用户名: 密码: 验证码:
川西坳陷中段须家河组流体成因与天然气动态成藏特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对川西坳陷中段上三叠统须家河组地层超致密、超大埋深、超高压力以及圈闭形成历史、油气富集规律复杂的特点,从基础资料入手,在研究区成藏基本条件分析的基础上,通过流体地化特征的精细研究、对比,明确了研究区天然气的成因及来源,分析了其纵向变化的运移机制,明确了研究区地层水的来源,探讨了水岩相互作用机制;在地层剥蚀厚度恢复的基础上,通过主力烃源岩生排烃史、包裹体均一温度以及K/Ar测年等多种方法综合确定主要气藏的成藏年代;最后通过典型气藏解剖,分析了研究区须家河组天然气成藏的动态过程,总结了天然气的成藏模式。论文取得的主要结论及创新性成果如下:
     (1)须家河组烃源岩具有厚度大、分布范围广、有机质丰度高、成熟度高、类型单一(主要以Ⅲ型为主)的特点。
     (2)须二段天然气与其他层段天然气相比具有甲烷碳同位素相对较高、乙烷碳同位素相对较低的特征,显示须二段天然气经历了更高的成熟度演化并来源于更好的母质类型,可能暗示了早期古油藏裂解气的混合。
     (3)天然气纵向上的规律性变化主要体现了天然气成熟度和运移过程中分馏作用的影响。原、次生气藏纵向上的运移机制具有较大的差异:上侏罗统天然气主要由下部须家河组天然气窜层渗流运移而来,断裂是其最重要的运移通道;中侏罗统天然气运移方式复杂,部分气藏由须家河组气源沿高速运移通道运移而来,而部分气藏是通过下部气源以水溶相的方式运移聚集成藏;须四段天然气以扩散运移方式为主,反应该层段天然气成藏时储层已相对致密;须二段天然气则以渗流方式为主,断裂在其中起到了重要的作用。
     (4)气源对比表明,合兴场地区侏罗系天然气主要来源于须五段烃源岩,中侏罗统源岩是其有力的补充;洛带地区侏罗系天然气主要来自于须五段和中下侏罗统源岩,须四段源岩有一定的贡献;金马地区侏罗系天然气主要来自中、下侏罗统;新场地区侏罗系天然气主要来自于须五段源岩,中、下侏罗统源岩是其有力的补充,须四段源岩对其有一定的贡献;鸭子河地区侏罗系气源为须四段烃源岩;中江地区侏罗系天然气主要来源于须五段烃源岩。丰谷地区须四段天然气主要来自于其自身烃源岩,须三段烃源岩对其有一定贡献;新场地区须四段天然气主要由须四源岩提供气源,表现为自身自储的性质;高庙子地区须二段天然气由小塘子-马鞍塘组和须二段源岩共同提供气源;新场地区须二段天然气主要来源于须二段和小塘子-马鞍塘组源岩;中江和合兴场地区须二段天然气则主要来源于小塘子-马鞍塘组烃源岩。而对于须四段天然气表现出的自生自储的性质,应主要与天然气样主要为须四上亚段的缘故,须三段源岩对下亚段天然气应具有较大的贡献。
     (5)研究区须家河组地层水总体表现为大气淡水背景,后期有海相地层水的入侵,泥页岩及煤层压实水对水性质影响巨大。须二段和须四段地层水地化特征相似性不仅是由于跨层流动造成的,共同来源的海相地层水和泥页岩压释水是根本原因,两者地层水的差异性主要是两者不同的水岩作用体系造成的,须四段相对须二段具有更为开放的水岩作用体系。
     (6)喜山期地层平均剥蚀厚度达到了1400m左右,在平面上具有如下变化特点:龙门山前从北往南剥蚀厚度逐渐变小,大邑地区具有相对最小的剥蚀厚度;从龙门山前往东,剥蚀厚度逐渐减小;从北往南地层剥蚀厚度逐渐减小;从西往东,则表现为先变小后变大的特征,鸭子河地区剥蚀较强、往东到马井地区剥蚀厚度变小,再往东到中江剥蚀厚度又变大。
     (7)研究区大量样品、尤其是裂缝样品的包裹体均一温度远远超过地层所经历的古地温,顺断裂、裂缝而来的热液应是造成其温度偏高的主要原因。
     (8)须二段天然气具有持续充注的特点,主要有3个重要的成藏期:分别为须五段-早侏罗统沉积时期、中侏罗统-早白垩沉积时期和喜山期,其中中侏罗统-早白垩沉积时期为最主要的成藏阶段,其余两个相对次要;须四段天然气同样具有持续充注的特点,其对应的主要成藏期有:须五段沉积中期-早侏罗统沉积时期、晚侏罗统-早白垩沉积时期和喜山期,晚侏罗统-早白垩沉积时期为最重要的成藏时期,喜山期主要对早期原生气藏进行改造。
     (9)须二段天然气富集主控因素为:1)现今构造控制了局部构造的气水分异,是油气富集的关键,古今构造高部位是天然气聚集的最有利区;2)断裂是气藏晚期调整的关键。裂缝,尤其是高角度裂缝是气藏高产的关键,同时也是地层水纵窜入侵的主要通道;3)储层的非均质性是气层非均质性分布的根本原因;4)有利的沉积微相是优质储层发育的基础。
     (10)须四段天然气富集主控因素为:1)古今构造是气、水分布的基础;2)裂缝和有利沉积相对控制的优质砂岩储层的叠加是须四下亚段高产、稳产的关键;3)保存条件,尤其是成藏关键时期的保存条件是形成须四上亚段目前气水分布局面的最主要因素。
For the characteristics of the Triassic Xujiahe formation in the middle of the western Sichuan depression, which has super dense, super depth, high pressure and the history of trap formation and the complexity of oil and gas accumulation, this paper starts from the basic information, on the basis of the basic forming conditions of the study area, through the detailed study and contrast of fluid geochemical characteristics, we known the causes and sources of natural gas, and analyzed migration mechanism of longitudinal changes, the sources of the formation water and the mechanism of water-rock interaction. Based on the recovery of formation eroded thickness, through many methods, such as the history of the main hydrocarbon source rock generation and expulsion, the package body with homogenization temperature, and K/Ar dating, etc, we identified the forming age of major gas accumulation. Finally, through the anatomy of typical gas reservoir, we analyzed the dynamic process of natural gas accumulation of Xujiahe in the study area, and summed up the gas accumulation model. The main conclusions and innovative achievements are as follows:
     (1)The characteristics of hydrocarbon source rock of Xujiahe formation was large thickness, wide distribution, high organic matter abundance, high maturity, and single type(the main type wasⅢkerogen).
     (2)The characteristics of gas of member 2 compared with other members of Xujiahe formation shown that the methane carbon isotope of member 2 was higher than that of other members, and ethane carbon isotope of member 2 was lower than that of other members. This shown that gas of member 2 udergoed higher organic maturation evolution and came from better mother substance, which hint the blending of the ear1y paleo-oil pools pyrolysis gas.
