用户名: 密码: 验证码:
溪洛渡电站建基岩体工程地质特性及反馈研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溪洛渡水电站建基面开挖阶段已经结束,建基面由610m高程开挖至324.5m高程。在开挖过程中,作者在导师的带领下随施工进度利用先进的仪器设备和方法及时准确的获取了建基面岩体的岩体结构、风化程度、岩体松弛、岩体质量和岩体力学性质等各项数据,对建基岩体由表部至深部有了较为全面的了解。木文通过对已开挖建基岩体的工程地质特征的研究,对前期勘察成果进行反馈研究,以检验可研阶段勘察方法的准确性,进而为其它水电站建设提供一个高效可靠的研究方法和思路,提出今后类似工程的勘察方法和勘察重点,为减少工程地质问题的出现和特高拱坝的勘探提供新的参考方法、技术,意义重大。本文主要从以下几个方面进行研究。
     (1)利用采用现场精测窗、全裂隙测量和数码摄录相结合的方法对每个开挖梯段建基面岩体的结构面进行解译和岩体结构划分,进而得到了左右岸拱肩槽和河床建基面岩体结构分布特征;
     (2)利用前期平洞内对裂隙的统计和岩体结构划分的结果与开挖后岩体结构成果相比较,以检验在相同位置岩体结构划分的异同;
     (3)对建基面上的钻孔分析,爆破松弛对建基面岩体有一定的影响,且不同等级的岩体受影响的深度不同,经统计影响深度在1.2-1.8m范围内;
     (4)利用钻孔声波划分了左右两岸建基岩体浅表部和深部的风化程度,并与开挖前划分的风化界限进行了比较,结果显示两个阶段划分弱上风化带与弱下风化带界限、弱下风化带和微新风化带界限基本一致;
     (5)使用了新型发明专利技术——“白载式”变形试验设备对两岸建基面进行了70多个试验,试验成果涵盖了建基面上不同岩性、不同岩级类型岩体的变形模量,同时又进行了同向声波测试,经拟合表明声波与变形模量有很好的相关性;
     (6)溪洛渡建基面岩体的特点就是随机发育的层内错动带将整个建基面及建基岩体切割成似层状,减弱了建基面岩体的力学性质。通过对山体内部层内错动带原位力学性质试验,利用弹性力学的原理,结合声波与模量的转换公式确定了层内错动带在松弛状况下和未松弛状况下的性状及变形模量;
     (7)利用岩体结构、完整性系数、波速比和变形模量等多种指标对建基面及建基岩体的岩体质量等级进行了划分,并与开挖前确定的建基面附近岩体质量等级成果进行了比较;
     (8)利用三维数值模拟计算分析了建基面上部岩体挖除后岩体的应力特征及范围,以及在正常的工程荷载作用下建基面表部和深部的总位移量、最大主应力、中间主应力和剪应力的分布特征。
The phase of Xiluodu Hydropower foundation excavation has completed. Base surface excavated from the 610m to 324.5m elevation. In the excavation process, the author acquired rock mass structure, the degree of slack rock, rock quality and nature of rock mechanics etc. of base surface rock mass timely and accurately by using advanced equipment and methods under the leadership of the Professor NieDe xin. Then got comprehensive understanding of characteristics of foundation rock mass from the table to the inside. This article studied engineering geological characteristics of foundation rock mass after excavation, and made comparison of early survey results in order to test the accuracy of survey methods of the feasibility study stage. And provided a highly efficient and reliable research methods and ideas for other Station Construction. It means a great deal to reduce the emergence of engineering geology. This paper studied the following aspects:
     (1) The rock structures were compartmentalized by using precision measuring window with on-site, full crack measurement and the method of combining digital video recording for structural plane of each bench excavation foundation surface, and then got left and right banks spandrel groove and bed base surface distribution of rock mass structure;
     (2) We compared the rock structure of exploration hole early stage with the one of excavation stage in order to test the similarities and differences of rock structure in same location in two stages;
     (3) On the base of analysis of sonic drilling of base surface, the studies show that the blast made rock mass of base surface flabby. And different slack depth belongs to different levels rock mass. The statistical depth of impact were in the range of 1.2~1.8m;
     (4) Weathering degree of shallow and deep of foundation rock was distinguished by using sonic drilling. The weathering boundaries which including the boundary between weak weathering zone upper segment and weak weathering zone lower segment and boundary between weak weathering zone lower segment and very shallow weathered bedrock were almost same.
