用户名: 密码: 验证码:
致密砂岩天然气成藏动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西坳陷系指四川盆地西部中、新生代坳陷地区,坳陷自上三叠统以来主要经历了九次构造运动,属典型的叠合型前陆盆地。须家河组分布众多的油气田(藏),以其深埋、致密、超压、强烈非均质性等特征成为复杂高难度勘探领域。
     论文以成藏动力学理论为指导,结合川西坳陷须家河组的具体地质特征,充分利用大量丰富的地勘和研究成果,在前人研究的基础上从热力学、地压形成与演化、流体动力学演化等方面研究入手,对上三叠统烃源岩、储集层、封盖、保存、运移、聚集时期、圈闭类型等成藏基本地质条件进行了深入研究,提出三种成藏动力模式。
     采用了镜质体反射率、煤挥发分、流体包裹体测温、矿物裂变径迹测温、粘土矿物相和热解峰顶温度等6种方法进行研究,建立了川西地区的地质温度计,研究表明川西坳陷三叠世以来地温场特征是地温古高今低,纵横方向变化大。
     上三叠统烃源岩的演化表现为不同层段递进生烃、多期排烃过程。烃源岩进入生烃门限时间总体呈现由西向东变晚的趋势;南北方向上,中段最早、南段次之、北段最晚。确立了川西须家河组压力演化历史:印支晚期的欠压实增压、燕山期生烃增压、燕山、喜山期构造挤压增压。其中构造压力是增压的主要原因,生烃只是一定程度上增压,声反射实验结果表明喜山期构造挤压强于燕山期。
     系统研究了川西坳陷流体动力演化特征,获得了反映天然气成藏系统的流体势能变化特征,川西坳陷须家河组存在四期古水动力场,水动力场总体表现为强-弱-强的特点。川西坳陷须家河组在构造平稳期的气势与水动力场趋势近一致。
     川西坳陷须家河组油气输导系统是高孔渗的砂岩输导层、断层。优势通道就是油气优先选择运移的输导路线,仅占油气输导系统的极少一部分,但它输导的油气占输导系统运移油气总量的大部分。
     根据动力学特征和油源特征,划分了两个成藏动力学系统:自源高压成藏动力学和混源中压成藏动力学。自源高压成藏动力学系统的动力是由构造应力、生烃增压,压力特征是高压,压力系数大于1.5,具有自生自储特征。混源中压成藏动力学系统的动力是浮力或水动力,烃源可以是经运移通道远距离运移而来,压力特征为中低压,压力系数1.0~1.5。
     系统研究了流体动力源:沉积压实、构造应力、浮力、生烃增压和水动力等。印支晚期-燕山晚期:构造变动剧烈期,川西坳陷须家河组流体驱动力主要是构造应力、沉积压实;在构造运动稳定期,流体驱动力主要是浮力、生烃增压等;喜山期川西坳陷遭受强烈的构造变动,流体驱动力主要是构造应力。其中水动力明显受压实作用、构造应力控制。
     建立了三种成藏模式:高压驱动、浮力驱动、水动力驱动成藏模式,在复杂地史演变下这三种驱动模式往往以一种驱动模式为主,其它驱动模式为辅。
     根据川西坳陷须家河组烃源、储层、封盖、古隆起、圈闭以及成藏动力主控因素的评价,按构造区带优选出6个有利区带,确定出9个重点勘探区域。
     根据圈闭综合排队及钻探目标优选评价的结果,结合勘探现状及取得的成果,按照先易后难、先大后小的原则分为战略展开、战略突破、战略准备等3个层次依次展开17个目标、25个子目标,其中战略展开层次的4个目标、6个子目标分别为:孝泉-新场地区(须二、须四)、大邑构造(须三、须二)、丰谷(须四)、高庙子-合兴场地区(须二)。
The West Sichuan depression refers to the western area of Sichuan Basin since Mesozoic and Cenozoic era. The depression which has undergone nine major tectonic movements since the late Triassic is a typical superimposed foreland basin. There are many gas fields (pools) in the Xujiahe formation that super difficulty domain of petroleum exploration because of the characteristics of deep burial, tightness, super pressure and strong heterogeneity .of Xujiahe formation.