     (3)The longitudinal regular change of gas mainly embodyed the gas maturity and fractionation effect in migration process. The longitudinal migration mechanism of the primary pool and the secondary pool had great difference. The main resource of the upper Jurassic gas was the underneath Xujiahe formation gas, and faults were the first migration pathway. The migration manner of the middle Jurassic gas was complex, one part came from Xujiahe formation gas through high speed migration pathway, the other came from the underneath Xujiahe formation gas in hydrotrope. The mainly gas migration manner of member 4 of Xujiahe formation was diffusion, which reflected that the reservoir bed was fine and close when the gas accumulated. The mainly gas migration manner of member 4 of Xujiahe formation was transfusion, in which faults played an important role.
     (4)Gas source comparison indicated that the Jurassic gas of HeXingChang mainly came from the member 5 of Xujiahe formation hydrocarbon source rocks, and the middle Jurassic source rock was its powerful supplement. Jurassic gas of LuoDai mainly came from the middle and the lower Jurassic system, the member 4 of XuJiahe formation had certain contribution. The Jurassic gas of JinMa mainly came from the middle and the lower Jurassic. The Jurassic gas of XinChang mainly came from the member 5 of XuJiahe formation hydrocarbon source rocks, the middle and the lower Jurassic source rock were its powerful supplement. Jurassic gas of LuoDai mainly came from the middle and the lower Jurassic, the member 4 of XuJiahe formation had certain contribution. Jurassic air hydrocarbon source rocks of Ducks river area mainly came from the member 4 of XuJiahe formation. The Jurassic gas of ZhongJiang mainly came from the member 5 of XuJiahe formation hydrocarbon source rocks. The Jurassic gas of the member 4 of XuJiahe formation of FengGu area mainly came from its own hydrocarbon source rocks. The gas of the member 4 of XuJiahe formation of XinChang area was mainly provided by gas source of the member 4 formation source rocks, and had nature of self-generation and self-storage. The gas of the member 2 of XuJiahe formation of GaoMiaoZi area was mainly provided by gas source of both XiaoTangZi-Saddle group and the member 2 of XuJiahe formation. The gas of the member 2 of XuJiahe formation of XinChang mainly came from the member 2 of XuJiahe formation and XiaoTangZi-Saddle group hydrocarbon source rocks. The gas of the member 2 of XuJiahe formation of XinChang and ZhongJiang mainly came from the member 2 of XuJiahe formation and XiaoTangZi-Saddle group hydrocarbon source rocks. However, for the nature of self-generation and self-storage of the gas of the member 4 of XuJiahe formation, we think that the main reason was the gas samples mainly came form the upper mild-segment of T3x4, and the mother rock of the member 3 of XuJiaHe formation should make great contribution to the lower mild-segment of member 4 of Xujiahe formation.
     (5)The main formation water of Xujiahe formation was atmosphere fresh water, but at the later stage there was marine facies formation water intruding, and argillutite and the coal bed compaction water affected water properties tremendously. The geochemical characteristics similarity of formation water of member 2 and member 4 of Xujiahe formation was caused not only by cross-formation flow, but also mainly by the common resource such as marine facies formation water and argillutite compaction released water. The geochemical characteristics divergence of formation water of member 2 and member 4 of Xujiahe formation was mainly caused by different water-rock interaction, for the member 2 had more open ended water-rock interaction than that of member 4.
     (6)The average eroded thickness of Himalayan movement formation was around the 1400m, in the plane, there had the following changeable characteristics: the eroded thickness gradually became smaller from north to south in front of Longmen Mountain, Dayi region had relatively minimal the eroded thickness. From in front of the Longmen Mountain to the east, the eroded thickness gradually reduced. The western Sichuan depression had the characteristics of the eroded thickness decreased from north to south. From west to east, the performance shown larger after smaller, the erosion of Duck River region was stronger, from east to the Horse Well region, the eroded thickness was smaller, and then east to the zhongjiang region, the eroded thickness became larger.
     (7)The homogenization temperature of inclusion enclave of great quantity sample, especially the fissure sample, overtook the palaeogeothermal far away, the main reason of which was hydrothermal fluid through the faults and fissures.
     (8)The gas of member 2 of Xujiahe formation had the characteristic of persistent infusion, which had 3 important communicating stages, as follows: member 5 of Xujiahe formation-early Jurassic sedimentation, middle Jurassic-early Crataceous sedimentation and Himalayan movement.Middle Jurassic-early Crataceous sedimentation was the foremost stage of gas communication, the other were less important relatively.The gas of member 4 of Xujiahe formation had the same characteristic of persistent infusion, and the corresponding communicating stages are the middle sedimentation of member 5 of Xujiahe formation-early Jurassic sedimentation, late Jurassic-early Crataceous sedimentation and Himalayan movement. Late Jurassic-early Crataceous sedimentation was the foremost stage of gas communication, and Himalayan movement mainly reformed the early primary gas pool.
     (9)The master control of natural gas concentration of member 4 of Xujiahe formation was: 1) Structure nowadays controlled the gas and water distribution of local structure, which was the key factor of oil and gas concentration, and ancient and modern structure eminence was the most favorable place for gas concentration. 2) Faults were the key factor of late period regulatory of gas pool. Fissure, especially the high angle fissure was not only the key factor of gas pool high production, but also the main invasion channel of formation water. 3) The reservoir heterogeneity was the fundamental reason of gas horizon heterogeneity. 4) The beneficial deposition microfacies were the base of superior quality reservoir development.
     (10)The master control of natural gas concentration of member 4 of Xujiahe formation was: 1) Ancient and modern structure was the base of gas and water distribution; 2) Cracks and favorable sedimentary facies superimposed the controlled superior quality sandstone reservoir was the key factor of high production and stable yields of the lower mild-segment of member 4 of Xujiahe formation; 3) The preservation conditions, especially the preservation conditions of reservoiring critical period, was the most key factor of gas and water distribution of the upper mild-segment of member 4 of Xujiahe formation.
引文
[1]郭正吾,邓康龄,韩永辉等.四川盆地形成与演化[M].北京:地质出版社,1996.113-138.
    [2]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M].四川成都:成都科学技术出版社,1995.25-37.
    [3]李书兵,何鲤,柳梅青.四川盆地晚三叠世以来陆相盆地演化史[J].天然气工业,1999,19(增刊):18-23.
    [4]邓康龄,余福林.川西坳陷的复合构造与油气关系[J].石油与天然气地质,2005,26(2):214-219.
    [5]罗啸泉,陈兰.川西坳陷形成演化及其与油气的关系[J].油气地质与采收率,2004,11(1):16-19.
