genetic expression difference of Pinus massoniana seedlings before and after artificial inoculation had been analyzed.
     SSH libraries were successfully built with SMART method after the total RNA samples were extracted. A total of 665 positive clones were obtained with dot blot. And then 150 positive colons were filtered out for sequencing test which finally got 144 availed sequences. After the Sequencing Blast in the NCBI database, 141 effective results had been showed. Of these, 27 sequences have a high degree of similarity to the proteins that the function has been known which mostly got from Ricinus communi, Populus trichocarpa, Arabidopsis thaliana and Zea mays. There of them were conservative hypothetical proteins, and 111 of these were functional unknown or predicted protein.
     Features of functional known protein involves in: participating the disease resistance of plants, coding stress tolerance proteins, participation in structure and function metabolism, as well as participating signal transduction and energy transportation etc.
     In the SSH library that constructed in the experiment, many differently expressed gene were found. These genes involved cell division grows (60s ribosome protein L38), plant defense response (Chalcone synthase, Calcium-binding protein), signal transduction and adjustment (NPG1), stress tolerance (HSP, MT3, ribosome protein L15), structure and function metabolism (EMB1080, CAD) and so on.
     After artificial inoculation, the exciton recognized acceptor in very short time. The recognition response caused density changes of Ca2+ in the host cytoplasm. Then the Ca2+ stream enters the cell, and produces the ion channel, thus the calcium signal was sending out. The active oxygen suddenly increases, and activated cytoplasm transcription factor and the defense response gene. Afterward, the coercion expresses the gene, the disease-resistant gene expression also to change along with it. The host defense response mechanism was activated with the course of the disease, the expression quantity of the defense response gene also gradually rises in the same time. In addition, the difference expression of carbohydrate metabolism response gene showed that the host pine tree strengthen the respiration and sugar zymolysis process to strengthen cell's resistance after artificial inoculation.
     The above test result improved that, the host pine's gene expression had the varying degree expression difference on DNA duplication and translation, resistant gene participation, secondary metabolism control, signaling molecule control after artificial inoculation. The appearance of the difference expression result is likely associated with the interaction molecular mechanism between the host and the pathogen pine wood nematode. But whether the function of these difference expression genes are related to the disease-resistant also needs further research.
     The analysis results of secquences blast proved that the expression of disease resistance genes are up regulated in the course of disease after inoculated with pine wood nematodes. These genes all participate in the regulation and expression of the defense reaction-related signal transduction and energy metabolism mechanisms. The research results also provide the basic datas which are relevant to further study of the molecular interaction mechanism between pine wood nematode and the host pine trees, and could play an important role in clarifying the pathogenic mechanism of the disease.
