用户名: 密码: 验证码:
华南麻江海相古油藏沥青Re-Os同位素特征及其对油藏形成和破坏时代的约束
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在华南黔中—雪峰-江南隆起带北侧以及南盘江-十万大山地区分布着大量的古生界—中生界古油藏。古油藏的存在说明,在地质历史上这些地区曾存在大规模的油气运移及聚集,尽管这些油藏后来遭受了明显的破坏。位于贵州省东南的麻江古油藏是华南地区最大的海相古油藏之一,属构造圈闭—岩性遮挡复合型油藏,原始面积2450 km2,现残存800km2,估算的原始石油储量超过15亿吨,现残存的沥青约为3.5亿吨。该古油藏储层主要为下奥陶统红花园组白云岩和中下志留统翁项群砂岩、粉砂岩,沥青主要赋存于溶蚀孔、洞、层间裂缝以及粒问孔、缝中。显然,弄清这类古油藏的形成和演化历史对促进华南海相油气的勘探和认识华南陆块主要沉积盆地显生宙的构造演化性质具有重要的意义,但对这些古油藏的许多重要基础地质问题仍缺乏了解,如该古油藏聚集成藏和遭受破坏的时代等。妨碍对这些基础地质问题深入了解的重要原因之一是缺乏对有机物质进行同位素定年的有效方法。
     近年来,随着同位素分析样品制备技术水平和质谱测定精度的提高,以及对有机物质中Re-Os同位素体系属性认识的深入,在国外Re-Os同位素体系已被成功地运用于油气成藏年代学研究,并已取得了突出的成果,而在国内相关研究尚未见相关报道。主要是与油气成藏有关的有机质样品中,其Re、Os的含量极低(多数为分别为ng/g和Pg/g的数量级),限制了Re-Os同位素技术的应用和方法的推广。因此,建立和优化富有机质物质的Re-Os同位素分析测试技术,对油气藏成藏年代学的研究具有重要意义,也能更好地限定古油藏的破坏时代。
     本论文以贵州省东南地区麻江古油藏为主要研究对象,在系统的野外调查和样品采集的基础上,对古油藏中的沥青样品进行了Re-Os同位素分析,并对储层样品进行了流体包裹体测温、测盐分析,进而对油气藏成藏和破坏时代进行探讨。取得了如下进展和主要认识:
     (1)在国内首次建立了富有机质物质——沥青的Re-Os同位素分析测试方法
     在总结和吸收国内外多家实验室Re-Os同位素测试方法技术的基础上,结合本研究中样品的特殊性以及中国地质大学“地质过程与矿产资源”国家重点实验室(GPMR)所具备的实验条件,建立了富含有机质沥青样品的Re-Os同位素分析测试方法。
     分析测试方法主要包括以下重要步骤:样品的溶解、分离纯化Os、分离纯化Re、Re-Os同位素的质谱测定等。样品的溶解在实验中占有重要地位,本方法采用Carius管反王水法溶解样品,根据本研究中设计的Carius管的尺寸,称样量控制在200mmg以内(先加Os稀释剂),溶样温度控制在190℃左右(采用阶段升温,从室温升至80℃,稳定1h;再升温至120℃,再稳定1-2h;最后直接由120℃升至190℃左右,稳定24h);溶解后样品呈淡红色,对大多数样品溶解后出现的针状物质,进行了物相研究;溶解后的样品采用CCl4萃取-HBr反萃取的方法分离Os,采用微蒸馏方法纯化Os,采用阴离子交换树脂法分离纯化Re。制备好的Os样品采用Pt带作为点样带引入离子源,在具备负离子电离状态下用热电离质谱仪Triton完成Os同位素比值分析;离子流信号的接收采用电子倍增器动态跳峰的方式;样品电离前采用真空还原技术对样品进行还原处理,以提高质谱测定精度,并对质谱测量过程中的最佳电离温度和最佳通氧量进行了优化。Re的同位素分析采用同位素稀释法进行样品制备,并用电感耦合等离子质谱仪(ICP-MS)进行比值测定,为校正ICP-MS测量过程中的质量分馏,在分析过程中采用了标样-样品-标样的“三明治”式测量方式;样品测量间隔采用5%HNO3和高纯水反复清洗进样管以防止样品间的交叉污染。质谱测量获得的Os同位素数据需采用专门编制的离线处理程序进行脱氧和质量分馏校正。Re同位素数据经过分馏校正后,结合同位素稀释公式,计算出样品的Re含量和同位素组成。数据的分析质量由已知样品和国际仪器标样控制,分析结果表明其与国际文献值或推荐值相符。
     (2)麻江古油藏沥青Re-Os同位素特征及其对古油藏形成和破坏时间的指示
     根据储层岩石、矿物的流体包裹体分析测试,结合麻江古油藏构造演化史以及储层埋藏史-温度史曲线,确定了麻江古油藏成藏时代主要为印支期。应用本研究建立的沥青Re-Os同位素分析测试方法,对麻江古油藏沥青的Re-Os同位素组成进行了分析,分析结果表明,层间裂缝中的沥青具有相对较高的Re含量(21.12-373.9 ng/g)和极低的Os含量(0.1086-0.9081 ng/g),187Re/188Os比值变化范围为777.0-3587,对应的187Os/188Os比值为1.313-4.913,显示出高放射成因Os同位素特征。据此特征,采用类似于高Re低Os硫化物矿物的计算方式,获得了古油藏沥青样品87.0±3.3 Ma的Re-Os等时线年龄。研究认为该年龄代表了沥青物质的形成时代,即古油藏被破坏的时间。所获得的破坏年龄同区内与麻江古油藏密切相关的丹寨汞金矿床的成矿时代(晚白垩世早期)相当,对应于沥青大量沉淀的时期,与区域流体活动事件相对应。
     通过应用本次研究所建立的沥青物质Re-Os同位素分析方法对麻江古油藏沥青样品进行测试的结果表明,该方法的应用有效,获得的年龄与区域构造以及流体活动事件相符合。本次研究的结果表明,麻江古油藏主要成藏期为印支期,而其发生破坏的时间为87Ma左右的燕山晚期。本次研究的成果还表明,Re-Os同位素方法在对油源单一、后期构造作用较弱、油气成藏充注期次明确的油藏的原油、油砂年代学研究中具有十分重要的应用潜力,并将会对油气勘探工作产生有意义的指导作用。
