用户名: 密码: 验证码:
粤北大宝山钼多金属矿床成矿模式与找矿前景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粤北大宝山多金属矿床为我国著名矿床之一。尽管其研究程度较高,但是仍然存在一些关键性的问题尚未解决,如成岩与成矿时代的精确厘定、矿区次英安斑岩和花岗闪长斑岩的关联及其成矿意义、以及层状-似层状铜多金属矿床的成因,这些问题甚至还直接影响到确立合理的成矿模式和找矿模型。论文以该矿床为研究对象,在充分野外地质调查和前人工作的基础上,通过锆石U-Pb年代学、辉铝矿Re-Os年代学、岩相学、岩石地球化学、以及H-O、S、Pb同位素和流体包裹体研究,探讨成岩成矿时代及其成矿动力学背景、含矿斑岩的成因、成矿物质来源、成矿流体演化,并结合前人地、物、化、遥资料,确立该矿床的成矿模式,并对该区找矿前景进行了分析。主要成果和结论如下:
     1.锆石U-Pb定年结果及岩体侵入接触关系表明,矿区次英安斑岩和花岗闪长斑岩均形成于约175 Ma,次英安斑岩形成时代略早于花岗闪长斑岩。辉钼矿Re-Os定年结果表明,斑岩型和矽卡岩型钼矿床成矿时代约165 Ma,与层状铜铅锌矿床辉钼矿Re-Os模式年龄(约164.7±3 Ma)一致,表明矿区各类矿床为同一成矿时代的产物。岩石Rb-Y+Nb和Rb/30-Hf-Ta×3图解显示,矿区两类成矿岩体形成构造背景同为碰撞造山后伸展环境。结合微量元素对岩体形成构造背景的制约以及矿床成岩成矿时代在区域上的时空一致性,推测大宝山钼多金属矿床的成岩成矿动力学背景为后造山伸展环境。
     2.岩石地球化学组成表明,次英安斑岩和花岗闪长斑岩均为高钾钙碱性系列岩石,具高SiO2、富K2O和Na2O,Al2O3过饱和特征,其K2O/Na2O普遍偏高,分异演化程度中等。两类岩石主量元素组成和特征地球化学参数基本一致,且SiO2含量和其他的氧化物之间具有良好的线性关系,应为同源岩浆分异演化的产物。岩石富集大离子亲石元素(如Rb、Th、U、La、Ce、Pb等)和轻稀土元素((La/Yb)N=6.01-0.82),相对亏损Sr、Ba和重稀土结合全岩Sr、O同位素资料,揭示次英安斑岩和花岗闪长斑岩为介于Ⅰ型和S型之间的过渡型花岗岩(壳幔混合源型),即含地幔成份的深部物质在地壳深部发生部分熔融并受到陆壳混染而成,二者应该为同源不同相的产物。
     3.矿石氢氧同位素资料表明(δ18OH2O为-4.42‰-8.05‰,δDH2O为-56.1‰--50.7‰),成矿流体为混合了部分大气水的岩浆水。矿石中硫化物硫同位素组成(634S值主要在-2.00‰-+3.00‰之间)显示,硫主要来自于斑岩岩浆体系。铅同位素大部分数据点落在俯冲带铅区中岩浆作用铅的范围内,说明矿石铅来源与矿区燕山期岩浆热液作用有关。综合研究结果认为:矿区斑岩型和矽卡岩型钼矿床以及层状铜铅锌矿床均为同一体系的岩浆热液矿床,其成因与矿区次英安斑岩和花岗闪长斑岩有关。
     4.流体包裹体资料显示,矿床成矿温度在410℃-174℃之间,成矿主要发生在中低温阶段,钼矿化分为两个阶段:即320℃-240℃和220℃-170℃。成矿流体为富卤素、富碱质的含矿溶液,属于CaCl2(MgCl2)-NaCl-KCl-H2O体系。流体盐度为2wt%-17wt%,密度为0.67-0.98 g/cm3,瞬间均一压力变化范围为8.4×106-169.4×106Pa,铜铅锌多金属矿床成矿压力为50×106-70x106Pa,钼钨矿床成矿压力为40×106-50×106Pa。成岩成矿深度约为1.5-4km。
     5.构造-岩浆体系:在南岭地区始于早侏罗世(190-180 Ma)的岩石圈后造山伸展背景下,区域上北东向和东西向构造从根本上控制了粤北地区岩浆侵入及多金属矿床的产出。矿区北东向官坪断裂的次级构造及其分支交汇处为成岩成矿的主要通道,主要断裂两旁伴生的次级断裂、褶皱和层间破碎带为矿体的导矿构造并提供赋矿空间。
     矿区与花岗闪长斑岩和次英安斑岩有关的Mo-W矿化和Cu-Pb-Zn多金属矿化,在与碳酸盐岩和碎屑岩等不同岩性地层的接触带附近,构成了大宝山矿床斑岩型-矽卡岩型-热液脉型岩浆热液成矿系统。与南岭地区及邻区形成于燕山早中期、且与岩浆作用(与壳幔混合作用有关的深源岩浆)有关的钼多金属矿床,具有相同的成矿背景(伸展背景),构成了区域(岩浆热液矿床)成矿系统。
     6.成矿模式:在燕山早期(约175 Ma)次英安岩斑岩沿北北西向断裂侵入,紧随其后花岗闪长斑岩侵入。岩浆期后的含矿热液,沿着东岗岭组碳酸盐岩地层层间破碎带顺层侵入,发生接触交代作用形成层状-似层状矽卡岩型铜铅锌多金属矿床;在与桂头群碎屑岩接触的部分可能形成斑岩型铜铅锌矿床,更晚些时候的含矿石英流体在距离岩体稍远的地层中形成脉状铜矿体。同时,花岗闪长斑岩期后热液在船肚地区与碳酸盐岩发生接触交代,以接触带为中心形成矽卡岩型钼钨矿;在与碎屑岩地层、以及在与次英安斑岩的接触部位形成斑岩型钼钨矿。本文将大宝山矿床的成矿过程划分为:矽卡岩化阶段,钼矿化阶段,铜铅锌矿化阶段,绿泥石-碳酸盐化阶段、表生氧化阶段。钼矿化阶段与铜铅锌矿化阶段时间较为一致,在时间先后上可能存在重叠。