    [6]陈晓华,李贵学,赵泽江.川西坳陷新场气田东部构造变形特征和天然气成藏条件分析[J].矿物岩石,1997,17(4):55-60.
    [7]曹烈,曾焱.川西坳陷上三叠统含油气系统[J].新疆石油地质,2005,26(5):520-524.
    [8]陶正喜.川西坳陷X区块须家河组三维地震构造解释[J].天然气工业,2007,27(6):54-56.
    [9]甘其刚.川西坳陷深层致密非均质裂缝性气藏.博士学位论文,成都理工大学,2005.
    [10]罗啸泉,安凤山.川西坳陷圈闭分类[J].沉积与特提斯地质,2007,7(1):67-71.
    [11]曹烈,沈忠民,安凤山.川西坳陷须家河组古圈闭类型及识别技术[J].石油学报,2006,27(4):45-49.
    [12]李显贵,范菊芬,张学映.川西坳陷须家河组气藏DR技术应用[J].石油勘探与开发,2006,33(5):566-568.
    [13]唐立章,曹烈,安凤山.川西坳陷油气圈闭类型分析[J].石油实验地质,2004,26(4):328-332.
    [14]岳东明,王信.浅析川西坳陷燕山中、晚期构造圈闭的有效性[J].石油实验地质,1999,21(2):128-131.
    [15]曹烈,安凤山,王信.川西坳陷须家河组气藏与古构造关系[J].石油与天然气地质,2005,26(2):224-229.
    [16]韩春艳,黄健全,胡雪涛等.川西坳陷须家河组二段储层储集空间特征[J].内蒙古石油化工,2007,2:97-99.
    [17]郑荣才,叶泰然,翟文亮等.川西坳陷上三叠统须家河组砂体分布预测[J].石油与天然气地质,2008,29(3):406-417.
    [18]张贵生.川西坳陷须家河组致密砂岩储层裂缝特征[J].天然气工业,2005,25(7):11-13.
    [19]郑荣才,彭军,高红灿等.川西坳陷断裂活动期次、热流体性质和油气成藏过程分析[J].成都理工大学学报(自然科学版),2003,30(6):551-558.
    [20]匡建超,童孝华,杨维宁.川西坳陷致密碎屑岩储层产能预测方法研究[J].矿物岩石,1994,14(4):85-91.
    [21]李毓,王洪辉,李楠等.川西坳陷中部现今地应力纵向分布规律研究及应用[J].天然气工业,2005,25(11):43-44.
    [22]徐樟有,吴胜和,张小青等.川西坳陷新场气田上三叠统须家河组须四段和须二段储集层成岩-储集相及其成岩演化序列[J].古地理学报,2008,10(5):447-458.
    [23]钟玉梅.川西坳陷中段须家河组须四段砂岩储集特征[J].石油天然气学报(江汉石油学院学报),2008,30(6):218-220.
    [24]魏力民.川西坳陷中段有效圈闭探讨[J].石油物探,1998,37(1):14-20.
    [25]叶军.川西坳陷马鞍塘组—须二段天然气成矿系统烃源岩评价[J].天然气工业,2003,23(1):21-25.
    [26]曹烈,徐殿桂,黄川.川西坳陷上三叠统—侏罗系烃源岩生烃史研究[J].天然气工业,2005,25(12):22-24.
    [27]张世华,李汶国.川西坳陷T3x1-2油气成藏期研究[J].天然气工业,2005,25(12):19-21.
    [28]杨克明,叶军,吕正祥.川西坳陷上三叠统成藏年代学特征[J].石油与天然气地质,2005,26(2):208-213.
    [29]饶丹.川西坳陷上三叠统烃的运移相态研究[J].石油实验地质,1999,21(1):18-22.
    [30]罗啸泉,曹烈,杨旭明等.川西坳陷上三叠统油气运移特征[J].天然气工业,2004,24(8):4-7.
    [31]秦胜飞,陶士振,涂涛等.川西坳陷天然气地球化学及成藏特征[J].石油勘探与开发,2007,34(1):34-38.
    [32]赵永胜,周文.川西坳陷须二气藏凝析水地球化学特征及成因初探[J].天然气地球科学,1995,27(6):30-33.
    [33]张世华.川西坳陷须三须四段含油气系统生排烃过程与主要成藏期关系[J].成都理工大学学报(自然科学版),2006,33(3):252-255.
    [34]黄强.川西坳陷中部须二段储层流体包裹体特征及在油气充注史研究中的应用[J].沉积与特提斯地质,2009,29(2):83-85.
    [35]何心贵,杨先利.川西坳陷中段陆相天然气源岩追踪[J].天然气工业,2002,22(3):14-17
    [36]樊然学.川西坳陷中段气藏天然气形成碳同位素地球化学证据[J].自然科学进展,1999,9(12):1122-1132.
    [37]李书兵.川西坳陷中段上三叠统成藏年代学及流体演化特征研究.博士学位论文,成都理工大学,2007.
    [38]陈俊,沈忠民,陈义才等.川西坳陷中段上三叠统烃源岩生物标志化合物研究[J].石油天然气学报(江汉石油学院学报),2007,29(3):390-393.
    [39]罗小平,曹军,沈忠民.川西坳陷中段上三叠统须家河组储层沥青地球化学特征及成因研究[J].矿物岩石,2009,29(1):93-98.
    [40]王玲辉,沈忠民,赵虎.川西坳陷中段天然气碳同位素特征及其成因类型[J].物探化探计算技术,2008,30(4):326-330.
    [41]田军,沈忠民,吕正祥等.川西坳陷中段新场地区天然气研究及气源对比[J].地质学报,2009,29(1):20-23.
    [42]沈忠民,潘中亮,吕正祥等.川西坳陷中段须家河组天然气地球化学特征与气源追踪[J].成都理工大学学报(自然科学版),2009,36(3):225-230.
    [43]王玲辉,沈忠民,赵虎.川西坳陷中段须家河组烃源岩地球化学特征[J].西部探矿工程,2007,11:66-70.
    [44]沈忠民,刘涛,吕正祥等.川西坳陷侏罗系天然气气源对比研究[J].高校地质学报,2008,14(4):577-582.
    [45]唐艳,叶军.轻烃指纹参数在川西坳陷天然气成藏研究中的应用[J].油气地质与采收率,2001,8(6):17-21.
    [46]叶军.川西坳陷侏罗系烃源岩评价[J].油气地质与采收率,2001,8(3):11-14.
    [47]陈桂菊.川西地区上三叠统油气储层控制因素及评价研究.博士学位论文,中国地质大学(北京),2007.
    [48]李宗银.川西前陆盆地上三盛统油气成藏条件及勘探前景.博士学位论文,西南石油大学,2006.
    [49]吴世祥.川西上三叠统前陆盆地成藏特征分析.博士学位论文,中国地质大学,2002.
    [50]陈青.川西须家河组致密储层破裂压力研究.博士学位论文,成都理工大学,2007.