     本研究工作的特色和创新之处:(1)在国内首次报道了古油藏沥青物质的Re-Os同位素等时线年龄,为了解华南麻江古油藏发生破坏作用的时代提供了直接的年代学数据;(2)国内首次建立了富有机质物质——沥青的Re-Os同位素分析测试方法。
There are a lot of Paleozoic-Mesozoic paleo-oil reservoirs which are mainly distributed at the northern margin of the central Guizhou-Xuefeng-Jiangnan uplift and the Nanpanjiang-Shiwandashan area in South China. The existence of these paleo-oil reservoirs demonstrate that there was large-scale oil-gas accumulation and migration in geological history, but later suffered destruction. Majiang Paleo-oil reservoir is one of the largest marine Paleo-oil fields, which is a structural traps-block complex lithology reservoir, and the original area was of 2450 km2, but the current area is only 800 km2. It has been estimated that the original oil reserves were more than 1.5 billion tons, but the remnants are only 350 million tons of bitumen. The main reservoir beds are the Lower Ordovician Honghuayuan formation and Middle-Lower Silurian Wengxiang group, and the bitumen mainly occurs in dissolved holes, holes, cracks, interlayer cracks and intergranular pores and crevices. Obviously, the understanding of the formation and evolution history for theses paleo-oil reservoirs has great importances not only for the marine oil and gas exploration, but also for the comprehension of tectonic evolution of sedimentary basins in South China. Nevertheless, there are still a lot of important basic geological issues need to be resolved, eg. the accumulation and destruction age of these paleo-oil reservoirs. The most important barrier is the lack of dating of organic substances that are related to paleo-oil reservoirs.
     Recently, with the development of analysis test and mass spectrum technology, and the understanding of pro-organic attribute for Re-Os isotope system, Re-Os isotope has been successfully applied in geochronology of hydrocarbon accumulation. However, because of the low concentrations of Re and Os (from ng/g to pg/g in the order of magnitude), analytical method of the pros and cons have important implications for the experiment results, which limit the development of this method. Therefore, the establishment and development of organic rich material Re-Os isotope analytical techniques is of great importance to the chronology of oil and gas reservoir, also this method can provide constraints on the destruction time of paleo-oil reservoir.