     7.找矿模型及找矿前景:具备以下条件的地区利于探寻Mo-W矿床:即出露燕山早期次英安斑岩-花岗闪长斑岩体及碳酸盐岩和碎屑岩围岩地层,并发生了云英岩化、绢云母化、矽卡岩化、透闪石-阳起石化,具备多组断裂交汇及主断裂伴生次级断裂、褶皱、层间破碎带,存在黄铁矿、辉钼矿、白钨矿、黑钨矿等;出现CSAMT中低阻异常、低缓正负磁异常;化探异常出现Mo-W等多元素强异常等。本文提出了三个有利的钼矿找矿部位:大宝山斑岩钼矿北部接触带北东地区,大宝山和船肚花岗闪长斑岩被北北东向断裂错断的部位以及已知钼矿体的深部。
Dabaoshan polymetallic deposit is one of well-known deposits in China. Studies of the deposit have focused on geological characteristics, mineralizing conditions and mechanism, and metallogenic models. However, there are still some key issues unresolved, such as the ages of magmatism and mineralization, the relationship between the subdacite porphyry and granodiorite porphyry and their metallogenic implication, as well as genesis of copper polymetallic ore bodies occurred in the Donggangling Formation as stratiform to stratoid, which constrain to set up the metallogenic model and prospecting model. In this study, after the extensive field work and the results of zircon U-Pb and molybdenite Re-Os geochronology, petrographic study, whole-rock geochemistry, isotopic geochemistry and fluid inclusion, we attempt to investigate the source and petrogenesis of the porphyries, source of ore and ore-bearing fluid evolvement, the ages of magmatism and mieralization, and geodynamic setting of this deposit. Furthermore, combining with the previous data of geology, geophysical and geochemical exploration, and remote sensing, we propose the metallogenic model and prospecting direction. The main results and conclusions are summarized as the follows:
     The results of zircon U-Pb dating, combining with the intrusive-contact relationship of the porphyries, show that the magma crystallization ages of the subdacite porphyry and granodiorite porphyry are about 175 Ma, but the subdacite porphyry intruded a little early. The results of molybdenite Re-Os dating suggest that the ages of porphyry-type and skarn-type Mo deposits are about 165 Ma, which are consistent with a molybdenite Re-Os model age (164.7±3 Ma) for the stratiform Cu-Pb-Zn sulfide orebody. It implied that both Mo deposit and strataform Cu-Pb-Zn deposit in the ore district could be the products of same mineralization event.