     The paper used dynamics theory as a guide, also surmised the specific geological features of Xujiahe formation and the pervious research findings on thermodynamics. The strata pressure formation and evolution and evolution of fluid dynamics, basic geological conditions including source rocks, reservoir, seal, preservation, migration, accumulation period, and trap types were deeply studied to present the dynamic model of gas accumulation. The models were divided into three types.
     A geological thermometer in western Sichuan was established using 6 methods including vitrinite reflectance, volatile matter of coal, fluid inclusions, fission track, clay minerals and pyrolysis peak temperature. The results show that the ancient geothermal field in west Sichuan depression was higher than that of present day since late Triassic, and also was greater change. in vertical and horizontal direction.
     The Upper Triassic source rock showed a progressive process of hydrocarbon generation and multi-period expulsion. The time threshold of hydrocarbon generation became late from west to east, but in north-south direction, the middle area is first, followed by the southern area, northern area was the latest.
     The strata pressure evolution of Xujiahe formation was established: The under-compaction formed in the late Indosinian, followed by hydrocarbon-generating pressurization in Yanshanian, then, pressure upgrading was mainly caused by Himalayan and Yanshanian tectonic compression. One major cause for pressurization was tectonic compression; also hydrocarbon generation had impact to extent. The acoustic reflex test results show a stronger tectonic compression strength in Himalayan than in the Yanshanian period.
     By analysis of hydrodynamic evolution of the western Sichuan depression, the fluid potential energy that reflects the natural gas system was obtained. Four ancient hydrodynamic fields that showed a general trend from strong to weak and strong again existed in Xujiahe formation.. In smooth tectonic period, the hydrodynamic field was nearly consistent with the gas potential energy trend.
     Xujiahe gas transportation system was composed by the high porosity and permeability of the sandstone beds and faults. The predominant pathways were the preferred conduit routes of oil and gas migration. The predominant pathways transported the majority of hydrocarbon but accounted for only a very small part in the transportation system.
     According to the dynamic and oil source characteristics, The reservoir-formed dynamic system were divided into self-source high pressure dynamic system and mix-source middle pressure dynamic system. The first is driven by the tectonic stress and hydrocarbon generation; so it was characterized by the high pressure with pressure coefficient greater than 1.5.and the "self-generation and self-storage. The late was driven by buoyancy or water power, the hydrocarbon in the system could be from long-distance migration, so is characterized by middle–low pressure with pressure coefficient from 1.0 to 1.5.
     The fluid power sources, including sedimentary compaction, tectonic stress, buoyancy, hydrodynamic and hydrocarbon generation were systematic studied. From late Indo-Chinese epoch to late Yanshan epoch, the Xujiahe fluid driving forces were mainly provided by the tectonic stress and sediment compaction as result of active tectonic movement. In smooth tectonic movement, fluid driving forces was buoyancy and hydrocarbon generation. In Himalayan epoch, The Xujiahe formation suffered a strong tectonic movements, the fluid driving forces which significantly affected by compaction and tectonic stress was the tectonic stress.
     Three gas accumulation model were constructed : high-pressure-driven ,buoyancy-driven,water power-driven accumulation models One of the three driving modes was dominant at the same time in complex geologic history , other modes was supplement. According to evaluation of Xujiahe hydrocarbon source, reservoir, seal, ancient uplift, traps reservoir and controlling dynamic factors, the six structural optimum zonesand nine key exploration areas were identified.