     Majiang paleo-oil reservoir was selected as the main study area, based on thorough field survey and related sample analyses, the time of hydrocarbon accumulation and destruction are discussed. New developments are achieved in the following two aspects:
     (1) A Re-Os isotope analytical method suitable for organic rich materials like bitumen is established for the first time in China
     Based on a comparison and evaluation of the documented Re-Os isotope techniques, combined with the special nature of the bitumen samples and the facility available in the State Key laboratory of Geological Processes and Mineral Resources (GPMR), the Re-Os isotope analytical method suitable for organic rich materials like bitumen is established.
     This analytical method includes the following important steps:sample digestion, separation and purification of Os, separation and purification of Re, and Re-Os isotope measurement with mass spectrometry. The sample digestion plays an important role in the whole processes, employing the Carius tube method, no more than 200mg samples were dissolved and equilibrated with a known amount of185Re and 190Os spikes, in inverse aqua regia (2:1 14N HNO3 and 12 N HCl,9mL) for 24h at 190℃with the stage heating method; The dissolved samples are always presented in light red color with a large amount of needle like material, and the phase of this material has been studied. Osmium was separated using solvent extraction (CCl4 and HBr) and purified using micro-distillation method, Rhenium was separated and purified using anion chromatography techniques. The purified Os was loaded onto Pt filaments and measured using negative ion thermal ionization mass spectrometry (NTIMS) using an electron multiplier in peak-hopping mode, the reduction technique in vacuum condition is of great importance for improving the measuring accuracy. The purified Re was measured using inductively coupled plasma mass spectrometry (ICP-MS) method, in order to correct the mass fractionation during the analysis processes, the standard sample-sample-standard sample "sandwich-like" sequence was employed during the measurement; 5% HNO3 and purified water were employed to wash the pipe to avoid cross-contamination. The measured Osmium isotope data should be processed with mass fractionation correction and oxygen isotope interference correction. After the mass fractionation of the original Re isotope data, combined with the isotope dilution formula, the Re isotope data was obtained. The quality of the data was controlled by the known sample and international standard sample. Following the above method, the data show good consistence with the documented and recommended value.
     (2) The Re-Os isotope features of the bitumen from Majiang paleo-oil reservoir and its indication for the timing of hydrocarbon accumulation and destruction
     Based on the fluid inclusion analysis of reservoirs rocks, combined with the tectonic evolution of Majiang paleo-oil pool and the reservoir burial history-temperature history curve, the hydrocarbon accumulation time was limited at Indosinian period. Employing the bitumen Re-Os isotope analytical method which is established by this research, the bitumen in the interlayer was analyzed, and showed high concentration of Re (21.12-373.9 ng/g) and low concentration of Os (0.1086-0.9081 ng/g), the 187Re/188Os ratio ranges from 777.0 to 3587, 187Os/188Os ratio ranges from 1.313 to 4.913, exhibiting highly radiogenic Os isotopic signature. According to these features, the data processing method of the low level and highly radiogenic sulfide was employed, and a Re-Os isochron age of 87.0±3.3 Ma is obtained. This age is reckoned as the formation time of this bitumen, which is been reckoned as the destruction time of Majiang paleo-oil reservoir and the mineralization age of Danzhai mercury-golden deposit, which corresponding with the regional fluid flow events.
     Employing the bitumen Re-Os isotope analytical method which established by this study, we obtained meaningful data. The results showed that the hydrocarbon was accumulated at Indosinian period, and the reservoir was damaged at Late Yanshanian period ca.87 Ma. The research also showed that the Re-Os isotope method may have great importance in crude oil and oil sandstone with single sourced, weak tectonic movements influenced petroliferous basins.
     The features and innovations of this research:(1) the first report of Re-Os isotope isochron age for bitumen from paleo-oil reservoir, which provided the direct chronological information for the destruction of Majiang paleo-oil reservoir; (2) the Re-Os analysis method for organic rich material like bitumen was first established in China.