     The petrochemical diagrams of Rb-Y+Nb and Rb/30-Hf-Ta×3 show that the two type porphyries both formed in post-collisional lithosphere extension. In addition, the ages of magmatism and mieralization are consistent with the other Mo polymetallic deposits in the Nanling Region. Combining with previous studies, we interpret the Daobaoshan ore deposit and the porphyries as related to emplacement in an extensional setting due to post-collisional lithosphere extension.
     The major elements geochemical data show that the subdacite porphyry and granodiorite porphyry both are high-K calc-alkaline rock, with the character of high SiO2, enrich in K2O and Na2O, high K2O/Na2O, peraluminous and moderate fractionation. These rocks have similar major element composition and geochemical parameters, and there is a good linear relationship between SiO2 and the other oxide, indicating that they were derived from the same magma source. They are enriched in large ion lithophile elements (LILE, e.g., Rb, Th, U, La, Ce, Pb) and light rare earth elements (LREE; ((La/Yb)N=6.01-0.82), depleted in Sr, Ba and heavy rare earths (HREE). Combining with the whole-rock Sr and O isotopic data, we proposed that these rocks are between I-type and S-type granites (mixed with crust and mantle components), i.e., the deep material contained mantle components resulted in the partial melting in the deep crust, simultaneity occured the crustal contamination.
     The 818O values range from-4.42%o to 8.05‰andδD values from-56.1‰to-50.7‰in fluid inclusions from this deposit. On the basis of this data, we proposed that the ore-forming fluids were derived from mixed source of magmatic and meteoric waters. Furthermore, most of the 834S values of the sulfide ores from the deposit are from-2.00‰to 3.00‰, which is similar to magmatic sulphur. Most of lead isotope data fall on the magmatism-lead zone, indicating that the lead source of ores was related to the Yanshanian magmatisim. These isotope data support a genetic relationship between the Dabaoshan polymetallic deposit (including porphyry-type and skarn-type Mo deposits and strataform Cu-Pb-Zn deposit) and the two type porphyries.
     Fluid inclusions data show that ore-forming temperatures range from 410℃-174℃, Mineralization occurs mainly in middle to low temperature phase, molybdenum mineralization could be divided into two phases:i.e.,320℃-240℃and 220℃-170℃. Ore-forming fluids are rich in halogens and alkali, belonging to CaCl2 (MgCl2)-NaCl-KCl-H2O fluid system. Fluid salinity and density vary from 2wt%-17wt% and 0.67-0.98g/cm3, respectively. Instantaneous homogeneous pressure of fluid inclusions range from 8.4×106-169.4×106Pa, the ore-forming pressure of Cu-Pb-Zn deposit and Mo-W deposit vary from 50×106-70×106Pa and 40×106-50x106Pa, respectively. The intrusive depth of porphyries and mineralization is approximately 1.5-4 km.