     According to comprehensive evaluation of the study area, and the principles of easy things first and the great things first, strategic deployment, strategic breakthrough, strategic preparation of three strategic levels were present to evaluate 17 targets and 25 sub-targets. The strategic deployment level 4 targets and 6 sub- targets are Xiao Quan - Xingchang area (Xu 2, Xu 4), Dayi structure (Xu3, Xu 2), Feng Gu area ( Xu 4), Gaomiaozi– Hexingchang area (Xu 2).
引文
[1]吕正祥、沈忠民、曹烈等,川西坳陷成藏年代学及流体演化历史研究,内部科研报告,2007.6.
    [2]熊亮、曹波等,川西坳陷须家河组天然气勘探目标评价与优选,内部科研报告,2007.12.
    [3]杨克明、李书兵等,川西须家河组天然气富集规律及勘探配套方法技术研究(上册),内部科研报告,2008.12.
    [4]吕正祥、安凤山、曹烈等,川西上三叠统致密碎屑岩气藏圈闭识别与评价技术研究,十五国家重点科技攻关项目成果报告,2005.11.
    [5]李书兵等,川西坳陷致密碎屑岩天然气成藏主控因素及大中型气田勘探新目标研究,九五国家重点科技攻关项目成果报告,2000.11.
    [6]田世澄、孙自明、傅金华等,论成藏动力学与成藏动力系统[J],石油与天然气地质,2007,28(2):129~138.
    [7]叶加仁,王连进,邵荣.油气成藏动力学中的动力场[J].石油与天然气地质,1999,20(2):l82~185
    [8]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):ll-2l
    [9]田世澄等.论成藏动力学系统[J].勘探家,1996.1(2):20-24.
    [10]田世澄、陈建渝、张树林等,论成藏动力学系统[J].复式油气田,1996,l(1):31-34。
    [11]田世澄、张树林等.论成藏动力学系统的划分和类型[A].《中国含油气系统的应用与进展》第l版,北京:石油工业出版社,1997,33-4l
    [12]康永尚等.油气成藏流体动力系统分析原理及应用[J].《沉积学报》,1998,16(3):80-84
    [13]康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999.
    [14]费琪.成油体系与成藏动力学论文集[C].北京:地震出版社,1999.
    [15]张树林、田世澄、陈建渝,断裂构造与成藏动力系统[J].
    [16]张树林、叶加仁、杨香华等.著.断陷盆地的断裂构造与成藏动力系统[M].第一版,北京:地震出版社,1997. 1-83
    [17]张树林、田世澄、陈建渝等.陆相断陷盆地的成藏动力系统[A].《成油体系与成藏动力学论文集》北京:地震出版,1999
    [18]杨克明等,川西坳陷须家河组天然气成藏模式探讨[J].《石油与天然气地质》,2006,27(6): 786-793,803
    [19]吴冲龙,王燮培,何光玉,等.论油气系统与油气系统动力学[J].地球科学-中国地质大学学报,2000,25(6):604~61l
    [20]姜建群,廖成君,张福功.指导油气勘探的新思路一从含油气系统到油气成藏动力学[J].西北地质,2002,35(2):34~40
    [21]杨甲明,龚再升,吴景富,等.油气成藏动力学研究系统概要(上、中、下)[J].中国海上油气(地质),2002,16(2):92~97
    [22]楮庆忠,张树林.含油气盆地成藏动力学研究综述[J].世界地质,2002,21(1):24~29
    [23] Dow W G. Application of oil correlation and so uree rock data to exploration in Williston basin(abs)[J].AAPG Bulletion,1972,56:615
    [24] Perrodon A.Oy.amics of oil and gas accumulation【A].Bulletin Des Centres De Recherehes Exploration Production Elf-Aquitaine[C].MEMS,1983.187—210
    [25] Meissner F F. Petroleum geology of the Bakken Formation,Willistio basin,Non}l Dakota and Montana[A].In:Demaison G,Murris R J,eds. Petroleum geochemistry and basin evaluation[C].AAPG Memoir 35.1984.159—179
    [26] Ulmishek G. Stratigraphic aspects of petroleum resource as sessment[A].In:Rice D D,eds.Oil and gas ass~sment—methodsand application[C].AAPG Studies in Geology,1986.21:59—68
    [27] Magoon L B,Dow W G. The petroleum system :form source to trap[J].AAPG Memoir 60,1994
    [28]田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329~336
    [29]李明诚.石油与天然气运移[M].第3版.北京:石油工业出版社,2004.7.