    [51]杨克明.非常规油气藏形成机理及开发关键技术—以川西坳陷上三叠统气藏为例.博士学位论文,成都理工大学,2005.
    [52]王金琪.早聚晚藏—川西坳陷天然气基本特征[J].天然气工业,2001,21(1):5-12.
    [53]吴朝容.致密碎屑岩气藏裂缝性储层预测方法—以川西坳陷新场气田须二段为例.博士学位论文,成都理工大学,2005.
    [54]刘新月,赵德力,郑斌等.油气成藏研究历史、现状及发展趋势[J].河南石油,2001,15(3):10-14.
    [55]关德范,王国力,张金功等.成盆成烃成藏理论思维—从盆地到油气藏[M].石油工业出版社,2004,1-10.
    [56]A I莱复生著,张更,黄醒汉,李汉瑜等译.石油地质学[M].1975.石油工业出版社.
    [57]R E查普曼著,李明诚,周明鉴译.石油地质学[M].1989.石油工业出版社.
    [58]张厚福,金之均.我国油气运移的研究现状与展望[J].石油大学学报(自然科学版),2000,24(4):1-3.
    [59]李明诚.石油天然气运移研究综述[J].石油勘探与开发,2000,27(4):3-9.
    [60]Schowalter T T.Mechanics of secondarv hydrocarbon migration entrapment[J].AAPG Bu11,1997,63:723-760.
    [61]Durand B.Understanding of hydrocarbon migration in sedimentary hasins[J].Org Gcochem,1980,13:445-459.
    [62]一苇.中国人创立并发展起来的陆相盆地生油理论[J].中国石化,2008:47.
    [63]L.B.马贡,W.G.道著,张刚,蔡希源译.含油气系统-从烃源岩到圈闭[M].北京:石油工业出版社,1998.
    [64]田世澄等.论成藏动力学系统[J].勘探家,1996.l(2):20-24.
    [65]田世澄,陈建渝,张树林等,论成藏动力学系统[J].复式油气田,1996,l(1):31-34.
    [66]田世澄,张树林等.论成藏动力学系统的划分和类型[M]《.中国含油气系统的应用与进展》第l版,北京:石油工业出版社,1997,33-41.
    [67]饶丹.塔河油田奥陶系流体地球化学特征及成藏动力学研究.博士学位论文,成都理工大学,2007,1-4.
    [68]A.佩罗东著,冯增模等译.石油地质动力学[M].北京:石油工业出版社,1993.1-171.
    [69]孙永传.石油地质动力学的理论与实践[J].地学前缘,1995.2[2-4]:9-14.
    [70]康永尚等.油气成藏流体动力系统分析原理及应用[J].沉积学报,1998,16(3):80-84.
    [71]康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999.
    [72]郝石生,黄志龙,杨家琦.天然气运聚动平衡及其应用[M].北京:石油工业出版社,1994.
    [73]郝石生,高耀武,黄志龙.鄂尔多斯盆地中部大气田聚集条件及运聚动平衡[J].中国科学(D辑),1996,26(6):488-492.
    [74]Hunt J M.Generation and migration of Petroleum from abnormally pressured fluid compartments.AAPG Bulletin,1990,74:1-12.
    [75]戴金星,王庭斌,宋岩等.中国大中型天然气田形成条件与分布规律[M].北京:地质出版社,1997,194-495.
    [76]宋岩,戴金星,李先奇,等:中国大中型气田主要地球化学和地质特征[J].石油学报,1998,19(1):1-5.
    [77]李明诚.油气运移基础理论与油气勘探[J].地球科学—中国地质大学学报,2004,29(4):379-383.
    [78]Hindle,A.D.Petroleum migration pathways and charge concentration:A three dimensional model.AAPG Bulletin,1997.81(9):1451-1481.
    [79]Pratsch,J.C.Determination of exploration by migration pathways of oil and gas.Translated by Song,M.Y..Foreign Oil and Gas Exploration,1997.9(1):63-68.
    [80]李明诚.石油与天然气运移研究综述[J].石油勘探与开发,2000,27(4):3-10.
    [81]李明诚.对油气运聚研究中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-16.
    [82]赵靖舟.幕式成藏理论的提出及其勘探意义[J].石油实验地质,2005,29(2):315-320.
    [83]Hooper E D.Fluid migration along growth faults in compacting sediments[J].J Petrol GeM,199l,4(2):l6l-180.
    [84]郝石生.天然气藏的形成和保存[M].北京:石油工业出版社,1995.
    [85]黄志龙,柳广弟,郝石生.脉冲式混相涌流—天然气成藏的一种特殊运移方式[J].天然气工业,1998,18(2):7-9.
    [86]龚再升,陈红汉,孙永传.莺歌海盆地流体压力自振荡与天然气幕式成藏的耦合特征[J].中国科学(D辑),1999,29(1):68-74.
    [87]邱楠生,金之钧.油气成藏的脉动式探讨[J].地学前缘,2000,7(4):561-567.
    [88]石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1994.
    [89]Eadington P J.1991.Fluid history analysis—a new concept for prospect evaluation.The APEA,31:282-294.
    [90]Parnell J.1994.Geofluids:origin,migration and evolution of fluids in sedimentary basin.The Geological Society Publishing house.
    [91]李思田,王华,路凤香等.盆地动力学—基本思路与若干研究方法,[M].武汉:中国地质大学出版社,1999.
    [92]蔡春芳,梅博文,马亭等.塔里木盆地流体—岩石相互作用研究[M].北京:地质出版社,1997.
    [93]Brrlykke K.Organic acids from source rock maturation.Generation potentials,transport mechanisms and relevance for mineral diagenesis[J].Applied Geochemistry,1992,8:325-337.
    [94]Surdam R C,Crossley L J,Hagen E S,Heasler P.Organic-inorganic internation and sandstone diagenesis[J].AAPG Bulletin.1989,73:1-23.
    [95]戴金星,宋岩,张厚福.中国大中型气田形成的主要控制因素[J].中国科学(D辑),1996,26(6):481-487.
    [96]常振恒.东濮凹陷深层天然气成藏机理研究,博士学位论文,中国科学院研究生院,2007,1-9.
    [97]Schoell,M.Multiple origins of methane in the Earth,Chemical Geology,1988,71:1-10.
    [98]张士亚、郜建军、蒋泰然.利用甲、乙烷碳同位素判识天然气类型的一种新方法[J],石油与天然气地质文集(1),中国煤成气研究,北京:地质出版社,1988.
    [99]Hoefs,J.Stable Isotope Geochemisrry,Springer-Verleg,Berlin,Heidelberg,NewYork,1980.
    [100]Tissot,B.P.and Welte,D.H.Petroleurn Forrnation and Oceurrenee-A New Approach to oi1 and Gas Exploration,Springer-Verleg,Berlln,Heidelberg,NewYork,1978.