     During the post-collisional lithosphere extension setting that may have began as early as the Early Jurassic (190-180 Ma) in the Nanling Region, the NE-trending and near SN-trending faults acted as the main structural controls for the magmatism and mineral deposits in the North Guangdong Province. The secondary faults of the NE-trending fault and the intersections of its branches were the elementary conduits for magmatism and ore-bearing fluid. The secondary faults of the main fracture, folds and the interlayer fracture zone lead the ore-bearing fluid and provided ore-forming space.
     These mineralizations, Mo-W mineralization and Cu-Pb-Zn mineralization in relation to the granodiorite porphyry and subdacite porphyry, consist of the porphyry-skarn-type magmatic hydrothermal ore-forming system in the Dabaoshan ore district. The Dabaoshan deposit, associated with the polymetallic Mo deposits distributed in the early to middle the Yanshannian related to the mixed crust-mantle magmatism, formed in the similar lithosphere extension setting, and constituted a region ore-forming system (magmatic hydrothermal deposits).
     In the early Yanshanian (about 175 Ma) the subdacite porphyry intruded along the north-northwest-trending fault, the granodiorite porphyry was subsequently following. The post-magmatic hydrothermal, rich in ore-forming materials, intruded into the interlayer fractured zone of the Donggangling Formation and formed the stratiform to stratoid skarn-type copper-lead-zinc deposits due to the metasomatism with carbonate rock, the later ore-bearing fluid formed vien-type copper deposit. Almost at the same time, the post-magmatic hydrothermal of the granodiorite porphyry reacting with carbonate rock in the Chuandu district formed the skarn-type Mo-W deposits, that reacting with clastic strata and the subdacite porphyry formed the porphyry-type Mo deposits along the contact zone. The ore-forming stage can be divided into the follows:skarn stage, molybdenum mineralization stage, copper and lead-zinc mineralization stage, chlorite-carbonate stage, supergene oxidation stage. The time of molybdenum, copper and lead-zinc mineralization stages was consistent with each other, maybe occured overlap.
     The district with the following conditions is favorable to form the Mo deposit, i.e., with the subdacite porphyry and granodiorite porphyry of the early Yanshanian stage, carbonate rock and clastic rock, the wall-rocks were subjected to the hydrothermal alteration, mainly including the greisenization, sericitization, skarnization and grammatite-actinolitization; Combining with multiple faults intersection and associated with secondary faults, folds, interlayer fractured zone; With pyrite, molybdenite, scheelite, wolframite; In addition, with CSAMT low resistivity anomaly, weakly positive and negative magnetic anomalies, Mo-W and other elements geochemical anomalies.
     In the Dabaoshan ore district, the north-east area of the Dabaoshan porphyry-type Mo deposit in the north contact zone with the subdacite porphyry is a good exploration prospect; The Daobaoshan and Chuandu granodiorite porphyries were divided by the post-mineraliton fault, the faulted space is also one of the most important next exploring direction of Mo-W, as well as the deep space of known Mo ore body.
引文
[1]毛景文,谢桂青,李晓峰,等,2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1):45-55.
    [2]毛景文,谢桂青,郭春丽,等,2007.南岭地区大规模钨锡多金属成矿作用成矿时限及地球动力学背景.岩石学报,23(10):2329-2338.
    [3]毛景文,谢桂青,郭春丽,等,2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,14(4):510-526.
    [4]华仁民,陈培荣,张文兰,等,2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,11(3):291-304.
    [5]Ding X, Chen P R, Chen W F, et al.,2006. Single zircon LA-ICP-MS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance:Science in China, ser.D,49:816-827.
    [6]Li X H, Li W X, and Li Z X,2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China:Chinese Science Bulletin,52:1873-1885.
    [7]Li X H, Chen Z, Liu D, et al.,2003. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province, SE China:age, origin, and tectonic significance. International Geology Review,45:898-921.
    [8]Li X H, Chung S L, Zhou H., et al.,2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In:Malpas, J., et al. (Ed.), Aspects of the Tectonic Evolution of China, vol.226. Geological Society, London, p.193-216. Special Publications.