     (5) There are more than 70 test points which were accomplished by using a new patent technology-"self-loading" the deformation of test equipment on the both sides of the base surface. The test results covered different situations modulus of deformation which were affected by different lithology and different types of rock. The deformation modulus showed a good correlation with acoustic velocity which were tested at the same time and place.
     (6) The characteristics of rock mass on Xiluodu base surface were that the lots of random soft interlayer which cut foundation rock into layers and made mechanical properties of foundation rock weak, distributed on the foundation rock. The test was done to determine the mechanical properties of soft interlayer. By using elasticity theory and acoustic conversion formula and modulus, the characters and deformation modulus of rock mass were determined in relaxation and non-relaxation situation.
     (7) The rock mass quality of foundation has been classified by several indexes which included rock mass structure, integrity factor, velocity ratio and modulus. And compared the resaults between the before and after excavation.
     (8) The results were given which included rock mass characteristics and the stress range after the rock excavation and the total displacement, maximum principal stress, intermediate principal stress and shear stress distribution in the normal engineering loads by three-dimensional numerical simulation analysis.
引文
[1]黎展眉,国内外拱坝建设与发展(上)[J].贵州水力发电.2003,17(1):1~5.
    [2]潘家铮.拱坝的危险.知识就是力量[J].2005,(05):53-55.
    [3]强天驰,寇晓东,杨强.拱坝工程实例分析[J].水利水电技术.1999,5(30):43~45.
    [4]王建升,澎亚.溪洛渡工程大事记.中国三峡建设.2005.6:59-62.
    [5]王仁坤.金沙江溪洛渡水电站坝址选择[J].四川水力发电1994,(3):48~53.
    [6]闻太平,邹红枣.岩体结构分类及其特征[J].黑龙江水利科技.2009,3(37):69.
    [7]张悼元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994:6.
    [8]孙玉科.工程地质学发展与创新思路探讨之五--岩体结构的发现及其理论意义[J].岩土论坛.2002,6(1):30~31.
    [9]孙玉科.岩质边坡稳定性的工程地质研究[J].地质科学.1965,4..
    [10]谷德振.岩体工程地质力学基础[M].科学出版社.1979.
    [11]孙广忠.论“岩体结构控制论”[J].工程地质学报.1993,(01).
    [12]吕美君,晏鄂川.顺层边坡岩体结构稳定性分析[J].地球与环境.2005,33(增刊):285~289.
    [13]张慧梅,李云鹏.杨治林.顺层边坡岩体结构稳定性位移判据的研究[J].西安科技大学学报430~437.
    [14]李云鹏,杨治林,王芝银.顺层边坡岩体结构稳定性位移理论[J].岩石力学与工程学报.2000,19(6):747~750.
    [15]王芝银,杨志法,李云鹏,杨相海.顺层边坡岩体结构变形分叉灾变特性研究[J].西安业学院学报.1999,19(3):203~207.
    [16]杨治林.顺层边坡岩体结构的模态幅值研究[J].岩土力学.2003,24(5):764~770.
    [17]肖远.用岩层梁代替岩层板分析顺层岩体边坡结构变形破坏的条件[A].第二届全国工程地质力学青年学术讨论会论文集[C],北京:地震出版社,1992:79~83.
    [18]杨治林.顺层边坡岩体结构的非完善屈曲性态研究[J].岩土力学.2008,28(刊):353~366
    [19]徐卫亚.层状坝基岩体结构分类的三角多项式模式图方法[J].武汉水利电力大学(宜昌)学报.1999,21(4):283~286.
    [20]左保成,陈从新,刘小巍,沈强.反倾岩质边坡破坏机理模型试验研究[J].岩石力学与工程学报.2005,24(19):3506~3511.
    [21]位伟,段绍辉,姜清辉,漆祖芳,张房房.反倾边坡影响倾倒稳定的几种因素探讨[J].岩土力学.2008,29(增刊):431~434.