引文
[1]Xie Y, Li Z, Williamp G et al. Invasive species in China overview. Biodiversity and Conservation, 2002, 45:121-130
    [2]万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005
    [3]Liebhold A, Macdonald W, Bergdahl D et al. Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science Monographs. The Society of American Foresters, 1995, 30:1-49
    [4]Tabashnik B.Pest adaptation.Nature, 1997, (389):778
    [5]张润志,张大勇叶万辉,等.农业外来生物入侵种研究现状和发展趋势.植物保护,2004,30(3):5-9
    [6]Tokushige Y, Kiyohara T. Bursaphelenchus sp. in the wood of dead pine trees. Journal of Japanese Forest Society, 1969, 51:193-195
    [7]Mamiya Y, Kiyahara T. Description of Bursaphelenchus lignicolus n.sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica, 1972, 18:120-124
    [8]Mamiya, Enda. Bursaphelenchus mucronatus n.sp. (Nmeatoda: Aphelenchoididae) from pine wood and its biology and pathologenicity to pine trees.Nematologica,1979,25:353-361
    [9]Steiner, Buhrer. Aphelenchoides xylophoilus n.sp. A nematode associated with blue-stain and other fungi in timer. Journal of Agriculture Research, 1934, 48:949-951
    [10]Dropkin V, Foudin A. Report of the occurrence of Bursaphelenchus lignicolus induced pine wilt disease in Missouri. Plant Disease Reporter, 1979, 65: 1022-1027
    [11]Wingfield M, Blanchette, Nicholls. Is the pine wood nematode a important pathogen in the United States? J. For, 1984, 82:232-235
    [12]Wingfield M, Blanchette, Kondl. Comparison of the pine wood nematode, Bursaphelenchus xylophilus from pine and balsam fir. Eropean J.For Pathol, 1983, 13(5-6):360-373
    [13] Nickle WR. A taxonomic review of the genera of the Aphelenchoidea (fuchs, 1937) Thorne, 1949 (Nematoda: Tylenchida). Journal of Nematology, 1970, 2:375-392
    [14]Baujard P. Trois nouvells especes de Bursaphelenchus (Nematoda.Tylenchida)et remarques sur le genre.Revue Nematol, 1980, 3:167-177
    [15]Dropkin VH, Foudin A, Kondo E et al. Pinewood nematode: a threat to U.S. forest. Plant Disease, 1981, (65): 1022-1027
    [16]刘世骐.国外松材线虫现状综述.安徽林业科技,1998,(1):4-8
    [17]杨宝君,贺长洋,王成法.国外松材线虫发生概况.森林病虫通讯,1999,(5):40-42
    [18]朱克恭,朱正昌,严敖金.松材线虫病的流行与研究进展[A].中国松材线虫病的流行与治理[C].北京:中国林业出版社,1995,297-314
    [19]程瑚瑞,林茂松,黎伟强,等.南京黑松上发生的萎蔫线虫病.森林病虫通讯,1983,(4):1-5
    [20]张润志,张大勇,叶万辉等.农业外来生物入侵种研究现状和发展趋势.植物保护,2004,30(3):5-9
    [21]宁眺,方宇凌,汤坚等.松材线虫及其传媒松墨天牛的监测和防治现状.昆虫知识,2005,42(3):264-269
    [22]杨宝君,潘宏阳,汤坚等.松材线虫病.北京:中国林业出版社,2003
    [23]赵良平.中国林业检疫性有害生物及检疫技术操作方法.北京:中国林业出版社,2005
    [24]魏初奖.松材线虫病在福建省的潜在危险性分析及检疫对策.福建林业科技,1997,24(1):54-57
    [25]冯士明.松材线虫病在云南发生的可能性及预防对策.植物检疫,2000,14(5):289-291
    [26]吕全,王卫东,梁军等.松材线虫在我国的潜在适生性评价.林业科学研究,2005,81(4):460-464
    [27]冯益明,张海军,吕全等.松材线虫病在我国适生性分布的定量估计.林业科学,2009,45(2):65-71
    [28]Oku H,Shiraishi T,Ouchi S,et al. Pine wilt toxin, the metabolite of a bacterium associated with a nematode. Naturwissenschaften, 1980, 67:198-199
    [29]Kusunoki M. Symptom development of pine wilt disease histopathlolgical observations with microscopes. Ann Phytopath Soc Japan, 1987, 53:622-629
    [30]Kawazu K. Isolation of pine wilting bacteria accompanying pine wood nematode,Bursaphelenchus xylophilus and their toxic metabolites. Scientific Reports of the Faculty of Agriculture, Okayama University, 1998, 87:1-7
    [31]Kawazu K, Zhang H, Kanzaki H. Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administraton. Biosci Biotech Biochem, 1996, 60:1410-1412