    [9]王强,赵振华,简平,等,2005.华南腹地白垩纪型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报,21(3):795-808.
    [10]Zhou X M, Sun T, Shen W Z, et al.,2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution. Episodes,29:26-33.
    [11]Li Z X, Li X H,2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology,35:179-182.
    [12]Cheng H C, Le C Y, Shinjo R,2008. Was there Jurassic paleo-Pacific subduction in South China?:Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts. Lithos,106:83-92.
    [13]毛景文,谢桂青,李晓峰,等,2005.大陆动力学演化与成矿研究:历史与现状——兼论华南地区在地质历史演化期间大陆增生与成矿作用.矿床地质,24(3):193-205.
    [14]王登红,陈毓川,陈郑辉,等,2007.南岭地区矿产资源形势分析和找矿方向研究.地质学报,81(7):882-890.
    [15]邱世强,1981.关于大宝山层状多金属矿床成因的初步探讨.地质论评,27(4):333-340.
    [16]庄明正,1983.大宝山多金属矿田矿床类型及成矿作用探讨.地质与勘探,8:9-16.
    [17]庄明正,1986.大宝山多金属矿床成矿条件及矿床成因探讨.地质与勘探,5:27-31.
    [18]刘孝善,周顺之,1985.广东大宝山中泥盆世火山岩与层状菱铁矿、多金属矿床成矿机制分析.南京大学学报(自然科学版),21(2):348-360.
    [19]古菊云,1984.大宝山大陆次火山-火山活动和矿床成因的初步研究.地质与勘探,3:1-8.
    [20]罗年华,1985.广东大宝山多金属矿床地质地球化学特征及成因探讨.桂林冶金地质学院学报,5(2):183-195.
    [21]陈好寿,1985.粤北大宝山层状多金属矿床的铅、硫、氧同位素地球化学研究.中国地质科学院宜昌地质矿产研究所所刊,10:111-124.
    [22]葛朝华,韩发,1986.大宝山铁-多金属矿床的海相火山热液沉积成因特征.矿床地质,5(1):1-10.
    [23]葛朝华,韩发,1987.广东大宝山矿床喷气-沉积成因地球之地球化学特征.北京:北京科学技术出版社,1-111.
    [24]黄书俊,曾永超,贾相国,等,1987.论广东大宝山多金属矿床的成因.地球化学,1:27-35.
    [25]刘姤群,杨世义,张秀兰,等,1985.粤北大宝山多金属矿床成因的初步探讨.地质学报,1:47-60.
    [26]汤吉方,刘家齐,傅太安,等,1992.粤北大宝山及其外围地区多金属矿床成矿地质条件、构造控岩控矿规律及隐伏矿.南岭地质矿产文集(3).北京:地质出版社.
    [27]蔡锦辉,刘家齐,1993.粤北大宝山多金属矿床矿物包裹体特征研究及应用.矿物岩石,13(1):33-40.
    [28]蔡锦辉,刘家齐,1993.粤北大宝山多金属矿区岩浆岩的成岩时代.广东地质,8(2):45-52.
    [29]裴太昌,钟树荣,刘胜,等,1994.粤北大宝山-雪山障地区成矿系列及成矿模式.地质找矿论丛,9(3):48-58.
    [30]姚德贤,曾令初,1994.论大宝山矿床成因.中山大学学报(自然科学版),33(3):91-100.
    [31]何金祥,徐克勤,顾连兴,1996.对马山、大宝山变质成因磁黄铁矿不同组成结构的认识.地球科学-中国地质大学学报,21(3):305-310.
    [32]王建新,2006.广东大宝山南部铅锌多金属矿床地质特征及找矿方向.矿产与地质,20(2):142-146.
    [33]宋世明,胡凯,蒋少涌,等,2007.粤北大宝山多金属矿床成矿流体的He-Ar-Pb-S同位素示踪.地质找矿论丛,22(2):87-99.