引文
[1]陈红汉.油气成藏年代学研究进展.石油与天然气地质,2007,28:143-150.
    [2]梁狄刚,张水昌,赵孟军,等.库车拗陷的油气成藏期.科学通报,2002,47:56-63.
    [3]杨克明,叶军,吕正祥.川西坳陷上三叠统成藏年代学特征.石油与天然气地质,2005,26:208-213.
    [4]赵靖舟.油气成藏年代学研究进展及发展趋势.地球科学进展,2002,17:378-383.
    [5]Zhu B Q, Zhang J L, Tu X L, et al. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration. Geochimica et Cosmochimica Acta,2001,65:2555-2570.
    [6]Parnell J, Swainbank I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales. Geology,1990,18:1028-1030.
    [7]Selby D, Creaser R A. Re-Os geochronology of organic rich sediments:an evaluation of organic matter analysis methods. Chemical Geology,2003,200:225-240.
    [8]Selby D, Creaser R A. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes. Science,2005,308:1293-1295.
    [9]Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration:A test case from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters,2005,235:1-15.
    [10]Hunt J M (ed). Petroleum Geochemistry and Geology. New York:W.H. Freeman and Company, 1996.
    [11]Creaser R A, Sannigrahi P, Chacko T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks:a test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta,2002,66: 3441-3452.
    [12]Ravizza G, Turekian K K. Application of the 187Re-187Os system to black shale geochronometry. Geochimica et Cosmochimica Acta,1989,53:3257-3262.
    [13]向才富,汤良杰,金之钧,等.麻江古油藏周缘露头层序地层与南方海相油气藏保存条件.地质学报,2008,82:346-352.
    [14]韩世庆,王守德,胡惟元.黔东麻江古油藏的发现及其地质意义.石油与天然气地质,1982,3:316-326.
    [15]李凤.黔中隆起及其周缘古生界碳沥青及其与古油藏成因关系研究.2008.
    [16]向才富,汤良杰,李儒峰,等.叠合盆地幕式流体活动:麻江古油藏露头与流体包裹体证据.中国科学(D辑:地球科学),2008,38:70-77.
    [17]刘劲松,马昌前,王世明,等.麻江古油藏原生水晶中固体沥青包裹体的发现及地质意义.地质科技情报,2009,28:3944.
    [18]余开富,王守德.贵州南部的都匀运动及其古构造特征和石油地质意义.贵州地质,1995, 12:225-232.
    [19]Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic systematics in crude oils. Geochimica et Cosmochimica Acta,2007,71:378-386.
    [20]Smoliar M I, Walker R J, Morgan J W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science,1996,271:1099-1102.
    [21]Morgan J W, Walker R J, Grossman J N. Rhenium-osmium isotope systematics in meteorites I: Magmatic iron meteorite groups IIAB and IIIAB. Earth and Planetary Science Letters,1992,108: 191-202.
    [22]Morgan J W, Horan M F, Walker R J, et al. Rheniumum concentration and isotope systematics in group IIAB iron meteorites. Geochimica et Cosmochimica Acta,1995,59:2331-2344.
    [23]Shen J J, Papanastassiou D A, Wasserburg G J. Precise Re---Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta,1996,60:2887-2900.
    [24]Luck J M, Allegre C J. The study of molybdenites through the 187Re-1870s chronometer. Earth and Planetary Science Letters,1982,61:291-296.
    [25]Luck J-M, Allegre C J.187Re-1870s investigation in sulfide from Cape Smith komatiite. Earth and Planetary Science Letters,1984,68:205-208.
    [26]Walker R J, Morgan J W, Horan M F, et al. Re-Os isotope systematics of ordinary chondrites and iron meteorites. Lunar Planet sciences,1993, XXIV:1477-1478.
    [27]Chen J H, Papanastassiou D A, Wasserburg G J. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta,1998,62:3379-3392.
    [28]Brenan J M, Cherniak D J, Rose L A. Diffusion of osmium in pyrrhotite and pyrite:implications for closure of the Re-Os isotopic system. Earth and Planetary Science Letters,2000,180: 399-413.
    [29]Selby D, Creaser R A, Hart C J R, et al. Absolute timing of sulfide and gold mineralization:A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology,2002,30:791-794.