    [32]Zhang H, Kanzaki H, Kawazu K. Benzoic acid accumulation in the Pinus thunbergii callus inoculated with the pine wood nematode, Bursaphelenchus xylophilus. Z Naturforsch, 1997, 52c:329-332
    [33]Kuroda K, Ito S. Migration speed of pine wood nematode and activities of other microbes during the development of pine-wilt disease in Pinus thunbergii. J Jpn For Soc, 1992, 74(5):383-389
    [34]Tamura H. Pathogenicity of aseptic Bursaphelenchus xylophilus and associated bacteria to pine seedlings.Jpn J Nematol, 13:1-5
    [35]赵博光,郭道森,高蓉,等.细菌分离物B619与松材线虫病关系的初步研究[J].南京林业大学学报,2000,24(4):72-74
    [36]赵博光,高蓉,巨云为,等.抗生素对松材线虫病的影响.南京林业大学学报,2000,24(4):75-77
    [37]Odani K. Early symptom development of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematode cellulase as a possible candidate of the pathogen. Jpn For Soc, 1985, 67(9):366-372
    [38]严东辉,杨宝君.松材线虫体外酶组成分析.林业科学研究,1997,10(3):265-269
    [38]Kojima K, Kamijyo A, Masumori M, et a1. Cellulase activities of pine wood nematode isolates with different virulences. J Jpn For Soc, 1994, 76:258-262
    [40]蒋丽雅,王晓芸.松材线虫提取液和分泌液中纤维素酶定性检测.森林病虫通讯,1995,3:9-11
    [41]刘伟,杨宝君,徐福元等.松材线虫病早期诊断的研究:I.马尾松、黑松松材线虫病树的早期诊断.林业科学研究,1998,11(5):455-460
    [42]Yamamoto N. Cellulase exudation by the pine wood nematode&detection of activity in its crawing track. Jpn For Soc, 1986, 68:237-240
    [43]Oku H, Shiraishi T, Kurozumi S. Participation of toxin in wilting of Japanese pines caused by a nematode. Naturwissenschaften, 1979, 66:210-211
    [44]Oku H. Role of phytotoxins in pine wilt disease. J.Nematol, 1988, 20(2):245-251
    [45]Oku H. Phytotoxins in pine wilt disease. Nippon Nogeikagaku Kaishi, 1990, 64(7):1254-1257
    [46]曹越,韩正敏,李传道.松材线虫病感病松树中至萎毒性物质的研究.林业科学,2001,37(4):75-79
    [47]曹越,沈伯葵.人工培养条件下松材线虫提取物的毒性研究.南京林业大学学报(自然科学版),1996,20(4):13-16
    [48]杨宝君,刘伟,徐福元等.松材线虫病早期诊断的研究:Ⅱ.松树品种、接种量及线虫来源对流胶法的影响.林业科学研究,1999,12(3):251-255
    [49]徐刚,栗子安.黑松感染线虫后树干中萜类成分的变.林产化学与工业,1994,14(4):49-55
    [50]尤纪雪,宋祯,何文龙等.区分松材线虫病材与健康材的研究.林业科学,1994,30(2):145-150
    [51]王玉嬿,宋玉双.两种指示剂对松材线虫病病木的测试.植物病理学报,1996,26(4):371-376
    [52]Zhang K, Lin M, Wen L, et al. 1998. Genetic variation of Bursaphelenchus xyluphilus and B.mucronatus geographical isolates of China as shown by RAPDs. Proceedings of International Symposium.Tokyo,Japan, 27-28.
    [53]赵立荣,廖金玲,钟国强.松材线虫和拟松材线虫的PCR快速检测.华南农业大学学报,2005,26(2):59-61
    [54]张卫东,廖力,谭群英等.利用荧光PCR快速检测松材线虫.仲恺农业技术学院学报,2005,18(4):32-35
    [55]陈凤毛,叶建仁,吴小芹.松材线虫实时PCR检测技术.南京林业大学学报(自然科学版),2007,31(4):121-224
    [56]贾正辉,朱天辉,杨佐忠.四川松材线虫与拟松材线虫的PCR-RFLP鉴别.四川农业大学学报,2008,26(2):205-209
    [57]方天松,余海滨,卓侃等.寄生加勒比松松材线虫的鉴定及其致病性测定.广东林业科技,2008,24(2):37-41
    [58]刘裕兰,王中康,曹月青等.松材线虫PCR标准化阳性对照构建及检测体系的建立.应用于环境生物学报,2008,14(1):122-125
    [59]王新荣,朱孝伟,胡月清等.松墨天牛携带的松材线虫PCR检测技术.林业科学, 2009,45(7):70-75
    [60]王金成,季蕾,杨秀丽等.松材线虫TaqMan探针实时荧光PCR诊断.植物病理学报,2006,36(7):281-284
    [61]陈凤毛,叶建仁,吴小芹.应用特异引物组合检测松材线虫.林业科技开发,2006,20(3):14-16
    [62]陈凤毛,叶建仁,吴小芹等.松材线虫快速检测试剂盒研制.南京林业大学学报(自然科学版),2007, 31(4):133-135
    [63]苏胜荣,陈凤毛,叶建仁.松材线虫SCAR标记检测方法的建立与应用.黄山学院学报,2008,10(5):57-59
    [64]曹宇,李海燕,马洪周等.免疫磁性捕获技术在松材线虫检测中的应用.林业科学研究,2005,18(5):585-589
    [65]白钢,李海燕,马洪周等.疫木切面上松材线虫抗原的免疫学检测方法.林业科学,2005,41(6):101-104
    [66]白钢,王玉嬿,马洪周等.疫木中松材线虫的免疫学检测方法的研究.林业科学,2005,41(2): 91-95
    [67]Zhao Lilin, Jiang Ping, Leland M. Humble, Sun Jianghua. Within-tree Distribution and Attractant Sampling of Preoperative Pinewood Nematode, Bursaphelenchus xylophilus: An Early Diagnosis Approach. Forest Ecology and Management, 2009, 258: 1932-1937