    [30]金之钧,张发强,油气运移研究现状及主要进展[J],石油与天然气地质,2005,26(3):263-270.
    [31]宋岩、王毅等,天然气运聚动力学与气藏形成[M]。石油工业出版所,2002.11
    [32]赵靖舟,李秀荣,成藏年代学研究现状[J].新疆石油地质,2002,23(3):257~261.
    [33]张厚福,方朝亮等。石油地质学[M]。石油工业出版所,1999.9。
    [34]李宗银,川西前陆盆地上三叠统油气成藏条件及勘探前景,西南石油大学博士学位论文,2006.6.
    [35]郝石生、黄志龙、杨家琦,天然气运聚动平衡及其应用[M]。石油工业出版所,1994.4.
    [36]庞雄奇,地质过程定量模拟[M]。石油工业出版所,2003.9.
    [37]秦峰、张金功、吴汉宁等,天然气成藏动力学机制发展趋势分析[J].西北大学学报(自然科学版),2007,37(6):901~905.
    [38]徐国盛、刘树根等,四川盆地天然气成藏动力学[M].地质出版社,2005.5.
    [39]邓康龄等,四川盆地天然气藏形成时期分析,《石油与天然气地质文集》,地质出版社,1997.
    [40]吕延防,天然气的加速式二次运移过程研究[J].现代地质,2008,22(4):576~579,591
    [41]曹烈,王安志,李书兵等,川西坳陷上三叠统古构造与古流体势研究,内部科研报告,2005.12.
    [42]杨克明,徐进主编,川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术,地质出版社,2004.
    [43]王志英、边凤青、王鹏,利用浮力与毛细管力差值研究油气运聚规律-以沾化凹陷为例[J].内蒙古石油化工, 2008(9):153~155.
    [44]郭秋麟、米石云等,盆地模拟原理方法[M]。石油工业出版所,1998.7.
    [45]王飞宇,师玉雷,曾花森等.利用油包裹体丰度识别古油藏和限定成藏方式[J],矿物岩石地球化学通报,2006,25(1):12-18.
    [46]陈庆春,林玉祥,唐洪三.临南地区石油运移方向与成藏期次研究[J],沉积学报,2001,19(4):611-616.
    [47]张金亮,常象春,刘宝珺等,苏北盐城油气藏流体历史分析及成藏机理[J],地质学报,2002,76(2):254-260.
    [48]杨克明、叶军、吕正祥,川西坳陷上三叠统成藏年代学特征.石油与天然气地质,2005,Vol.26 No.2 P.208-213.
    [49] Karlsen D A,Nedkvitne T,Larter S R,et al. Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history[J].Geochimicaet Cosmo-chimica Acta,1993,57:3 641~3 659.
    [50] Haszeldine R S,Samson I M,Cornfort C. Dating diagenesis in a petroleum basin,a new fluid inclusion method[J].Nature,1984,307:354-357.
    [51] George SC,ListM,SummonsR E etal.Constraining the oil charge history of the South Pepper oil field from the analysis of oil bearing fluid inclusions.OrganicGeochemistry,1998,29(1~3):631~648.
    [52] George S C,Ruble T E,Dutkiewicz. The use and abuse of fluorescence colours as maturity indicators of oil inclusions from Australasian petroleum system[J].Australian Petroleum Production& Exploration Association Journal,2001,41(1):505-522.
    [53] George S C,Greenwood P F,Logan G A,et al. Comparison of Palaeo oil charges with currently reservoired hydrocarbons using molecular and isotopic analysis of oil-bearing fluid inclusions: Jabiru oil field Timor Sea[J]. Australian Petrolum Production&Exploration Association Journal,1997,37(1):490-502.