    [101]Hunt,J.M.Petroleum Geoehemistry and Geology,W.H.Freemen and Company,San Francisco,1979.
    [102]Tiratisoo,E.N.Natureal Gas-A Study(3rd ed),Scientific Press,Beaconfield,1979.
    [103]MacDonald.G.The many origins of natural gas,Joural of Petroleum Geology,1983,5:341-362.
    [104]熊寿生,张文达,卢培德等.试论我国天然气的多种成因作用与多种成气模式[J].石油实验地质,1984,6(3):213-228.
    [105]刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报,1996,14(1):110-115.
    [106]徐永昌,沈平.中原、华北油地区《煤型气》地化特征初探[J].沉积学报,1985,3(2):37-46.
    [107]包茨.天然气地质学[M].北京:科学出版社,1988.
    [108]陈书荣.天然气地质学[M].武汉:中国地质大学出版社,1989.
    [109]张厚福,吕福亮.天然气成因类型及其判识标志[J].天然气地质研究论文集,北京:石油工业出版社,1989,90-100.
    [110]刘文汇,张殿伟,王晓锋等.天然气气—源对比的地球化学研究[J].沉积学报,2004,22(增刊):27-32.
    [111]戴金星.各类天然气的成因鉴别[J].中国海上油气(地质),1992,6(1):11-19.
    [112]戴金星.利用轻烃鉴别煤成气和油型气[J].石油勘探与开发,1993,20(5):26-32.
    [113]戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,2(3):1-40.
    [114]戴金星.我国有机烷烃气的氢同位素的若干特征[J].石油勘探与开发,1990,5:27-32.
    [115]戴金星,邹才能,张水昌等.无机成因和有机成因烷烃气的鉴别[J].中国科学D辑:地球科学,2008,38(11),1329-1341.
    [116]戴金星,宋岩,程坤芳等.中国含油气盆地有机烷烃气碳同位素特征[J].石油学报,1993,14(2):23-31.
    [117]戴金星.中国煤成气研究30年来勘探的重大进展[J].石油勘探与开发,2009,26(3).
    [118]戴金星,胡安平,杨春等.中国天然气勘探及其地学理论的主要新进展[J].天然气工业,2006,26(12):1-5.
    [119]刘文汇,徐永昌,雷怀彦.生物-热催化过渡带气及其综合判识标志[J].矿物岩石地球化学通报,1997,16(1):51-54.
    [120]曹智.天然气成因分类、鉴别标志及分析技术研究现状[J].石油天然气学报(江汉石油学院学报),2009,31(3):199-201.
    [121]宋岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发,2005,32(4):24-29.
    [122]王万春,刘文汇,高波等.我国浅层复合气藏中天然气的成因鉴别[J].天然气工业,2003,23(3):20-23.
    [123]王晓锋,刘文汇,徐永昌等.不同成因天然气的氢同位素组成特征研究进展[J].天然气地球科学,2006,17(2):163-169.
    [124]夏新宇,赵林,李剑锋等.长庆气田天然气地球化学特征及奥陶系气藏成因[J].科学通报,1999,44(10):1116-1119.
    [125]胡安平,李剑,张文正等.鄂尔多斯盆地上、下古生界和中生界天然气地球化学特征及成因类型对比[J].中国科学D辑:地球科学,2007,37(增刊Ⅱ):157-166.
    [126]刘文汇,孙明良,徐永昌.鄂尔多斯盆地天然气稀有气体同位素特征及气源示踪[J].科学通报,2001,46(22):1902-1905.
    [127]黄第藩,熊传武,杨俊杰等.鄂尔多斯盆地中部气田气源判识和天然气成因类型[J].天然气工业,1996,16(6):1-5.
    [128]陈英,戴金星,戚厚发.关于生物气研究中几个理论及方法问题的研究[J].石油实验地质,1994,16(3):209-219.
    [129]石昕,孙冬敏,秦胜飞等.煤成大、中型气田天然气的碳同位素特征[J].石油实验地质,2000,22(1):16-21.
    [130]胡国艺,李剑,李谨等.判识天然气成因的轻烃指标探讨[J].中国科学D辑:地球科学,2007,37(增刊Ⅱ):111-117.
    [131]纪红.天然气成因类型划分及来源判别[J].中外科技情报,2007,20:4-24.
    [132]王先彬,妥进才,李振西等.天然气成因理论探索—拓宽领域、寻找新资源[J].天然气地球科学,2003,14(1):30-34.
    [133]孙秀凤,崔永强,邹胜权.天然气成因碳同位素指标评述[J].化工矿产地质,2006,28(4):225-232.
    [134]王连生,郭占谦,马志红等.无机成因天然气的地球化学特征[J].吉林大学学报(地球科学版),2004,34(4):542-545.
    [135]张水昌,朱光有.中国沉积盆地大中型气田分布与天然气成因[J].中国科学D辑:地球科学,2007,37(增刊Ⅱ):1-11.
    [136]宋岩,戴金星,李先奇等.中国大中型气田主要地球化学和地质特征[J].石油学报,1998,19(1):1-5.
    [137]钱凯,王明明,魏伟.中国陆相天然气成因类型及富集规律[J].石油天然气地质,1996,17(3):171-176.
    [138]Stahl W.J.,Carey J.B.B.Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware Basins,West Texas[J].Chem Geol,1975,16:257-267.
    [139]Berner U and Faber E.Empirical carbon isotope maturity relationships for gases from algal kerogens and terrigenous organic matter , based on dry , open-system pyrolysis[J].Org.Ceochem.,1996,24(10):947-955.
    [140]Berner,U.and E.Faber.Maturity related mixing model for methane,ethane and propane,based on carbon isotopes[J].Org.geochem.,1988,13(1-3):67-72.
    [141]沈平,徐永昌,王先彬等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991.
    [142]刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,l999,28(4):359-365.
    [143]Faber,E.,Gerling,P.,and Dumke,I.Gaseous hydrocarbon of unknown origin found while drilling[J].Organic Geochemistry,1987,13:875-879.
    [144]戴金星,戚厚发,宋岩.鉴别煤成气和油型气等指标的初步探讨[J].石油学报,1985,6(2):31-38.
    [145]戴金星,戚厚发.我国煤成烃气的δ13C-Ro关系[J].科学通报,1989,34(9):690-692.
    [146]沈平,申岐祥,王先彬等.气态烃同位素组成特征及煤型气判识[J].中国科学(B辑),1987,(6):647-656.
    [147]陈安定,张文正,徐永昌.沉积岩成烃热模拟试验产物的同位素特征及其应用[J].中国科学(B辑),1993,23(2):209-217.
    [148]Stahl W.J.Carbon and nitrogen isotopes in hydrocarbon research and exploration[J].Chem.Geol.1977,20:121-149.
    [149]徐永昌,刘文汇,沈平等.辽河盆地天然气形成与演化[M].北京:科学出版社,1993.