    [68]黄金水,何学友,杨希等. FJ–MA-02引诱剂林间松墨天牛引诱效果及活虫捕捉器的研制.福建林业科技,2005,(9):12-13
    [69]周平阳,伍苏然,李祖钦等.云南省畹町林区松墨天牛诱捕效果初报.江西农业学报,2007,19(4):56-57
    [70]Liang P, Pardee A B. Differential Display of eukaryoticmessenger RNA by means of differential display: refinements and optimization. Nucleic Acids Research, 1992, 121(14):3269-3275
    [71]王大成.后基因组时代中的机构生物学.生物化学与生物物理,2000,27(4):340-344
    [72]Bachem C W B, van der Hoeven RS, de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant J, 1996, (9):745-753
    [73]Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995, 270 (5235):484-487
    [74]Diatchenko L, Lauy F C, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93(12): 6025-6030
    [75]Liang Peng, Pardee AB.Differential Display of Eukaryotic Messenger RNA by means of the polymerase chain reaction. Science, 1992, 257:961-971
    [76]Liang P, Pardee AB. Diferential display of eukarytic messenger RNA by nlealls of the polymerase chain reaction. Science, l992, 25(7): 967-971
    [77]杨新艳,刘培欣,单文鲁,等. mRNA差异显示技术及其改进.动物医学进展,2004,25(6):19-21
    [78]Steinau M, Unger E, Jones J, et al. Differential display PCR of peripheral blood for biomarker discovery in chronic fatigue syndrome. Mol Med, 2004, 8(2): 750-75
    [79]Ripamonte P, Merighe GK, Meirelles FV. Development and optimization of a fluorescent differential display PCR system for studying bovine embryo development in vitro. Genet Mol Res, 2005, 4(4):726-733
    [80]Debouck C. Differential display or differential dismay. Current Opinion Biotechnology, 1995(6): 597-599
    [81]马月萍,戴思兰.mRNA差别显示技术及其在植物基因研究中的应用.北京林业大学学报,2003,25(2):81-84
    [82]AyalaM, Balint RF, Fernandez-de-Cossjo M E, et al New primer strategy improves precision ofdifferential display. Bin Techniques, 1995, 18(5): 842-845
    [83]刘国花.mRNA差异显示技术及其在植物基因工程中的应用.重庆文理学院学报(自然科学版),2006,5(1):63-65
    [84]Sompayrac L, Jane S, Bum T C, et al. Overcoming limitations of the mRNA differential display technique. Neeleie Acids Res, 1995, 23(22): 47l1-4738
    [85]Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl Acids Res, 1994, 20:4965
    [86]Hubank M, Bryntesson F, Schatz D G. Cloning of apoptosis-related genes by representational difference analysis of cDNA. Methods Mol Biol 2004, 28(2): 255-273
    [87]Bowler L D. Representational difference analysis of cDNA. Methods Mol Med, 2004, 9(4): 49-66
    [88]Sung B, Jung KJ, Chung HY. cDNA representational difference analysis used in the identification of genes related to the aging process in ratkidney.Mech Ageing Dev, 2005, 126(8): 882-891
    [89]Yang JL, Zhang FL. Identification of variations of gene expression of visceral adipose and renal tissue in type 2 diabetic rats using cDNA representational difference analysis.Chin Med J, 2003, 116 (4): 529-533
    [90]Vorster BJ, Kunert CA. Cullis use of representational difference analysis for the characterization of sequence differences between date palm varieties. Plant Cell Rep, 2002, 2(1): 271-275
    [91]Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science, 1991, 252:1651-1656
    [92]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展,2001,28(4):494-497
    [93]周延凯,周建林,聂东宋.筛选差异表达基因方法的新进展.生物技术通讯,2004,15(6):620-622
    [94]Qin L, Rueda L, Ali A, et al. Spot detection and image segmentation in DNA microarray data. Appl Bioinformatics, 2005, 4(1): 1-11