    [30]McCandless T E, Ruiz J, Campbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments:Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta,1993,57:889-905.
    [31]Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova,2001,13:479-486.
    [32]Suzuki K, Qi L, Shimizu H, et al. Reliable Re-Os age for molybdenite. Geochimica et Cosmochimica Acta,1993,57:1625-1628.
    [33]Kirk J, Ruiz J, Chesley J, et al. A Major Archean, Gold-and Crust-Forming Event in the Kaapvaal Craton, South Africa. Science,2002,297:1856-1858.
    [34]吴福元,杨进辉,储著银,等.大陆岩石圈地幔定年.地学前缘,2007,14:76-86.
    [35]孙卫东,彭子成,支霞臣,等.N-TIMS法测定盘石山橄榄岩包体的Os同位素组成.科学通报,1997,42:2310-2313.
    [36]孙卫东,支霞臣,彭子成,等.原始上地幔的Os同位素组成.科学通报,1998:1866-1869.
    [37]Cohen A S, Coe A L, Bartlett J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters,1999,167: 159-173.
    [38]Kendall B S, Creaser R A, Ross G M, et al. Constraints on the timing of Marinoan "Snowball Earth" glaciation by 187Re-187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada. Earth and Planetary Science Letters,2004,222:129-140.
    [39]Yang J H, Jiang S Y, Ling H F, et al. Re-Os dating of the Lower Cambrian black shales in Guizhou province of South China. Geochimica et Cosmochimica Acta,2006,70:A719-A719.
    [40]Kendall B, Creaser R A, Selby D. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of "Sturtian" glaciation. Geology,2006,34:729-732.
    [41]Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China:An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254:217-228.
    [42]Wieser M E. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure and applied chemistry,2006,78:2051-2066.
    [43]Birck J L, Barman M R, Capmas F. Re-Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards and Geoanalytical Research,1997,21:19-27.
    [44]杨胜洪,陈江峰,屈文俊,等.金川铜镍硫化物矿床的Re-Os“年龄”及其意义.地球化学,2007,36:27-36.
    [45]Basitova S M, Zasorina E F, Azizkulova O A, et al. Concentration and distribution of rhenium and molybdenum in the oil shales of middle Asia. Geochemistry International,1974:743-747.
    [46]Fortenfant S S, Gunther D, Dingwell D B, et al. Temperature dependence of Pt and Rh solubilities in a haplobasaltic melt. Geochimica et Cosmochimica Acta,2003,67:123-131.
    [47]吴福元,孙德有Re—Os同位素体系理论及其应用.地质科技情报,1999,18:43-46.
    [48]杜安道,屈文俊,李超,等.铼-锇同位素定年方法及分析测试技术的进展.岩矿测试,2009,28:288-304.
    [49]Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea. Geochimica et Cosmochimica Acta,1991,55:3741-3752.
    [50]杨兢红,蒋少涌,凌洪飞,等.黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究.地学前缘,2005,12:143-150.
    [51]Shirey S B, Walker R J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review Earth Planet Science Letters,1998,26:423-500.
    [52]Morgan J W, Lovering J F. Rhenium and osmium abundances in chondritic meteorites. Geochimica et Cosmochimica Acta,1967,31:1893-1909.
    [53]Dickin A P. Radiogenic isotope geology Cambridge University Press,2005
    [54]Sharma M, Papanastassiou D A, Wasserburg G J. The concentration and isotopic composition of osmium in the oceans. Geochimica et Cosmochimica Acta,1997,61:3287-3299.
    [55]刘华.Re-Os同位素体系测定黑色页岩、油页岩年龄研究[硕士学位论文].北京:中国地质大学(北京),2008.
    [56]杨红梅.基性-中基性岩浆岩Re-Os同位素分析测试技术及其在山东中生代岩石圈减薄事件 研究中的应用[博士学位论文].武汉:中国地质大学(武汉),2008.
    [57]Selby D, Creaser R A, Stein H J, et al. Assessment of the 187Re decay constant by cross calibration of Re-Os molybdenite and U-Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta,2007,71:1999-2013.
    [58]Burton K W, Schiano P, Birck J L, et al. The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania. Earth and Planetary Science Letters,2000,183:93-106.