    [22]陈红旗,黄润秋.反倾层状边坡弯曲折断的应力及挠度判据[J].工程地质学报[J].2004,12(3):243~246.
    [23]程东幸,刘大安,丁恩保.反倾岩质边坡变形特征的三维数值模拟研究——以龙滩水电站工程边坡为例进行三维变形特征分析[J].工程地质学报.2005,13(02):222~226.
    [24]刘应龙,任光明,陈强,徐波.反倾层状岩体倾倒变形强烈程度研究[J].中国水运.2008,8(12):185~186.
    [25]蔡国军,裴钻.反倾互层岩质边坡开挖物理模拟试验研究[J].水土保持研究.2007,14(5):126~130.
    [26]冷先伦,盛谦,廖红建,熊俊,郭志华.反倾层状岩质高边坡开挖变形破坏机理研究[J].岩石力学与工程学报.2004,23(增1):4468~4472.
    [27]蒋良潍,黄润秋.反倾层状岩体斜坡弯曲-拉裂两种失稳破坏之判据探讨[J].工程地质学 报.2006,14(03):289~294.
    [28]蔡跃,三谷泰浩,江琦哲郎.反倾层状岩体边坡稳定性的数值分析[J].岩石力学与工程学报.2008,27(12):2517~2522.
    [29]邹丽芳,徐卫亚,宁宇,郑文棠.反倾层状岩质边坡倾倒变形破坏机理综述[J].长江科学院院报.2009,26(5):25~30.
    [30]韩爱果,聂德新.岩体结构研究中结构面间距取值方法探讨[J].岩石力学与工程学报.2003,22(增2):2575~2577.
    [31]吴志勇,聂德新.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报.2003,22(增2):2568~2571.
    [32]崔银祥.碎裂岩体用作高混凝土重力坝坝基的可能性评价[D].成都理工大学博士学位论文,2005.
    [33]周洪福.深覆盖宽河床多种复杂岩体作为重力坝建基岩体研究[D].成都理工大学博士学位论文,2008.
    [34]魏云杰.中国西南水电工程区峨眉山玄武岩岩体结构特性及其工程应用研究[D].成都理工大学博士学位论文,2007.
    [35]中华人民共和国水利部.水利水电工程地质勘察规范(GB50287-2006)[S],北京:中国计划出版社,2006
    [36]湖南省水利水电勘测设计院.中小型水利水电工程地质勘察规范(SL 55-2005)[S],北京:水利电力出版社,2005.
    [37]中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001)[S].中国建筑工业出版社.
    [38]中华人民共和国水利部.工程岩体分级标准(GB50218-94)[S],北京:中国计划出版社出版,1995
    [39]林宗元,岩土工程勘察设计手册.沈阳:辽宁科学技术出版社,1996
    [40]中华人民共和国国家标准.锚杆喷射混凝土支护技术规范(GBJ86-85)[S],1985
    [41]Binham C. Distributions on the sphere and on the projective plan[D]. Yale university. 1984:93~95.
    [42]Shanley R J,Mathtab M A. Delineation and analysis of clusters in orientation data[J]. Mathematical Geology.1976.8(1).
    [43]Kulatilake P. H. S. W.,et al. Joint network modelling with a Validation exercise in Stripa Mine Sweden. IntJ.Rock Mech.Min.Sci.&Geomech.Abstr.1993,30(1).
    [44]Mahtab M. A., Yegulalp T. M. Rejection criterion for definition of clusters in orientation data[C]. Proceedings 23rd Symposium on Rock Mechanics,1982, p116-123
    [45]Yegulalp T. M., MahtabM. A., Proposed model for statistical representation of mechanical properties of rock[C]. Proceedings — Symposium on Rock Mechanics,1983, p 61~69
    [46]Mahtab M. A., Yegulalp T. M. Similarity test for grouping orientation date in rock mechanics[C]. Proceedings — 25th Symposium on Rock Mechanics,1984, p 495~502
    [47]Kulatilake P. H. S. W. and Wu T. H. Estimation of Mean Trace Length of Discontinuties[J]. Rock Mech.&Rock Engng.,1984,17(4):215~232.