    [95]Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995, 270:484-487
    [96]Boheler KR, Tarasov KV. SAGE analysis to identify embryonic stem cell-predominant transcripts. Methods Mol Biol, 2006, 32(9): 195-221
    [97]Richards M, Tan SP, Bongso A. Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts andantisense transcription of key pluripotency genes. Stem Cells, 2006, 24(5): 1162-1173
    [98]Keime C, Damiola F, Mouchiroud D. Identitag, a relational database for SAGE tag identification and interspecies comparison of SAGE libraries. BMC Bioinformatics, 2004, (5): 143
    [99]Schena M, Shalon D, Davis R W, et al. Qantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270:467-470
    [100]Sjostedt A. A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. Med Microbiol, 2006, 55: 1023-1033
    [101]Suzuki T, Tazoe H, Isemura M. DNA microarray analysis of changes in gene expression induced by dihydroxyvitamin D3 in human promyelocytic leukemiaHL-60 cells. Biomed Res, 2006, 27(3): 99-109
    [102]Andersson H, Hartmanova B. A microarray analysis of the murine macrophage response to infectionwith Francisella tularensisLVS. MedMicrobiol, 2006, 55(8): 1023-1033
    [102]Peeters JK, Van der Spek PJ. Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys, 2005, 43(1): 149-166
    [104]Maurer M, Molidor R, Sturn A. MARS: Microarray analysis, retrieval and storage system. BMC Bioinformatics, 2005, (6): 101
    [105]Qin L, Rueda L, Ali A, et al. Spot detection and image segmentation in DNA microarray data. Appl Bioinformatics, 2005, 4(1): 1-11
    [106]Wang SM, Rowley JD. A strategy for genome–wide gene analysis: integrated procedure for gene identification. Proc Natl Acad Sci USA, 1998, 95 (20):11909-11914 [107 Dong–chul K, Raphael L, Zao–zhong S, et a1. Reciprocal subtraction differential RNA display: An efficient and rapid procedure for isolating differentially expressed gene sequences. Proc natl Sci USA, 1998, 95(20):13788-13193
    [108]Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue–specific cDNA probes and libraries. Proc Natl Acad Sci, 1996, 93:6025-6030
    [109]Shirin M, Sushmita S, Vivek K. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells. Proced Online, 2004, 6(1): 94-104
    [110]Zhang ZZ, Ma ZQ. Suppression subtractive hybridization analysis of Ms2 Near isogenic lines of wheat reveals genes differentially expressed in Spikelets and Anthers. Plant Physiol Mol Biol, 2005,31(2):175-182
    [111]Rebrikov DV, Desai SM, Siebert PD. Suppression subtractive hybridization. Methods Mol Biol, 2004, 258: 107-134
    [112]Zhang Q, Zhang ZW, Xin DQ. Suppression subtractive hybridization for identifying differentially expressed genes in renal cell carcinoma.Chin Med J, 2001, 114(8): 807-812
    [113]Kim JY, Chung YS, Ok SH, et al. Characterization of the full length sequences of phospholipase A2 induced during flower development. Biochimica et Biophysica Acta, 1999(a), 1489: 389-392
    [114]Kim JY, Chung YS, Paek KH, et al. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization. Molecular Cell, 1999, (b) 9: 392-397
    [115]刘军,袁自强,刘建东,等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因.科学通报,2000,13:1392-1397
    [116]张雷,杨志攀,刘一鸣,等. cDNA文库的差异筛选与抑制性减数杂交结合分离胡萝卜体细胞胚根发育相关基因.自然科学进展,2002,12(3):261-265
    [117]罗志勇,陆秋陌,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定.生物化学与生物物理学报,2003,35(6):554-567
    [118]骆蒙.基于抑制差减杂交方法的小麦白粉病相关基因表达谱研究[D].北京:中国农业科学院研究生院,2001.