    [54] Hamilton P J.K-Ar dating of illites in Brent Group Reservoir:a regional perspective[A].In:Morton A C etal,eds.Geology of the Brent Group[M].Spec Pub Geol Soc London,1992,61:377~400.
    [55] Hogg A J C,Hamilton P J,Macintyre R M. Mapping diagenetic fluid flow within a reservoir: K-Ar Dating in the Alwyn area(UK North Sea)[J].Marine and Petroleum Geology,1993,10:279~294.
    [56] Eadington P J. 1991. Fluid history analysis—a new concept for prospect evaluation. The APEA,31:282~294.
    [57] Parnell J. 1994. Geofluids:origin,migration and evolution of fluids in sedimentary basin. The Geological Society Publishing house.
    [58]李思田,王华,路凤香等.盆地动力学—基本思路与若干研究方法,[M].武汉:中国地质大学出版社,1999.
    [59]陈义才,张茂林,李延均.板桥凹陷区域古流体势模拟计算及其应用,西南石油学院学报,1996.
    [60]康永尚,刘洛夫,金之钧等.塔里木盆地塔中隆起地质流体分析与油气成藏模式研究.北京:石油工业出版社,1997. 158—162.
    [61]刘震,金博,韩军等.准噶尔盆地东部流体势场演化对油气运聚的控制.石油勘探与开发,2000,27(4):59-63.
    [62]李鹤永,刘震,马达德等.柴西地区古流体势场演化对油气成藏的控制作用.石油大学学报(自然科学版),2005,Vol.29,No.3:11-16.
    [63]王震亮,耿鹏.准噶尔盆地侏罗系古流体动力与天然气运移、聚集分析.西北大学学报(自然科学版),2002,32(5):531-536.
    [64] Durand B. Understanding of hydrocarbon migration in sedimentary basins[J].Organic Geochemistry,1980,13:445-459.
    [65] Schowalter T T. Mechanics of secondary hydrocarbon migration and entrapment[J].AAPG Bulletin,1979,63(5):723-760.
    [66] Roberts W H,Cordell R J. Problems of petroleum migration:Introduction[A]. In:Roberts, Cordell R J,eds. AAPG Studies in Geology 10[C]. 1980. vi-viii.
    [67] Thomas M M,Clouse J A. Scaled physical model of secondary oil migration[J].AAPG Bulletin, 1995,79(1):19-29.
    [68]蔡开平,王应蓉,杨跃明等,川西北广旺地区二、三叠系烃源岩评价及气源初探[J],天然气工业,2003,23(2):10-14.
    [69]王震亮,孙明亮,张立宽等.川西地区须家河组异常压力演化与天然气成藏模式[J],地球科学—中国地质大学学报,2004,29(4):433-439.
    [70]徐国盛,刘树根,李国蓉等.川西前陆盆地碎屑岩天然气跨层运移过程中的相态演变[J],成都理工学院学报,2001,28(4):383-389.
    [71]朱光有,张水昌,梁英波等,四川盆地天然气特征及气源[J],2006,13(2):234-248
    [72]王玉斌,关平,刘文汇,四川西部沉积物中饱和烃单体烃碳同位素研究及其环境意义[J],2005,41(4):542-550.
    [73]谢泽华,天然气成藏模式与勘探方法—以川西天然气藏为例[J],石油与天然气地质,2000,21(2):144-147.
    [74]罗启厚等“四川盆地中西部三叠系重点含气层天然气富集条件研究”,《天然气工业》,1996.6.
    [75]王震亮,孙明亮,张立宽等,川西地区须家河组异常压力演化与天然气成藏模式[J],地球科学—中国地质大学学报,2004,29(4):433-439.
    [76]王金琪.早聚晚藏—川西坳陷天然气基本特征.天然气工业.2001,21(1).