    [34]徐文炘,李蘅,陈民扬,等,2008.广东大宝山多金属矿床成矿物质来源同位素证据.地球学报,29(6):684-690.
    [35]罗铭玖,张辅民,董群英,等,1991.中国钼矿床.郑州:河南科学技术出版社.
    [36]黄典豪,杜安道,吴澄宇,等,1996.华北地台钼(铜)矿床成矿年代学研究.矿床地质,15(4):365-373.
    [37]毛景文,叶会寿,王瑞廷,等,2009.东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价.28(1):72-79.
    [38]毛景文,李红艳,宋学信,等,1998.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社.
    [39]Kula C M,2000. Understanding mineral deposits. Dordreeht:Kluwer academie Publishers, 397-413.
    [40]Stein H J, Hannah J L, Zimmerman A,2004. A 2.5 Ga porphyry Cu-Mo-Au deposit at Malanjkhand, central India:implications for Late Archean continental assembly. Precambrian Research,134:189-226.
    [41]Berzin N A, Sotnikov V I, Economou-Eliopoulos M, et al.,2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews,26:91-113.
    [42]Barra F, Ruiz J, Valencia V A,2005. Laramide Porphyry Cu-Mo Mineralization in Northern Mexico:Age Constraints from Re-Os Geochronology in Molybdenite. Economic Geology, 100:1605-1616.
    [43]Ishihara S.,1971. The major molybdenum deposits and associated granitic rocks in Japan. Report Geology Survery. Japan,239:1-78.
    [44]Ishihara S.,1973. The Mo-W metallogenic provinces and the related granitic provinces. Mineral Geology,23:13-32.
    [45]Suzuki K, Shimizu H, Masuda A,1996. Re-Os dating of molybdenites from ore deposits in Japan:Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta,60: 3151-3159
    [46]代军治,2008.燕-辽成矿带钼铜矿床成矿作用及成矿动力学背景.中国地质科学院博士论文.
    [47]张正伟,朱炳泉,常向阳,2001.东秦岭钼成矿带成岩成矿背景及时空统一性.高校地质学报,7(3):307-315.
    [48]付治国,吕伟庆,田修启,等,2005.东沟钼矿矿床地质特征及找矿因素研究.中国钼业,29(2):8-16.
    [49]叶会寿,毛景文,李永峰,等,2006.豫西东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,80(7):1078-1088.
    [50]叶会寿,2006.华北陆块南缘中生代构造演化与铅锌银矿成矿作用.中国地质科学院博士论文.
    [51]杨泽强,2007.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义.矿床地质,26(3):289-295
    [52]Titley S R, Beane R E,1981. Porphyry copper deposits. Economic Geology,75th Anniversary Volume,214-269.
    [53]Sillitoe R H,1997. Characteristics and controls of the largest porphyry Cu-Au and epithermal Au deposits in the circum-Pacific region. Australia Journal of Earth Science,44: 373-388.
    [54]黄典豪,吴澄宇,杜安道,等,1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质,13(3):221-230.
    [55]Seedorf E, Einaudi M T,2004. Henderson porphyry molybdenum system, Colorado:I. sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Ecomomic Geology,99:3-37.
    [56]李永峰,2005.豫西熊耳山地区中生代花岗岩时空演化与铝(金)成矿作用.中国地质科学院博士论文.
    [57]Keith J D, Christiansen E H, Carten R B, et al.,1992. The genesisi of giant porphyry molybdenum deposits. In Whiting B H, Hodgson C J and Mason R eds.Giant ore deposits. Ottawa:Lancaster Press,285-316.
    [58]Selby D, Creaser R A,2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96:197-204.
    [59]Zhou X M., Li W X,2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326:269-287.
    [60]Maruyama S, Isozaki Y, Kimura G., Terabayashi M.,1997. Paleogeographic maps of the Japanese Islands:plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121-142.
    [61]谢桂青,毛景文,李瑞玲,等,2007.鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄.地质学报,25(1):43-52.