    [48]Kulatilake P. H. S. W., Wu, T. H. Sampling bias on orientation of discontinuties[J]. Rock Mech.&Rock Engng.,1984,17(4):243~253
    [49]Wathugala Deepa N., Kulatilake P. H.S.W., Wathugala Gamage W. General procedure to correct sampling bias on joint orientation using a vector approach[J]. Computers and Geotechnics,1990,10(1):1-31.
    [50]丁梧秀.风化岩体的波速湿度效应[J].地质灾害与环境保护.1996,7(4):50~52.
    [51]池林海,田剑锋,马超.弹性波法在岩体风化带划分中的应用[J].公路.2008,(7):62-64.
    [52]胡杰刚,俞敏,全洪波,黄景芳,谭彬建.桂柳高速公路边坡岩石风化速度的研究[J].水文地质工程地.2003,(4):67~71.
    [53]左三胜,任光明.运用定量指标研究岩体风化问题的探讨[J].山地学报.2002,20(3):365~369.
    [54]王旺盛,彭社琴.白鹤滩坝区岩体风化带划分探讨[J].路基工程.2009,(3):137~138.
    [55]李虎,许模,马莹.某大型水电站坝区岩体风化分带定量划分初探[J].中国地质灾害与防治学报.2008,19(1):114~117.
    [56]魏云杰,许模,陶连金.某水电站坝区峨眉山玄武岩岩体风化特征[J].北京工业大学学报.2009,35(1):53~57.
    [57]魏云杰,许模,陶连金,李虎.峨眉山玄武岩岩体风化分带量化研究[J].湖南科技大学学报(自然科学版).2008,23(3):32~36.
    [58]张万奎.深厚全风化花岗岩坝址的工程地质特性研究.云南水力发电[J].2006,22(3):19~21.
    [59]尚彦军,曲永新,胡瑞林.花岗岩风化壳研究现状—以东南沿海为例[J].工程地质学报,2000(增刊):388~394.
    [60]杨娟.秦皇岛市混合花岗岩风化壳工程地质分带研究[C].第四届全国工程地质大会论文选集(二).北京:海洋出版社.1992:555~565.
    [61]段光杰.风化花岗岩的基本特征和工程分类研究[C].第四届全国工程地质大会论文选集(二).北京:海洋出版社.1992:561~583.
    [62]张发明,吕庆安.层状火山岩体风化特征及定量评价方法初探[J].西安地质学院学报.1995,17(2):73~80.
    [63]何珊儒,张福林,郑水敢.惠州白垩系红层岩体风化带工程地质特征研究[J].西部探矿工程.2005,(10):83~84.
    [64]陈安,彭振斌,罗毅莎.湖南白垩系泥质粉砂岩风化特性研究[J].湖南科技大学学报(自然科学版).2009,24(1):58-61.
    [65]胡江运,陈志杰,徐复兴.荆门电厂风化粘土岩的工程特性[J].电力勘测.1999,(2):13~17.
    [66]冯文丽,崔洪庆,刘远征.有序聚类法在锦凌水库风化岩体定量分带中的应用[J].水科学与工程技术.2006(增刊):45~46.
    [67]冯文丽,崔洪庆,刘远征.基于有序聚类法的风化岩体定量分带研究[J].岩土工程技术.2006,20(16):297~299.
    [68]聂德新,韩爱果,巨广宏.岩体风化的综合分带研究[J].工程地质学.2002,10(1):20~25.
    [69]左三胜,任光明.运用定量指标研究岩体风化问题探讨[J].山地学报.2002.20(3):365~369.
    [70]冯庆祖,陈龙,聂德新.岩体风化程度量化分带研究[J].地质灾害与环境保护.2001,12(2):76~79.
    [71]孟凡玲.岩体风化程度分带的模糊模式识别方法[J].东北水利水电.2007,25(9):56~58.
    [72]禹峰,吴礼年,李跃升.岩体风化程度的模糊综合评判[J].岩土工程·勘测.2005,(2):24~26.
    [73]刘春,白世伟.岩体风化程度两级模糊综合评判研究[J].岩石力学与工程学报.2005,24(2):252~256.
    [74]龚涛,段泽文.岩体风化带多元分割方法[J].云南农业大学学报.2001,16(4):294~298.