    [77]邹海峰,徐学纯,高福红等.黄骅凹陷中区和南区古地温特征及其与油气运聚的关系[J],吉林大学学报(地球科学版),2003,33(2):173-177.
    [78]蔡开平,廖仕孟,川西地区上三叠统轻烃的生成特征[J],石油学报,2002,23(1):35-39.
    [79]唐艳,叶军.轻烃指纹参数在川西坳陷天然气成藏研究中的应用[J],油气地质与采收率,2001,8(6):17-21.
    [80]蒋启贵,张志荣,宋晓莹等,轻烃指纹分析及其应用[J],地质科技情报,2005,24(1):61-64
    [81]李汶国等.四川盆地油气水岩石地球化学特征与天然气的运移和成藏环境研究.“八五”国家重点科技攻关项目研究报告.1994.
    [82]楼章华,金爱民,田炜卓等.论陆相含油气沉积盆地地下水动力场与油气运移、聚集.地质科学.2005,40(3):305-318.
    [83]谢泽华.天然气成藏模式与勘探方法[J].石油与天然气地质,2000,21 (2):144~147.
    [84]金之钧,张金川,天然气成藏的二元机理模式[J],石油学报,2003,24(4):13-16.
    [85]徐思煌,马永生,梅廉夫等,中国南方典型气(油)藏控藏模式探讨[J],石油实验地质,2007,29(1):19-24.
    [86] Baker J C, Havord P J,Martin K R, Ghori K A R.,2000, Diagenesis and petrophysics of the Early Permian Moogooloo Sandstone, southern Carnarvon Basin, Western Australia. AAPG Bulletin, 84(2):250-265.
    [87] Baker J C,Havord P J,Martin K R,Ghori K A R.,2000,Diagenesis and petrophysics of the Early Permian Moogooloo Sandstone,southern Carnarvon Basin,Western Australia. AAPG Bulletin,84(2):250-265.
    [88] England W A,MACKENZIE A S.Geochemistry of petroleum reservoirs[J]. Geol.Rundsch,1989,78:214-237.
    [89] Miall A. D., Principles of scdimentary basin analysis(second Edition) . Springer-Verlag. 1990,369-372
    [90] Einsele G.,Sedimentary Basins,Evolution,Facies,and Sediment. Budget. Springer-Verlag. 1987,1-7.
    [91] Dow W.G., Application of oil correlation and source rock data to exploration in Williston basin(abs)[J].AAPG Bulletin,1972,56:615
    [92] Demaison G., and Huizinga B.J., Genetic classification of petroleum systems[J].AAPG Bulletin, 1991,75(10)1626-1643.
    [93] Magoon L.B., and Dow W.G., The petroleum system: from source rock to trap[A].AAPG Memoir 60, 1994
    [94] Lewan M.D.,Primary oil migration and expulsion as determined by hydrous pyrolysis:Proceedings of the 13th World Petroleum Congress ,1991,No2 ,p215-223
    [95] Lewan M.D., Laboratory simulation of petroleum formation: hydrous pyrolysis, in M.H.Engel and S.A.Macko, eds., Organic Geochemistry: New York, Plenum Press, 1993, p419-442
    [96] Dembicki,D.Jr. and M.J.Anderson,Secondary migration of oil:experiments supporting efficient movement of separate,buoyant oil phase along limited conduits:AAPG Bull., 1989,73(9):1018-1021
    [97] Thomas,M.M. and J.A.Clouse,Scaled physical model of secondary migration,AAPG Bull.,1995,79(1):19-59
    [98] Hindle, A D. Petroleum migration pathways and charge concentration: A three-dimensional model[J].AAPG Bulletin, 1997,81(10):1451-1481.