    [62]Mathur R, Brantley.S, Anbar A,2009.Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Miner Deposita, DOI 10.1007/s00126-009-0257-z.
    [63]Kosler J, Sylvester P J,2003. Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICP-MS. Reviews in Mineralogy and Geochemistry,53(1):243-275.
    [64]Russo R E, Mao X, Liu H, et al,2002. Laser ablation in analytical chemistry:a review. Talanta,57(3):425-451.
    [65]Li X H, Liang X R, Sun M, et al.,2000. Geochronology and geochemistry of single-grain zircons:Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur. J. Minera,12:1015-1024.
    [66]柳小明,高山,第五春荣,等,2007.单颗粒锆石的20um小斑束原位微区LA-ICP-MSU-Pb年龄和微量元素的同时测定.科学通报,52(2):228-235.
    [67]Horstwood M S A, Foster G L, Parrish R R, et al.,2003. Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry,18 (8),837-846.
    [68]Simonetti A, Heaman L M, Chacko T, et al.,2006. In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation-MC-ICPMS. International Journal of Mass Spectrometry,253 (1-2):87-97.
    [69]Buick I S, Hermann J, Maas R, et al.,2007. The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa):Constraints from titanite U-Pb geochronology and REE partitioning. Lithos,98(1-4),97-117.
    [70]Storey C D, Smith M P, Jeffries T E,2007. In situ LA-ICP-MS U-Pb dating of meta-volcanics of Norrbotten, Sweden:records of extended geological histories in complex titanite grains. Chemical Geology,240 (1-2):163-181.
    [71]Li J W, Deng X D, Zhou M F, et al.,2009. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China.Chemical Geology. In Press.
    [72]Zhang L S, Scharer U,1996. Inherited Pb components in magmatic titanite and their consequence for the interpretation of U-Pb ages. Earth and Planetary Science Letters,138 (1-4):57-65.
    [73]Essex R M, Gromet L P,2000. U-Pb dating of prograde and retrograde titanite growth during the Scandian orogeny. Geology,28 (5):419-422.
    [74]Smith M, Storey C, Jeffries T,2005. LA-ICPMS U-Pb dating of titanite:new constraints on multistage geological evolution of the Norrbotten mining district, Sweden. Mineral Deposit Research:Meeting the Global Challenge,1-2:829-832.
    [75]Ireland T R, Williams I S,2003. Considerations in Zircon Geochronology by SIMS. Reviews in Mineralogy and Geochemistry,53(1):215-241.
    [76]Cocherie A, Robert M,2008. Laser ablation coupled with ICP-MS applied to U-Pb zircon geochronology:A review of recent advances. Gondwana Research,14:597-608.
    [77]Valencia V A, Barra F, Weber B, et al.,2006. Re-Os and U-Pb geochronology of the El Arco porphyry copper deposit, Baja California Mexico:Implications for the Jurassic tectonic setting. Journal of South American Earth Sciences,22:39-51.
    [78]Tafti R, Mortensen J K, Lang J K, et al.,2009. Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen cu-au porphyry district, Tibet, PRC:implications for metallogenic epochs in the Southern Gangdese belt. Economic Geology,104:127-136
    [79]Stern R A, Berman R G,2000. Monazite U-Pb and Th-Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rock. Chemical Geology,172:113-130.
    [80]Pottrasson F, Chenery S, Shepherd T J, et al.,2000. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration:Implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta,64(19):3283-3297
    [81]Rasmussen B, Fletcher I R,2002.Indirect dating of mafic intrusions by SHRIMP U^Pb analysis of monazite in contact metamorphosed shale:an example from the Palaeo-proterozoic Capricorn Orogen, Western Australia. Earth and Planetary Science Letters, 197:287-299.