    [75]侯玉宾,孙树林.岩体风化突变模型[J].河海大学学报.1998,26(6):1~4.
    [76]W. R. DEARMAN, F. J.BAYNES and T. Y. IRFAN. Engineering Grading of Weathered Granite[J]. J. Eng. Geo.1978,12:345~374.
    [77]Y. V. RAMAN and B. S. GOGTE. Quantitative Studies of Weathering in Saprolitized Charnockites associated with a Landship Zone at the Porthimund Dam [M]. India. Eng. Geol.,1982,19:29~46.
    [78]R. A. FORTH &. P. M. PLATT-HIGGINS. Method of investigation of Weathered Rocks in Hongkong. Proceeding of the international symposium on weak Rock/Tokyo/21-24 [M],September 1981,519.
    [79]D. T. CURREY. Deeply Weathered Rock at Victorian Damsite[J]. Eng. Geol.,.1977,11 341-363.
    [80]Gokay, M. Kemal, Influence of Natural Weathering on Rock Mass Colour[J]. Union of Chambers of Engineers and Architects of Turkey.2003,42(1):35~41.
    [81]Viana Da Fonseca, A.,Coelho, S. Characterization of highly variable rock weathering by using DPR[J]. American Society of Civil Engineers.2006,(150):127~134.
    [82]Shafiei, A.,Heidari, M.,Dusseault,M.B.Weathering and geomechanical properties of Alvand granitic rocks, western Iran[J].Taylor and Francis/Balkema, P.O Box 447, Leiden,2300 AK, Netherlands.2007,1:835~842.
    [83]W R DEARMAN, F J BAYNES and T Y IRFAN.Engineering grading of weathered granite [J]. J. Eng. Geo.1978,12:345-3741
    [84]Nefeslioglu, H.A. Gokceoglu, C. Sonmez, H.2. An approach to determine the weathering characteristics of discontinuities[J].Elsevier Ltd.2004,41(SUPPL.1):1-6.
    [85]哈秋舲.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J].岩石力学与工程学报.2001,(05):605~610.
    [86]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].中国科学院武汉岩土力学研究所博士学位论文,2002,48~68.
    [87]黄润秋,林峰,陈德基,等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,(03):228-229.
    [88]肖世国,周德培.开挖边坡松弛区的确定与数值分析方法[J].西南交通大学学报,2003,38(3):318~321.
    [89]周华,汪卫明,陈胜宏.岩体开挖松弛的判据与有限元分析[J].华中科技大学学报(自然科学版).2009,37(6):112~116.
    [90]周华,王国进,傅少君,邹丽春,陈胜宏.小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J].岩土力学.2009,30(4):1175~1180.
    [91]王浩,廖小平.边坡开挖卸荷松弛区的力学性质研究[J].中国地质灾害与防治学报.2007,18(增刊):5-10.
    [92]赵晓彦,胡厚田,庞烈鑫,等.类土质边坡开挖的卸荷作用及卸荷带宽度的确定[J].岩石力学与工程学报,2005,(04):710-711.
    [93]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,(02):171~174.
    [94]聂德新.岩质高边坡岩体变形参数及松弛带厚度研究[J].地球科学进展,2004,19(3):472~475.
    [95]石安池,徐卫亚,张贵科.三峡工程永久船闸高边坡岩体卸荷松弛特征研究[J].岩土力学.2006,27(5):723~729.
    [96]米德才,陆民安.百色水利枢纽RCC坝基岩体松弛及处理[J].水力发电.2006,32(12):43~45.
    [97]李晓,聂德新,万宗礼,马福祥,贺咏梅.公伯峡电站开挖边坡古风化岩松弛与工程特性变化研究[J].工程地质学报.2005,13(02):155~159.
    [98]Shen, B.; Barton, N. Disturbed zone around tunnels in jointed rock masses. International Journal of Rock Mechanics and Mining[J].Sciences& Geomechanics Abstracts,1997,34(1): 117~125.