    [99] England W.A.,Mackenize A.S.,Mann D.M.,and Quiley T.M.,The movement and entrapment of petroleum fluids in the subsurface[J].Journal of the Geological Society, London 144:327-347,1987
    [100] Hunt J.M., Lewan M.D., and Hennet R.J.C., Modeling oil generation with time-temperature index graphs based on the Arrhenius equation[J].AAPG Bull,1991,75(3):795-807
    [101] Hirsh L.M., and Thompson A.H., Minimum saturations and buoyancy in secondary migration[J].AAPG Bulletin 1995,79(5):696-710
    [102] Kross B.M., and Schlomer S., Aspect of natural gas generation and migration in sedimentary systems[J].Mineralogical Magazine ,1998,62A,818-819
    [103] Leythaeuser D.,Schwark L., and Keuser Ch., Geological conditions and geochemical effects secondary petroleum migration and accumulation[J]..Marine and Petroleum Geology, 2000,12(7):857-859
    [104] Carruthers,D. and P. Ringose, Secondary oil migration:oil-rock contact volumes,flow behavior and rates,in Parmell,J.(ed.),Dating and duration of fluid flow-rock interaction,Geological Sociaty Special Publication 1989,No.144:205-220
    [105] Yu Z., and Lerche I., Three phase fluid migration with solubility in a two-dimensional basin simulation model[J]. Marine and Petroleum Geology,1995,12(1):3-16.
    [106]Leythauser D., Quantification of effect of carbonate redistribution by pressure solution in organic-rich carbonate[J].Marine and Petroleum Geology,1994,12(7):735-739
    [107] Burg R. R., and Anthony F.Gangi, Primary migration by oil-generation microfracturing in low permeability source rocks: Application to the Austin chalk, Texas[J].AAPG Bulletin, 1999,83(5):727-755
    [108] Bowers G.L.,Pore pressure estimation from velocity data:accounting for overpessure mechanisms besides undercompaction[J]. SPE Drilling & Completion. 1995,10(2).-89-95
    [109] Hunt,J.M., J.K. Whelan, L.B.Eglinton,and L.M.CathlesⅢ, Relation of shales porosities,gas generation,and compaction to deep overpressures in the U.S.Gulf Coast,in Law,B.E.,G.F.Ulmishek, and V.I.Slavin eds.,Abnormal pressures in hydrocarbon environments:AAPG Memoir , 1998,70,p.87-104
    [110] Hooper E.C.D.,Fluid migration along growth faults in compacting sediments[J].Journal of Petroleum Geology,1991,14:161-180
    [111] Mackenzie A.S.,Mann D.M.,The movement and entrapment of petroleum in the subsurface [J].Geoloc, London, 1987,144:327-347
    [112] Ungerer F.B., Burus J., and Doligez B., Basin evolution by intergrated two-dimension modeling of heat transfer, fluid, hydrocarbon generation, and migration[J].AAPG Bulletin 1990,74(3): 309-335.
    [113] Pepper A.S., and Corvit P.J., Simple kinetic models of petroleum formation[J]. Marine and Petroleum Geology,1995, 12(3):291-319.
    [114] Chapman R.E., Effects of oil and gas accumulation on water movement[J].AAPG Bulletin ,1982, 66(3): 438-445
    [115] Hindle A.D., Petroleum migration pathways and charge concentration: a Three dimensionalmodel[J].AAPG Bulletin, 1997,81(10):1451-1481
    [116] Belitz K.,Bredehoeft J.D.,Hydrodynamics of Denver Basin: Explanation of subnormal fluid pressures[J]. AAPG Bull.,1988,72(3):416-424.
    [117] Senger R.K.,Fogg G.E.,Regional underpressuring indeep brineaquifers, Palo Durobasin, Texas(1): Effects of hydrostratigraphy and topography[J].Water Resour.Res.,1987, 23(10): 1481-1493.
    [118]胡朝元等.成油系统概念在中国的提出及应用[J].石油学报,1996.17(1):1-10
    [119]赵文智、何登发、李伟等.含油气系统的内涵与描述方法[A]中国含油气系统的应用与进展[C].第一版,北京:石油工业出版,1997.P9-24
    [120]田世澄等.论成藏动力学系统[J].勘探家,1996.1(2):20-24.