    [59]李杰.Re-Os同位素的MC-ICPMS分析测试方法的建立及其在峨眉山二叠纪苦橄岩研究中的应用[博士学位论文].广州:中国科学院广州地球化学研究所,2007.
    [60]Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths:Implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta,1989,53:1583-1595.
    [61]Meisel T, Reisberg L, Moser J, et al. Re-Os systematics of UB-N, a serpentinized peridotite reference material. Chemical Geology,2003,201:161-179.
    [62]杜安道,孙德忠,王淑贤,等.铼-锇定年法中碱熔分解样品方法的改进.岩矿测试,2002,21:100-104.
    [63]Walker R J. Low-blank Chemical Separation of Rhenium and Osmium from Gram Quantities of Silicate Rock for Measurement by Resonance Ionization Mass Spectrometry Analytica Chimica Acta,1988,60:231.
    [64]Hoffman E L, Naldrett A J, Van Loon J C, et al. The determination of all the platinum group elements and gold in rocks and ore by neutron activation analysis after preconcentration by a nickel sulphide fire-assay technique on large samples. Analytica Chimica Acta,1978,102: 157-166.
    [65]Esser B K. Osmium isotope geochemistry of terrigenous and marine sediments. Yale University. Newhaven:Yale University,1991.
    [66]Shirey S B, Walker R J. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry,1995,67:2136-2141.
    [67]Cohen A S, Waters F G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analytica Chimica Acta,1996,332:269-275.
    [68]张巽,金立新,陈江峰.铼-锇同位素分析中试样化学预处理方法进展.岩矿测试,2002,21:49-54.
    [69]Creaser R A, Selby D. Re-Os elemental and isotopic systematics in petroleum:A potentially powerful tracer. Geochimica et Cosmochimica Acta,2006,70:116.
    [70]Selby D, Creaser R A. Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology,2001,96: 197-204.
    [71]Selby D, Creaser R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer. Geology,2005,33:545-548.
    [72]刘华,屈文俊,王英滨,等.用三氧化铬-硫酸溶剂对黑色页岩铼-锇定年方法初探.岩矿测试,2008,27:245-249.
    [73]Meisel T, Moser J, Fellner N, et al. Simplified Method for Determination of Ru, Pd, Re, Os, Ir and Pt in Chromitites and Other Materials by Isotope Dilution ICP-MS and Acid Digestion The Analyst,2001,126:322-328.
    [74]杜安道,赵敦敏,王淑贤,等.Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20:247-252.
    [75]Brauns C M. A rapid, low-blank technique for the extraction of osmium from geological samples. Chemical Geology,2001,176:379-384.
    [76]Pierson-Wickmann A C, Reisberg L, France-Lanord C. The Os isotopic composition of Himalayan river bedloads and bedrocks:importance of black shales. Earth and Planetary Science Letters,2000,176:203-218.
    [77]Roy-Barman M, Luck J M, Allere C J. Os isotopes in orogenic lherzolite massifs and mantle heterogeneities. Chemical Geology,1996,130:55-64.
    [78]Morgan J W, Golightly D W, Dorrzapf A F. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry. Talanta,1991,38:259-265.
    [79]Creaser R A, Papanastassiou D A, Wasserburg G J. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta,1991,55:397-401.
    [80]Volkening J, Walczyk T, Heumann K G. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes,1991,105:147-159.
    [81]Reisberg L, Zindler A, Marcantonio F, et al. Os isotope systematics in ocean island basalts. Earth and Planetary Science Letters,1993,120:149-167.
    [82]Becker H, Shirey S B, Carlson R W. Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth and Planetary Science Letters,2001, 188:107-121.
    [83]孙卫东,彭子成,王兆荣.铼锇负热离子质谱测定中的氧同位素校正.质谱学报,1997,18:1-6.
    [84]郑磊,支霞臣,靳永斌.负热电离质谱法测量Os同位素组成的质量分馏校正.质谱学报,2004.25:193-197.
    [85]Gregoire D C. Sample introduction techniques for the determination of Osmium isotope ratios by inductively coupled plasma source mass spectrometry. Analytical Chemistry,1990,62:141-146.