    [99]Luke, B.A.; Stokoe, K.H. Ⅱ; Bay, J.A.; etc. Seismic measurements to investigate disturbed rock zones. In:Geo-Institute of the ASCE. Proceedings of the 1999 3rd National Conference on Geo-Engineering for Underground Facilities. Urbana, IL, USA:Geotechnical Special Publication, (90):303~314
    [100]Autio, J.; Siitari-Kauppi, M.; Timonen, J.; etc. Determination of the porosity, permeability and diffusivity of rock in the excavation-disturbed zone around full-scale deposition holes using the**1**4C-PMMA and He-gas methods. In:Proceedings of the 1997 6th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere. Sendai, Jpn:Journal of Contaminant Hydrology, 1998,35(1-3):19~29
    [101]Sato, T.; Kikuchi, T.; Sugihara, K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan[J]. Engineering Geology,2000,56(1):97~108
    [102]Deere D C. Technical description of rock cores for engineering purposes[J]. Rock Mech&Engng Geol,1964,9 (1):17~22
    [103]Arild Palinstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 1:The development of the Rock Mass index(RMi) [J]. Tunneling and Underground Space Technology,1996(2):175~188.
    [104]Arild Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 2:Some pactical applications of the Rock Mass index(RMi) [J]. Tunneling and Underground Space Technology,1996(3):287~303
    [105]石长青,赵毅鹏,肖用海.岩体质量工程地质评价[J].辽宁工程技术大学学报(自然科学版).2001,20(4):530—532.
    [106]A.Ozsan,M.Akin. Engineering geological assessment of the proposed Urus Dam[J], Turkey. Engineering Geology,2002(66):271~281
    [107]Zekai Sen, Bahaaeldin H. Sadagah. Modified rock mass classification system by continuous raring[J]. Engineering Geology,2003(63):269~280.
    [108]胡卸文,黄润秋.水利水电工程中的岩体质量分级研究[J].成都理工学院学报,1996(3):64~68.
    [109]R.K.GoeI,J.L.Jethwa,A.GPalthankar. Indian experience with Q and RMR systems[J]. Tunnelling and underground space technology,1995(1):97~109.
    [110]L.P Sarma,N.Ravilcumar. Q-factor by spectral ratio technique for strata evaluations [J]. Engineering Geology,2002(57):123~132.
    [111]赵玉线.国内外主要围岩分类换算原则和方法[J].工程地质学报,1993(12):24-31。
    [112]王月明.两种岩体分类RMR和Q之间的关系[J].绵阳经济技术高等专科学校学报,,2001(3):17~18.
    [113]蔡斌,喻勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2001(增)):1677~1679.
    [114]S.Y Choi,H.D.Park. Comparison among different criteria of RMR and Q-system for rock mass classification or tunnel in Korea[J]. Tunnelling and underground space technology,2002(1'}:391~401.
    [115]周志东,胡卸文,张倬元等.西南某水电站坝肩岩体质量分级方法选取探讨[J].成都理工学院学报,1999(1):82~85.
    [116]李攀峰,张倬元,陶连金.西南某水电站地下厂房岩体质量分级研究[J].水电站设计,2003,(2):71~73.
    [117]李攀峰.大型地下洞室群围岩稳定性工程地质研究[D].成都理工学院博士学位论文,2004.
    [118]朱之杰.狮子滩夹泥及风化破碎带的物理力学性质[J].水利发电.1957,(11).
    [119]姜达权.在红色岩层分布区筑坝的一些地质问题[J].水文地质工程地质.1957,(2).
    [120]吕濂.501-1工程坝基的泥化板岩夹层问题[J].水文地质工程地质.1957,(9).
    [121]金德濂.某坝址软弱夹层的工程地质特征[J].水文地质工程地质.1960,(6).
    [122]黄河水利委员会规划大队,地质科学院水文地质研究所,清华大学水利系.某坝址页岩及夹泥层的工程地质条件.水文地质工程地质选辑(3)[M].北京:地质出版社.1974.
    [123]曲永新.某水利工程泥化夹层的形成及变化趋势的研究[J].地质科学.1977,(4).
    [124]曲永新,徐瑞春.长江葛洲坝工程层间剪切带的研究[A].全国首届工程地质学术会议论文选集[C].北京:科学出版社.1983.
    [125]项伟.长江葛洲坝工程坝基软弱夹层的沉积规律及其工程地质意义[A].全国第三次工程地质大会论文选集(上卷)[C]。成都:成都科技大学出版社.1989.