    [119]王衍海,彭鸿娟,陈晓光,等.日本血吸虫消减雌性成虫cDNA文库的建立及其特异表达基因的筛选.中国寄生虫学与寄生虫病杂志,2006,14(1):45-50
    [120]于秀梅,喻修道,屈志鹏,等.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究.植物病理学报,2007,37(1):50-55
    [121]郭新红,姜孝成,潘晓玲,等.用抑制差减杂交法分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段.植物生理学报,2001,27(5):401-406
    [122]高鹏,王国英,赵虎基,等.抑制差减杂交法分离玉米幼苗淹水诱导表达基因.植物学报,2003,45: 479-483
    [123]王慧梅,王延兵,祖元刚,等.干旱胁迫下黄檗幼苗cDNA消减文库的构建和分析.生物工程学报,2008,24(2):198-202
    [124]骆蒙,孔秀英,霍纳新,等.小麦抗白粉侵染初期的表达序列标签分析.遗传学报,2002,29(6):525-530
    [125]田振东,柳俊,谢从华.利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因.遗传学报,2003,30(7):597-605
    [126]Tian Z D, Liu J, Xie C H, Song B H. Cloning of Photo POTHR - 1 Gene and Its Expression in response to Infection by Phytophthora infestans and Other AbioticStimuli. Acta Botanica sinica, 2003, 45(8): 959-965
    [127]刘春燕,王伟权,陈庆山,等.大豆花叶病毒诱导的消减文库构建及初步分析.生物工程学报,2005,21(2):320-322
    [128]王力华,戴小枫,方宣均,等.大丽轮枝菌毒素诱导表达陆地棉cDNA序列的克隆与定位.中国农业科学,2004,37(10):1474-1480
    [129]赵小兰,苏晓华,田传卫,等.根癌农杆菌胁迫下多花蔷薇(Rosa multiflora‘Inermis 4’)的基因表达分析.中国农业科学,2005,38(7):1425-1430
    [130] Joseph A, Verica S N, Maximova M D, et al. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant Cell Rep, 2004, 23: 404-413
    [131]Hiroyuki T, Kazuhiro T, Gento T, et al. Identification of genes expressed during spore germination of Mycosphaerella pinodes. J Gen Plant Pathol, 2005, 71: 190-195
    [132]蒋丽雅,王晓芸.松材线虫提取液和分泌液中纤维素酶定性检测.森林病虫通讯,1995,(3):9-11
    [133]严东辉,杨宝君.松材线虫体外酶组成分析.林业科学研究,1997,10(3):265-269
    [134]汪来发,朴春根,李咏等.松材线虫产生的分泌物对松树的致病作用.西北农林科技大学学报,2006,33:178-180
    [135]杨宝君,潘宏阳,汤坚等.松材线虫病.北京:中国林业出版社,2003
    [136]Oku, Shiraishi, Chikamatsu. Active defense as a mechanism of resistance in pine against pine wilt disease. Ann. Phytopatholo. Soc. Jpn, 1989, 55:603-608
    [137]张星耀,骆有庆主编.中国森林重大生物灾害.北京:中国林业出版社,2004:1-19
    [138]Kobayashi T, Sasaki K, Mamiya Y. Fungi associated with Bursaphelenchus lignicolus,the pine wood nematode(I).Journal of the Japanese Forestry Society, 1974, 56:136-145
    [139]Mamiya Y,Kimoto J,Wakisaka H et al. Biology of Trichaptum abietinum in relation to pine wilt disease. Bulletin of the Faculty of Agriculture Tamagawa University, 1999, (39):35-50
    [140]张建平,赵博光,谢立群.松材线虫病死木中真菌和细菌的分离.南京林业大学学报,2004,28(2):87-89
    [141]曾凡勇,骆友庆,吕全等.松材线虫入侵的黑松内栖真菌区系初步研究.林业科学研究,2006,19(4):537-540
    [142]Mamiya Y. Initial pathological changes and disease development in pine trees induced by the pine wood nematode, Bursaphelenchus xylophilus. Annals of the Phytopoathological Society of Japan.1985, 51:546-555
    [143]Fukuda. Physiological processes of the symptom development and resistance mechanism in pine wilt disease. Journal of Forestry Research, 1997, 2:171-181
    [144]Odani K, Sasaki S, Nishiyama Y et al. Early symptom developments of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematodes-cellulase as a possible candidate of the pathogen. Journal of Japan Forestry Science, 1985, 67(9):366-372
    [145]Togashi K, Matsunaga K. Between isolate difference in dispersal ability of Bursaphelenchus xylophilus and vulnerability to inhibition by Pinus densiflora. Nematology, 2003, 5(4):559-564