    [86]杨胜洪,屈文俊,杜安道,等.同位素稀释等离子体质谱法准确测定地质样品中痕量铼.岩矿测试,2006,25:125-128.
    [87]Makishima A, Nakamura E. Determination of Os and Re Isotope Ratios at Subpicogam Levels Using MC-ICPMS with Solution Nebulization and Multiple Ion Counting Analytical Chemistry, 2006,78:3794-3799.
    [88]Yin Q Z, Jacobsen S B, Lee C T, et al. A gravimetric K2OsCl6 standard:Application to precise and accurate Os spike calibration. Geochimica et Cosmochimica Acta,2001,65:2113-2127.
    [89]Malinovsky D, Rodushkin I, Baxter D, et al. Simplified method for the Re-Os dating of molybdenite using acid digestion and isotope dilution ICP-MS. Analytica Chimica Acta,2002, 463:111-124.
    [90]Schoenberg R, Nagler T F, Kramers J D. Precise Os isotope ratio and Re-Os isotope dilution measurements down to the picogram level using multicollector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry,2000,197:85-94.
    [91]Poplavko Y M, Ivanov V V, Karasik T G, et al. On the concentration of rhenium in petroleum, petroleum bitumens and oil shales. Geochemistry International,1975,11:969-972.
    [92]Basitova S M, Prinzhofer A, Allegre C J. Osmium isotopes in the organic matter of crude oil and asphaltenes. Terra Abstract,1995,7:199.
    [93]Curiale J A. Origin of solid bitumens, with emphasis on biological marker results. Organic Geochemistry,1986,10:559-580.
    [94]刘德汉.碳酸盐岩中的沥青在研究油气生成演化和金属矿床成因中的应用.In:中国科学院地球化学研究所有机地球化学与沉积地球化学研究室.有机地球化学论文集.北京:科学出版社,1986:133-138.
    [95]吴征,杨元初,王新红.鄂尔多斯盆地下奥陶统原生一同层沥青分析.天然气工业,1999,19:14-17.
    [96]Peucker-Ehrenbrink B, Hannigan R E. Effects of black shale weathering on the mobility of rhenium and platinum group elements. Geology,2000,28:475-478.
    [97]Lambert D D, Foster J G, Frick L R, et al. Application of the Re-Os isotopic system to the study of Precambrian magmatic sulfide deposits of Western Australia. Australian Journal of Earth Sciences:An International Geoscience Journal of the Geological Society of Australia,1998,45: 265-284.
    [98]Stein H J, Morgan J W, Schersten A. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides:The Harnas Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Economic Geology,2000,95:1657-1671.
    [99]Du A, Wu S, Sun D, et al. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research,2004,28:41-52.
    [100]Markey R, Stein H J, Hannah J L, et al. Standardizing Re-Os geochronology:A new molybdenite Reference Material (Henderson, USA) and the stoichiometry of Os salts. Chemical Geology, 2007,244:74-87.
    [101]Yuan H, Gao S, Rudnick R L, et al. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chemical Geology,2007,236:323-338.
    [102]Stein H J, Morgan J W, Markey R J, et al. An introduction to Re-Os:What's in it for the mineral industry? SEG Newsletter,1998,32:8-15.
    [103]杜安道,屈文俊,王登红,等.辉钼矿亚晶粒范围内Re和1870s的失耦现象.矿床地质,2007,26:572-580.
    [104]赵宗举,朱琰,徐云俊.中国南方古生界-中生界油气藏成藏规律及勘探方向.地质学报,2004,78:710-720.
    [105]滇黔贵石油地质志编写组.中国石油地质志卷十一——滇黔贵油气区.北京:石油工业出版社,1992.
    [106]周锋.江南隆起带北缘油气成藏带解剖及成藏规律探讨[硕士学位论文].武汉:中国地质大学(武汉),2006.
    [107]林家善.黔南坳陷麻江古油藏储层特征评价[硕士学位论文].成都:成都理工大学,2008.
    [108]王守德,郑冰,蔡立国.中国南方古油藏与油气评价.海相油气地质,1997,2:44-49.
    [109]武蔚文.贵州东部若干古油藏的形成和破坏.贵州地质,1989,6:9-22.