    [150]张林晔.济阳坳陷天然气成因的判识标志[J].石油实验地质,1991,13(4):355-369.
    [151]李剑,胡国艺,谢增业等.中国大中型气田天然气成藏物理化学模拟研究[M].北京:石油工业出版社,2001.
    [152]程付启.天然气藏多源充注与散失的地质地球化学示踪研究.博士学位论文,中国石油大学,2007,34-47.
    [153]吴铬,李华昌,川西坳陷孝泉-丰谷构造带须家河组气藏成藏机制研究,成都理工学院学报,2002,29(2):161-167.
    [154]徐国盛,刘树根等主编.2005.四川盆地天然气成藏动力学[M].北京:地质出版社.
    [155]尹观,倪师军,高志友等.四川盆地卤水同位素组成及氘过量参数演化规律,矿物岩石,2008,28(2):56-62.
    [156]刘光祥,蒋启贵,潘文蕾等.干气中浓缩轻烃分析及应用—以川东北、川东区天然气气/源对比研究为例[J].高校地质学报,2003,25(增刊):577-582.
    [157]李延钧,杨远聪,文亨范等.高—过熟天然气气源对比与运移研究[J].大庆石油地质与开发,1996,15(1):12-16.
    [158]李剑,张英,蒋助生等.煤成气气源判别新方法的研究与应用[J].天然气地球科学,1998,9(6):11-19.
    [159]沈平,徐永昌,刘文汇等.天然气研究中的稀有气体地球化学应用模式[J].沉积学报,1995,13(2):8-57.
    [160]刘文汇,徐永昌.天然气中氦、氩同位素组成的意义[J].科学通报,1993,38(9):818-821.
    [161]徐永昌,刘文汇,沈平等.天然气地球化学的重要分支—稀有气体地球化学[J].天然气地球科学,2003,14(3):157.
    [162]徐永昌,沈平,刘文汇等.天然气中稀有气体地球化学[M].北京:科学出版社,1998.55-69.
    [163]沈平,徐永昌.气态烃同位素组成特征及煤型气判识[J].中国科学(B辑),1987,(6):647-656.
    [164]刘文汇,徐永昌.天然气地质学中的氩、碳同位素相关研究[J].天然气地球科学,1997,8(1):7-10.
    [165]刘文汇,刘全有,徐永昌等.天然气地球化学数据的获取及应用[J].天然气地球科学,2003,14(1):21-29.
    [166]徐永昌等.天然气成因理论及应用[M].北京:科学出版社,1994,270-283.
    [167]郑建京,胡慧芳,刘文汇等.K-Ar关系在天然气气源对比研究中的应用[J].天然气地球科学,2005,16(4):499-502.
    [168]刘文汇、徐永昌.1987,天然气中氩同位素组成及其与源岩、储层钾氩关系,中国科学院兰州地质研究所生物气体地球化学开放研究实验室,1986,研究年报,兰州:甘肃科学技术出版社.191-200.
    [169]Levorsen A I.Geology of Petroleum.W H Freeman and Company,San Franeiseo.1967.
    [170]潘钟祥.石油地质学[M].北京:地质出版社.1986.
    [171]张厚福,张万选.石油地质学[M].北京:石油工业出版社.1989.
    [172]赵靖舟,李秀荣.成藏年代学研究现状[J].新疆石油地质,2002,23(3):257-26.
    [173]于涛.油气成藏期次的研究现状和发展趋势[J].四川地质学报,2008,128(4):290-292.
    [174]赵孟军,宋岩,潘文庆等.沉积盆地油气成藏期研究及成藏过程综合分析方法[J].地球科学进展,2004,19(6):939-946.
    [175]林景晔,杨庆杰,尹大庆等.对成藏期定量分析中自生矿物定年的探讨[J].大庆石油地质与开发,2005,24(6):14-16.
    [176]赵力彬,黄志龙,高岗等.关于用包裹体研究油气成藏期次问题的探讨[J].油气地质与采收率,2005,12(6):6-9.
    [177]邢卫新,费永涛,杨永毅等.含油气盆地成藏期分析方法及进展[J].石油地质与工程,2006,20(6):12-15.
    [178]王飞宇,金之钧,吕修祥等.含油气盆地成藏期分析理论和新方法[J].地球科学进展,2002,17(5):754-762.
    [179]任战利,刘丽,崔军平等.盆地构造热演化史在油气成藏期次研究中的应用[J].石油与天然气地质,2008,29(4):502-506.
    [180]李景坤,冯子辉,刘伟等,舒萍.松辽盆地徐家围子断陷深层天然气成藏期研究[J].石油学报,2006,27:42-46.
    [181]高波,刘文汇,范明等.塔河油田成藏期次的地球化学示踪研究[J].石油实验地质,2006,28(3):276-280.
    [182]于涛.油气成藏期次的研究现状和发展趋势[J].四川地质学报,2008,28(4):290-292.
    [183]曾治平,王敏芳,倪建华.油气成藏期次研究中有机包裹体方法存在问题探讨[J].天然气地球科学,2002,13(3-4):55-59.
    [184]高辉,韩文中,李鲜蓉.油气成藏期分析方法及进展[J].科技情报开发与经济,2008,18(35):105-106.
    [185]李明诚,单秀琴,马成华等.油气成藏期探讨[J].新疆石油地质,2005,26(5):587-591.
    [186]高岗,黄志龙.油气成藏期研究进展[J].天然气地球科学,2007,18(5):661-666.
    [187]马安来,张水昌,张大江,金之钧.油气成藏期研究新进展[J].石油与天然气地质,2005,26(3):271-276.
    [188]赵孟军,宋岩,秦胜飞等.中国中-西部4种新生代挤压盆地成藏地质条件及成藏期次[J].地质科学,2007,42(2):234-252.
    [189]王龙樟,戴谟,彭平安.自生伊利石40Ar/39Ar法定年技术及气藏成藏期的确定[J].地球科学—中国地质大学学报,2005,30(1):78-82.
    [190]沈忠民,宫亚军,刘四兵等.川西坳陷新场地区上三叠统须家河组地层水成因探讨[J].地质论评,2010,56(1):82-88.
    [191]付广,薛永超.天然气运移相态及其变化[J].海洋石油,2001,2:25-30.
    [192]樊然学.川西坳陷中段气藏天然气形成、运移的碳同位素地球化学证据[J].自然科学进展,1999,9(12):1126-1132.
    [193]蔡开平,王应蓉,刘雪梅等.川西南部侏罗系油气垂向运移特征[J].西南石油学院学报,2000,22(4):1-4.
    [194]傅宁,李友川,刘东等.东海平湖气田天然气运移地球化学特征[J].石油勘探与开发,2005,32(5):34-37.
    [195]李延钧,杨远聪,文亨范.高一过熟天然气气源对比与运移研究[J].大庆石油地质与开发,1996,15(1):12-16.