    [121]田世澄、陈建渝、张树林等,论成藏动力学系统[J].复式油气田,1996,l(1):31-34。
    [122]田世澄、张树林等.论成藏动力学系统的划分和类型[A].《中国含油气系统的应用与进展》第l版,北京:石油工业出版社,1997,33-4l
    [123]康永尚等.油气成藏流体动力系统分析原理及应用[J].《沉积学报》,1998,16(3):80-84
    [124]康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999.
    [125]费琪.成油体系与成藏动力学论文集[C].北京:地震出版社,1999.
    [126]张树林、田世澄、陈建渝,断裂构造与成藏动力系统[J].《石油与天然气地质》,l997,18(4):261-266
    [127]张树林、叶加仁、杨香华等.著.断陷盆地的断裂构造与成藏动力系统[M].第一版,北京:地震出版社,1997. 1-83
    [128]张树林、田世澄、陈建渝等.陆相断陷盆地的成藏动力系统[A].《成油体系与成藏动力学论文集》北京:地震出版,1999
    [129]吴冲龙、王夔培、何光玉.论油气系统与油气系统动力学[J].《地球科学一中国地质大学学报》,2000,12(3): 605-609
    [130]郝芳,邹华耀,姜建群,油气成藏动力学及其研究进展[J].《地学前缘》,2000,7(3);11-21.
    [131]邹华耀,向龙斌,梁宏斌.冀中坳陷廊固凹陷潜山成藏动力学特征[J]《地球科学》,2001,32(1):30-35.
    [132]张厚福,方朝亮.盆地油气成藏动力学初探—21世纪油气地质勘探新理论探索[J].《石油学报》,2002.23(4):7-12
    [133]常象春,张金亮.油气成藏动力学:涵义、方法与展望[J].《海洋地质动态》,2003,19(2):18-25
    [134]褚庆忠、张树林.含油气盆地成藏动力学研究综述[J].《世界地质》2002,21(1):24-29
    [135]王兆云,程克明,张柏生.灰岩的生、排烃模拟实验研究[J].沉积学报, 1996,14(1):127-134
    [136]曾溅辉、金之钧等著.油气二次运移和聚集物理模拟[M].石油工业出版社,北京,2000
    [137]解习农,李思田.断裂带流体作用及动力学模型[J].地学前缘,1996,3(3):133-139
    [138]郭秋麟,米石云,石广仁等.盆地模拟原理方法[M].北京.石油工业出版社,1998
    [139]李思田.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前线,1995,2(3-4):1-8
    [140]李明诚.油气运移研究的现状及之其进展(对油气运移研究的一些认识)[J].世界石油工业,2000,7(1):23-27
    [141]真柄钦次著,陈荷立等译.压实与流体运移[M].北京:石油工业出版社,1987
    [142]李明诚[著].石油与天然气运移(第二版)[M].北京:石油工业出版社,1994,90-100
    [143]李明诚.对油气运聚研究中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-17
    [144]邹华耀,郝芳,蔡勋育.沉积盆地异常低压与低压油气藏成藏机理综述[J].地质科技情报, 2003, 22(2): 45-51
    [145]崔家琛.盆地中的流体流动与输导系统[A].李思田等主编.盆地流体动力学—基本思路与若干研究方法[M].中国地质大学出版社,武汉,1999
    [146]杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘, 1995,2(3~4):138-139.
    [147]李延钧,陈义才,黄健全等.吐哈盆地红南-红西地区油气负压系统成因[J].西南石油学院学报1999, 21(1): 7-9.
    [148]夏新宇,宋岩.沉降及抬升过程中温度对流体压力的影响[J].石油勘探与开发, 2001,28(3):9-10.
    [149]张厚福,方朝亮,张枝焕等.石油地质学[M].北京:石油工业出版社, 1999,208-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700