    [110]向才富,解习农,庄新国.从油气运移探讨有机质在成矿中的作用.地质论评,2002,48:273-278.
    [111]金强,田海芹,戴俊生.微量元素组成在固体沥青-源岩对比中的应用.石油实验地质,2001,23:285-290.
    [112]孙承兴,王世杰,季宏兵.碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理.地球化学,2002,31:119-128.
    [113]Elderfield H, Greaves M J. The rare earth elements in seawater. Nature,1982,296:214-219.
    [114]Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta,1999,63:627-643.
    [115]Taylor S R, McLennan S M. The continental Crust:Its composition and Evolution,1985
    [116]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Norry ADSMJ (ed). Magmatism in the Ocean Basins: Geological Society of London,Special Publication,1989:313-345.
    [117]Anderson R F, Fleisher M Q, LeHuray A P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochimica et Cosmochimica Acta,1989,53:2215-2224.
    [118]Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta,1999,63:1735-1750.
    [119]Yarincik K M, Murray R W, Lyons T W, et al. Oxygenation History of Bottom Waters in the Cariaco Basin, Venezuela, Over the Past 578,000 Years:Results from Redox-Sensitive Metals (Mo, V, Mn, and Fe). Paleoceanography,2000,15:593-604.
    [120]曾明果.遵义黄家湾下寒武统底部Mo-Ni-PGE矿中铂族元素赋存形态分析及成因意义.贵州地质,2007,24:147-150.
    [121]陈红汉,李纯泉,张希明,等.运用流体包裹体确定塔河油田油气成藏期次及主成藏期.地学前缘,2003,10:190.
    [122]Pan L Y, Ni P, Ou G X, et al. Multistage petroleum charges in the Silurian of Tazhong north slope of the Tarim basin, northwest China:evidence from fluid inclusions and organic geochemistry. Acta Petrologica Sinica,2007,23:131-136.
    [123]顾雪祥,李葆华,徐仕海,等.贵州石头寨二叠系古油藏油气成藏期分析:流体包裹体与Sm-Nd同位素制约.岩石学报,2007,23:2279-2286.
    [124]Parnell J, Carey P, Duncan W. History of hydrocarbon charge on the Atlantic margin:evidence from fluid-inclusion studies, West of shetland. Geology,1998,26:807-810.
    [125]冯常茂,牛新生,吴冲龙.黔中隆起及周缘地区下组合含油气流体包裹体研究.岩石矿物学杂志,2008,27:121-126.
    [126]韩世庆,王守德,胡惟元.贵州麻江地区加里东期石油地质综合研究报告,1981.
    [127]潘爱芳,赫英,黎荣剑.鄂尔多斯盆地能源矿产氯仿沥青Sm-Nd同位素研究.中国地质,2007,34:440-444.
    [128]顾雪祥,李葆华,徐仕海,等.右江盆地含油气成矿流体性质及其成藏-成矿作用.地学前 缘,2007,14:133-146.
    [129]庄汉平,卢家烂,傅家谟,等.黔西南金锑矿床成矿流体中轻烃物质的初步研究.科学通报,1997,42:1752-1755.
    [130]庄汉平,卢家烂,傅家谟,等.原油作为金运移的载体:可能的岩石学和地球化学证据.中国科学(D辑:地球科学),1998,28:552-558.
    [131]庄汉平,卢家烂,傅家谟,等.黔西南卡林型金矿床中固体有机物质的有机岩石学研究.地质科学,2000,35:83-90.
    [132]庄汉平,卢家烂.与有机质有成因联系的金属矿床.地质地球化学,1996,:6-11.
    [133]邵树勋,张乾,潘家永.丹寨汞金矿床卤素元素与古油藏关系探讨.地质地球化学,1999,27:23-28.
    [134]刘平.贵州及邻区与蒸发岩和油气有关的汞矿成因探讨.贵州地质,2003,20:25-29.
    [135]贾蓉芬,陈庆年,周丕康,等.贵州丹寨卡林型金矿中金的富集阶段与有机质演化关系.地质找矿论丛,1993,8:69-81.
    [136]向才富,庄新国,陆友明,等.有机流体成矿作用与古油藏成藏作用相互耦合——以右江盆地微细浸染型金矿为例.地球科学,2002,:35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700