    [196]张莉,胡国艺,谢增业等.含氮化合物在天然气运移中的示踪作用—以平落坝—邛西构造带须二段气藏为例[J].天然气地球科学,2008,19(2):250-254.
    [197]程同锦,朱怀平,陈浙春.孔雀1井剖面地球化学特征与烃类的垂向运移[J].天然气地球科学,2006,17(2):148-152.
    [198]付晓飞,杨勉,吕延防等.库车坳陷典型构造天然气运移过程物理模拟[J].石油学报,2004,25(5):38-43.
    [199]黄志龙,柳广弟,郝石生.脉冲式混相涌流—天然气成藏的一种特殊运移方式[J].天然气工业,1998,18(2):7-9.
    [200]李西爱,李银花,许杰等.评价天然气成熟度及运移的新方法[J].断块油气田,2002,9(2):55-56.
    [201]B.H.拉林.气藏形成过程中垂向运移的特点[M].Геологвявсфтянгаза,1990,1:20-22.
    [202]张立宽,王震亮,曲志浩等.砂岩孔隙介质内天然气运移的微观物理模拟实验研究[J].地质学报,2007,81(4):539-544.
    [203]张立宽,王震亮,曲志浩等.砂岩输导层内天然气运移速率影响因素的实验研究[J].天然气地球科学,2007,18(3):342-346.
    [204]史基安,邓津辉,曾凡刚等.石油二次运移物理模拟及运移特征分析[J].沉积学报,2002,20(2):333-338.
    [205]李明诚.石油和天然气运移、聚集的特征[J].地球物理学进展,1994,9(1):121-124.
    [206]李明诚.石油与天然气运移研究综述[J].石油勘探与开发,2000,27(3):3-9.
    [207]秦胜飞,赵靖舟,李梅等.水溶天然气运移地球化学示踪—以塔里木盆地和田河气田为例[J].地学前缘(中国地质大学(北京);北京大学),2006,13(5):524-532.
    [208]李明诚.碎屑岩系中天然气运移的特征及其定量研究[J].石油勘探与开发,1992,19(4):1-11.
    [209]朱怀平,程同锦,李武等.塔北地区甲烷碳同位素特征与烃类运移方式[J].石油与天然气地质,2005,26(4):450-460.
    [210]段毅,郑朝阳,段晓晨等.塔河油田油气成因和运移的氦同位素证据[J].天然气工业,2007,28-30.
    [211]吕延防.天然气的加速式二次运移过程研究[J].现代地质,2008,22(4):576-591.
    [212]舒雅琴,钟勇.天然气二次运移的计算机数值摸拟[J].计算机应用,1993,5:27-29.
    [213]华保钦,林锡祥,杨小梅.天然气二次运移和聚集研究[J].天然气地球科学,1994,24(5):1-37.
    [214]戴鸿鸣,黄清德,王海清等.天然气横向运移研究—以四川盆地磨溪气田为例[J].天然气地球科学,1998,9(2):7-11.
    [215]张志坚,陆会民,佟卉.天然气通过砂岩输导层渗滤运移速度的确定方法[J].大庆石油学院学报,2005,29(1):12-14.
    [216]付广,吕延防,付晓飞.天然气沿断裂运移规律的物理及数值模拟[J].天然气地球科学,2004,15(3):222-226.
    [217]张同伟,陈践发,王先彬等.天然气运移的气体同位素地球化学示踪[J].沉积学报,1995,13(2):70-76.
    [218]张同伟,王先彬,陈践发等.天然气运移的气体组分的地球化学示踪[J].沉积学报,1999,17(4):627-631.
    [219]李宗亮,蒋有录.天然气运移地球化学示踪方法及其应用[J].新疆石油地质,2008,29(6):753-755.
    [220]吴志勇,罗斌杰.天然气运移地质色层效应机理和指标探讨[J].沉积学报,1992,10(2):119-125.
    [221]王庭斌.天然气运移理论对我国天然气地质学建立的重要贡献[J].石油大学学报(自然科学版),2000,24(4):4-10.
    [222]王震亮,张立宽,孙明亮等.天然气运移速率的微观物理模拟及其相似性分析—以库车坳陷为例[J].石油学报,2005,26(6):36-45.
    [223]史基安,卢龙飞,王金鹏等.天然气运移物理模拟实验及其结果[J].天然气工业,2004,24(12):32-3.
    [224]史基安,孙秀建,王金鹏等.天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J].石油实验地质,2005,27(3):293-298.
    [225]付广,薛永超,杨勉等.天然气在二次运移中的损失量初探[J].海相油气地质,1999,4(1):34-39.
    [226]黄志龙,高岗,刘鸿友.伊通地堑天然气地球化学特征与运移效应[J].地质地球化学,2002,30(3):59-63.
    [227]吴因业.油气运移研究新进展[J].地球科学进展,1992,7(6):51-55.
    [228]陈践发,沈平,黄保家等.油气组分及同位素组成特征在莺琼盆地油气二次运移研究中的应用[J].石油大学学报(自然科学版),2000,24(4):91-94.
    [229]帅燕华,邹艳荣,彭平安.运移、扩散、水洗对鄂尔多斯盆地中部上古生界煤成气影响的模拟研究[J].科学通报,2004,49(增刊Ⅰ):86-92.
    [230]王屿涛,蒋少斌,李海伟.准噶尔盆地南缘天然气垂向运移特征分析及勘探目标选择[J].天然气工业,1997,17(5):77-78.
    [231]王屿涛,蒋少斌.准噶尔盆地南缘天然气垂向运移特征及成因分析[J].沉积学报,1997,15(2):70-74.
    [232]王屿涛,惠荣跃.准噶尔盆地西北缘油气运移的地球化学研究[J].石油实验地质,1995,17(3):265-271.
    [233]Schoell.Genetic characterization of natural gases[J].AAPG Bulletin,1980,64:2225-2238.
    [234]Stahl.Carbon characterization of natural gases[J].Chem.Geology,1975,20:121-149.
    [235]Faber.Geochemical surface exploration for hydrocarbons in north sea[J].AAPG Bulletin,1979,63(3):363-386.
    [236]Fuex.The use of stable carbon isotopes in hydrocarbon exploration[J].Jour.GeochemExploration,1979,7:55-188.
    [237]Prinzhofer A,Hue A.Genetic and post-genetic molecular and isotopic fractionation in natural gas[J].Chem. Geol.,1995,126:281-290.
    [238]陈安定.陕甘宁盆地中部气田奥陶系天然气的成因和运移[J].石油学报,1994,15(2):1-10.
    [239]Zhang Tong wei.Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure[J].Geochimica.Cosmichimica Acta,2001,65(16):2723-2742.
    [240]Prinzhofer A,Pernaton E.Isotopically light methane in natural gas:Bacterial imprint or diffusive fractionation[J].Chem.Geol.,1997,142:193-200.