    [126]李景山,赵善国,胡萍坝基软弱夹层的成因及特征[J].黑龙江水利科技.2007,35(2):181.
    [127]胡涛,任光明,聂德新等.沉积型软弱夹层成因分类及强度特征[J].中国地质灾害与防治学报.2004,15(1):124~128.
    [128]李宝全,魏植生,李开德.糯扎渡水电站右岸构造软弱岩带工程地质特性及影响.水力发电[J].2005,31(5):28~29.
    [129]冯明权,刘丽,代晓才.彭水水电站软弱夹层特征与分布规律的研究[J].人民长江.2007,38(9):77~79.
    [130]曲永新.软弱夹层的工程地质预报[M].工程地质力学研究.北京:地质出版社.1985.
    [131]许东俊.软弱夹层的流变特性及其长期强度的测定方法.岩石力学[J].1980,(1).
    [132]Tian Tjong-Kie, Li, K, R. Relaxation and creep properties of thin interbeded clayey seams and their founfamental role in the stability of dam[J]. WEAK ROCK A.A.Balkema,1981:369~374.
    [133]肖树芳.泥化夹层蠕变全过程的模型及微结构的变化[J].岩石力学与工程学报.1987,(2).
    [134]赵平劳.层状岩体杭弯刚度及其软弱夹层效应[J].兰州大学学报(自然科学版).1992,28(8):150~155.
    [135]刘彬,聂德新.断层泥强度参数与含水率关系研究[J].岩土工程学报.2006,28(12):2165~2167.
    [136]丁多文,罗国煜.链子崖危岩体软弱夹层的力学特性[J].水文地质工程地质.1994,(6):7~9.
    [137]刘晶辉,白富英,陈雪松.露天煤矿软弱夹层剪切强度特征分析[J].露天采煤技术.1999,(1):16~18.
    [138]闫汝华,樊卫花.马家岩水库坝基软弱夹层剪切特征及强度[J].岩石力学与工程学报.2004,23(22):3761~3764.
    [139]陈平货,秦红军,李少波.马家岩水库右岸石英砂岩中软弱夹层的试验研究[J].华北水利水电学院学报.2005,26(2):55~57.
    [140]王义军,李天斌,王宝国.某滑坡软弱夹层抗剪强度取值方法的研究[J].中国地质灾害与防治学报.2004,15(4):25~29.
    [141]冯明权,刘丽,冯建元.彭水水电站软弱夹层性状特征与力学参数的研究[J].资源环境与工程.2008,22(增刊):86~89.
    [142]项伟.软弱夹层微结构研究及其力学意义[J].武汉地质学院学报.1985,10(1):165~169.
    [143]唐良琴,聂德新,任光明.软弱夹层粘粒含量与抗剪强度参数的关系分析[J].中国地质灾害与防治学报.2003,14(2):56~60.
    [144]黄志全,陈尚星,李华晔,姜彤.溪洛渡电站软弱夹层剪切强度分析研究[J].地质与勘探.2005,41(4):98~101.
    [145]董遵德,袁澄文.岩体软弱夹层现场慢剪切试验研究[J].岩石力学与工程学报.1994,13(2):149~159.
    [146]胡卸文.无泥型软弱层带变形参数取值研究[J].岩土工程学报.2000,22(1):109~112.
    [147]张咸恭,聂德新,韩文峰.围压效应与软弱夹层泥化的可能性分析[J].地质论评.1993,36(2):160~167.
    [148]聂德新,张咸恭,韩文峰.围压效应与软弱夹层的物理力学特性的相关性研究[J].地质灾害与环境保护.1990,1(1):66~71.
    [149]吴德超,李愈生,刘维亮等.金沙江下游溪洛渡水电站马家河坝断层活动性及工程稳定性[J].地质通报.2006,25(4):506~511.
    [150]吴德超.金沙江溪洛渡地区叠加褶皱及工程地质意义[J].中国地质.2003,30(4):352~355.
    [151]覃礼貌,刘援朝,吴德超等.溪洛渡地区节理构造特征及解析[J].矿物岩石.2003,23(1):51~54.
    [152]丁立丰,安其美,王海忠.金沙江溪洛渡水电站地应力测量[J].水文地质工程地质.2004,(6):56~59.