    [146]马海宾.松材线虫纤维素酶系及其cDNA基因的克隆与RNA干扰研究[D].北京:中国林业科学研究院.2007
    [147]Mcintosh RA, Hart GE, Devaskm, et al. Catalogue of gene symbols for wheat. In proceeding of 9th International Wheat Genetic Symposium, 1998
    [148]Johal GS, Briggs SP. Reductase activity encoded by the HMI disease resistance gene in maize. Science, 1992, 258:985-987
    [149]Baker B, Zambryski P, Staskawicz B. Signaling in Plant-microbe interactions. Science, 1997, 276 (5313): 726- 733
    [150]Staskawicz BJ, Ausubel FM, Barker BJ, et al. Molecular genetics of Plant disease resistance. Science, 1995, 268:661-667
    [151]Bent AF. Plant disease gene: function meets structure. Plant Cell, 1996, 8:1757-1771
    [152]Yu YG, Buss GR, Mroof MAS. Isolation of a super family of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Genetic, 1996, 93:11751-11756
    [153]Kanazin V, Markek LF, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Genetic, 1996, 93:11746-11750
    [154]Ikeda Y, Koizumi N, Kusano T, et al. Related Articles Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNFI-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem, 2000, 275(41):695-700
    [155]Arts MGM, Hekkert BTL,Holub EB et al. Identification of R-Gene homologous DNA fragmentsgenetically linked to disease resistance loci in Arabidopsis thaliana. Molecular Plant-Microbe Interaetions.1998, (4):251-258
    [156]Collins NC, Webb CA, Seah S. The isolation and mapping of disease resistance gene analog in maize. Molecular Plant-Microbe Interactions, 1998, 11(10):968-978
    [157]薛勇彪,唐定中,张燕生等.水稻基因组中R类抗病基因同源序列的分离.科学通报,1998年,43(3):277-281
    [158]王石平,刘左德,王江等.用同源序列的染色体定位寻找水稻抗病基因DNA片段.植物学报,1998,40(1):42-50
    [159]Shen B, Carneiro N, Torres-Jerezl, etal. Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Molecular Biology, 1994, 26:1085-1101.
    [160]Anderson PA, Lawrence GJ, Morrish BC et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit with the leucine-rich repeat coding region. Plant Cell, 9:641-651
    [161]张星耀,骆有庆主编.中国森林重大生物灾害.北京:中国林业出版社,2003,1-8
    [162]Koji M,Katsumi T. Among-tree difference in the inhibition of systemic dispersal of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) by Pinus densiflora. Appl. Entomol. Zool.2004, 39(2):271-277
    [163]蒋平.松材线虫病防治技术探讨.浙江林业科技,2000,20(2):63-65
    [164]秦复牛,潘沧桑.松材线虫病研究进展(综述).安徽农业大学学报,2003,30(4):370-376
    [165]朱克恭.松材线虫病研究综述.世界林业研究,1995,(3):28-33
    [166]Elomaa P, Honkanen J, Puska R, et al. Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to gerbery hybrida inhibits flower pigmentation. Biotechnology, 1993, 11: 508
    [167]Ferrer J, Jez J, Bowman M, et al. Structure of chalcone synthase and the molecular basis of plant polyketide. Nat Struct Biol, 1999, (6): 775
    [168]陈玉惠,叶建仁,魏初奖.松材线虫对马尾松苯丙烷类代谢的影响.林业科学,2006,42(2):73-77
    [169]藤涛,曹福祥,王猛,等.松材线虫侵染对苯丙氨酸解氨酶及酚类物质的影响.中南林业科技大学学报,2007,27(3):124-127
    [170]陈玉惠,叶建仁,魏初奖,等.松材线虫侵染对马尾松、黑松水分及相关代谢的影响.植物病理学宝,2005,35(3):201-207
    [171]徐福元,葛明宏,赵振东,等.马尾松不同种源氨基酸含量与抗松材线虫病的关系.林业科学研究,1998,11(3):313-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700