    [241]Galimov A.13C isotope enrichment effect in methane carbon in the course of its filtration through rocks[J].Geochem. Internet,1967,(4):1180-1181.
    [242]Lebedev , Syngayevskij.Carbon isotope fractionation in sorption process[J].Geochem. Internet,1971,(8):460.
    [243]Gunter.Isotope fractionation during gas chromatographic seperation[J].J.Chromat Sci.,1971,9:191-194.
    [244]刘琼.江陵凹陷西南部油气动态成藏研究.博士学位论文,中国地质大学,2008,2-11.
    [245]沈照理,王焰新.水-岩相互作用研究的回顾与展望地球科学[J],中国地质大学学报,2002,27(2):123-128.
    [246]罗孝俊,杨卫东.有机酸对长石溶解度影响的热力学研究[J].矿物学报,2001,21(2):183~187.
    [247]郭春清,沈忠民,张林晔.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述.地质地球化学,2003,31(3):53-57.
    [248]刘建清,赖兴运,于炳松等.地层水条件下碳酸盐矿物热力学平衡条件及其在克拉2气田的应用[J],沉积学报,2006,24(5):636-640.
    [249]黄洁,朱如凯,侯读杰等.深部碎屑岩储层次生孔隙发育机理研究进展[J].地质科技情报2007,26(6):76-82.
    [250]张萌,黄思静,王麒翔等.碎屑岩成岩过程中各种造岩矿物溶解特征的热力学模型[J],新疆地质.2006,24(2):187-191.
    [251]Eric H. Oelkers,Pascale Bénézeth and Gleb S.Thermodynamic,Databases for Water-Rock Interaction,PokrovskiReviews in Mineralogy and Geochemistry;January 2009;v. 70(1),p.1-46.
    [252]White, A.F. and Brantley, S.L.(1995)Chemical Weathering Rates in Silicates.In A.F. White and S.L. Brandtley, Eds.,Chemical Weathering Rates of Silicate Minerals,31,583 pp. Reviews in Mineralogy, Mineralogical Society of America,Washington,D.C.
    [253]Oelkers , E.H. General kinetik description of multioxide silicate mineral and glass dissolution[J]. Geochimica et Cosmochimica Acta,2001,65,3703–3719.
    [254]张永旺,曾溅辉,张善文等.长石溶解模拟实验研究综述,地质科技情报,2009年1月,第28(1):31-37.
    [255]Antonio C. Lasaga,Andreas Luttge,Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model, Mar 2001,V291, SCIENCE,2400-2404.
    [256]O. S. Pokrovsky and J. Schott,Kinetics and Mechanism of Dolomite Dissolution in Neutral to Alkaline Solutions Revisited, Am J Sci, September 1, 2001;301(7):597-626.
    [257]H. G. Machel,Concepts and models of dolomitization:a critical reappraisal Geological Society, London,Special Publications, January 1, 2004;235(1):7-63.
    [258]Antonio C. Lasaga and Andreas Lüttge,Mineralogical approaches to fundamental crystal dissolution kinetics American Mineralogist; April 2004;v. 89;no. 4;p.527-540.
    [259]黄思静,杨俊杰,张文正等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-16.
    [260]杨俊杰,黄月明,张文正等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发,1995,22(4):82-86.
    [261]马红,孙仁远,杨立强.超稠油油藏高温水岩反应研究及应用[J],中国石油大学工程硕士专业学位论文,2006,1-52.
    [262]S. A. BARCLAY,R. H. WORDEN,Geochemical modelling of diagenetic reactions in a sub-arkosic sandstone, Clay Minerals (2000)35,57–67.
    [263]FAWAD A. CHUHAN , KNUT BJ?RLYKKE , CAROLINE J.LOWREY ,CLOSED-SYSTEM BURIAL DIAGENESIS IN RESERVOIR SANDSTONES :EXAMPLES FROM THE GARN FORMATION AT HALTENBANKEN AREA ,OFFSHORE MID-NORWAY,JOURNAL OF SEDIMENTARY RESEARCH,VOL. 71,NO. 1, JANUARY, 2001, P. 15–26
    [264]Y. Le Gallo, O. Bildstein, E. Brosse,Coupled reaction-flow modeling of diagenetic changes in reservoir permeability, porosity and mineral compositions,Journal of Hydrology 209 (1998)366–388.
    [265]朱如凯,邹才能,张鼐等.致密砂岩气藏储层成岩流体演化与致密成因机理—以四川盆地上三叠统须家河组为例,中国科学D辑:地球科学,2009,39(3):327—339.
    [266]罗啸泉,曹烈,杨旭明等.川西坳陷上三叠统油气运移特征.天然气工业,2004,24(8):4~7.
    [267]刘金华,张世奇,孙耀庭等.川西前陆盆地上三叠统须家河组地层的划分对比及沉积演化,层序学杂志,2007,31(2):190-196.
    [268]刘树根,赵锡奎,罗志立等.龙门山造山带—川西前陆盆地系统构造事件研究,成都理工学院学报,2001,28(3):221-230.
    [269]张琳,陈宗宇,聂振龙等.我国不同时间尺度的大气降水氧同位素与气温的相关性分析.核技术,2008,31(9):715~720.
    [270]周文斌,饶冰.1997.相山铀矿田水—岩氢、氧同位素交换的实验研究.地质评论,43(3):322~226.
    [271]Jennifer C M, Lynn M W,Anna M M.2004.Extensive microbial modification of formation water geochemistry:case study from a midcontinent sedimentary basin, United States. GSA Bulletin,116(5-6):743~759.
    [272]Mccaffrey M A,Lazar B, Holland H D.1987.The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57(5):928~937.
    [273]Birkle P, Rosillo Aragón J J,Portugal E, Fong Aguilar J L. 2002. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. AAPGBulletin,86(3):457~484.
    [274]Edmunds W M.1996.Bromine geochemistry of British ground waters. Mineralogical Magazine,60:275~284.
    [275]Jean P G,Ingrid A M,Harald J.2002. Diagenesis of the Hild Brent sandstones,Northern North Sea:Isotopic evidence for the prevailing influence of deep basinal water. Journal of Sedimentary Research,72(6):746~759.
    [276]Birklea P,Bernardo M G,Carlos M M. 2009. Origin and evolution of formation water at the Jujo–Tecominoacán oil reservoir,Gulf of Mexico. Part 1:Chemical evolution and water–rock interaction. Applied Geochemistry,24(4):543~554.
    [277]Davisson M L , Criss R E.Na-Ca-Cl relations in basinal fluid[J].Geochimica et Cosmochimica Acta,1996,20(4):2743~2752.
    [278]Davisson M L,Criss R E,Geochemistry of tectonically expelled fluids from the northern coastal ranges,Rumsey hi11s,California,USA[J].Geochimica et Cosmochimica Acta,1994,58(7):1687~1699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700