    [153]付成华,汪卫明,陈胜宏.溪洛渡水电站坝区初始地应力场反演分析研究[J].岩石力学与工程学报.2006,25(11):2305~2312.
    [154]孙士型.溪洛渡坝区主要气象要素随高度的垂直变化[J].中国三峡建设.2005,1:37~38.
    [155]沈浒英,杨文发.金沙江流域下段暴雨特征分析[J].水资源研究.2007,28(1):39~41.
    [156]辛中礼,吕振前.溪洛渡电站工程水文[J].四川水力发电.1994,(3):34~39.
    [157]梁杏,张人权,宋胜武.溪洛渡水电站坝址区地下水流动系统分析[J].地质科技情报.2002,21(1):14~18.
    [158]王锦国,周志芳.溪洛渡水电站环境地下水水质研究[J].勘察科学技术.2000(2):11~15
    [159]周志芳,王锦国.金沙江溪洛渡水电站环境水文地质综合评价[J].高校地质学报.2002,8(2):227~235
    [160]黄润秋,胡卸文,陶连金等.金沙江溪洛渡水电站岩体.结构模型及其工程应用[R].成都:成都理工学院档案馆,1998.
    [161]沈军辉,王兰生,徐林生等.峨眉山玄武岩的岩相与岩体结构[J].水文地质工程地质.2001(6):1-4.
    [162]陈正峰,张勇.坝基开挖产生的爆破松弛带厚度确定[J].地质灾害与环境保护.2007,18(3):47~50.
    [163]陈祖安.全国软弱岩石及软弱夹层专题学术讨论会综述.水文地质工程地质,1981,(1)1-6.
    [164]韩文峰,张咸恭.聂德新.断层岩土工程地质分类原则的讨论.地质评论,1987,33(2):166~174.
    [165]聂德新,符文喜,任光明等.天然下软弱层带的工程特性及当前研究中存在的问题分析.工程地质学报,1999,7(4):298~300.
    [166]陈昌彦,王思敬.工程岩体断裂构造发育程度的定量评价研究.工程地质学报,2001,9(2):145~151.
    [167]Nie Dexin, et al. Studies on the correlation between the confining pressure and the physical and mechanical properties of weak intercalation. Pro.No.6.inter. Cong.IAEG,1990
    [168]聂德新,符文烹,任光明.天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J].工程地质学报,1999,7(4):296~302.
    [169]聂德新.地应力对夹泥抗剪强度的影响[C].1983年全国水电中青年科技干部报告会论文选集.北京:水利电力出版社,1985:131~138.
    [170]任光明等.软弱层带夹泥物理力学特征的仿真研究[J].工程地质学报,1999,7(1):65~71.
    [171]刘彬.软弱夹层对隧道围岩及支护结构的影响研究[D].成都理工大学硕士论文.2006
    [172]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21(12):1894~1900.
    [173]刘克远,邵宗平.二滩水电站枢纽区岩体抗剪参数选择[J].水电设计,1998(1).
    [174]罗高作,王平ANTSYS及结构分析应用[J].黄石高等专科学校学报.2002.15(3):26-28.
    [175]博嘉科技.有限元分析软件ANSYS融会与贯通[M].北京:中国水利水电出版社.2002.
    [176]ltasca Consulting Group, Inc. FLAC, Fast Lagrangian Amdysis of Continua in 3 Dimensions, version 2.0, u rs mannual R] USA:ltasca Consulting Group. Inc.,1997.
    [177]何显松.高拱坝坝肩稳定三维地质力学模型破坏试验研究[D].四川大学硕士学位论文,2002.
    [178]范留明.溪洛渡水电站工程坝肩抗滑稳定边界条件及工程适宜性评价[J].岩石力学与工程学报,2004,23(1):179-179.
    [179]曾纪全,贺如平.溪洛渡水电站岩石力学问题与试验研究[C].第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004:951~958.
    [180]丁宝晶.溪洛渡水电站建基面_2级岩体分布及可利用性研究[D].成都理工大学硕士论文,2009.
    [181]李攀峰.高拱坝坝基岩体质量评价及地质缺陷处理研究.成都理工大学博士后工作报告,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700