    [82]Rasmussen B, Fletcher I R, Muhling J R,2007. In situ U-Pb dating and element mapping of three generations of monazite:Unravelling cryptic tectonothermal events in low-grade terranes. Geochimica et Cosmochimica Acta,71:670-690
    [83]Scott D J, St-Onge M R,1995. Constraints on Pb closure temperature in titanite based on rocks from the Ungava Orogen, Canada; implications for U-Pb geochronology and P-T-t path determinations. Geology,23 (12):1123-1126.
    [84]Frost B R, Chamberlain K R, Schumacher J C,2001. Sphene (titanite):phase relations and role as a geochronometer. Chemical Geology,172 (1-2):131-148.
    [85]Buick I S, Maas R, Gibson R,2001. Precise U-Pb titanite age constraints on the emplaceme-nt of the Bushveld Complex, South Africa. Journal of the Geological Society,158:3-6.
    [86]Koksal S, Romer R L, Goncuoglu M, et al.,2004. Timing of post-collisional H-type to A-type granitic magmatism:U-Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences,93 (6):974-989.
    [87]Audetat A, Gunther D, Heinrich C A,1998. Formation of a magmatic-hydrothermal ore deposit:insights with LA-ICP-MS analysis of fluid inclusions. Science,279(5359): 2091-2094.
    [88]Thomas J S, Carlos A, Dioni C, et al.,1998. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS:complementary microbeam techniques. Eur. J. Mineral,10:1097-1108.
    [89]Ulrich T, Gunther D, Heinrich C A,1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, (399):676-679.
    [90]Ulrich T, Gunther D, Heinrich C A,2001. Evolution of a porphyry Cu-Au deposit:based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera, Argentina. Economic Geology,96(8):1743-1774.
    [91]Audetat A, Gunther D, Heinrich A,2000. Causes for Large-Scale Metal Zonation around Mineralized Plutons:Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia. Economic Geology,95:1563-1581.
    [92]Mustard R, Ulrich T, Kamenetsky V S, et al.,2006. Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology,34:85-88.
    [93]Heinrich C A, Gunther D, Audetat A, et al.,1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions.Geology,27(8):755-758.
    [94]Halter W E, Pettke T, Heinrich C A,2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science,296(5574):1844-1846.
    [95]Harris A C, Kamenetsky V S, White N C, et al.,2003. Melt inclusions in veins:linking magmas and porphyry Cu deposits. Science,302(5653):2109-2111.
    [96]Heijlen W, David A B, Philippe M, et al.,2008. The Nature of Mineralizing Fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic Repubic of Congo:Quantitative Fluid Inclusion Analysis using Laser Ablation ICP-MS and Bulk Crush-Leach Methods. Economic Geology,103:1459-1482.
    [97]Hezarkhani A,2009. Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran:Evidence from fluid inclusions. Journal of Geochemical Exploration, 101:254-264.
    [98]Bertelli M, Baker t, Cleverley J S, et al.,2009.Geochemical modelling of a Zn-Pb skarn: Constraints from LA-ICP-MS analysis of fluid inclusions. Journal of Geochemical Exploration,102:13-26.
    [99]Hirt B W, Hoffmeste H W,1963. Age determinations by rhenium-osmium method. Radioactive Dating, Vienna:Internation. Atom Energy Agency:35-44
    [100]Creaser R A, Papanastassiou D, Wasserburg G J,1991. Negative thermal ionization mass spectrometry of osmium and iridium.Geochimica et Cosmochimica Acta,55:397-401.
    [101]Shirey S B, Walker R J,1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry,67:2136-2141.
    [102]Stein H J, Markey R J, Morgan J W, et al.,2001. The remarkable Re-Os chronometer in molybdenite:how and why it works. Terra Nova,13:479-486.
    [103]蒋少涌,杨竞红,赵葵东,等,2000.金属矿床Re-Os同位素示踪与定年研究.南京大学学报(自然科学),36(6):669-677.
    [104]Lambert D D, Foster J G, Frick L R, et al.,1999. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic ore system, Labrador, Canada. Lithos,47(1-2):69-88.
    [105]Gannouna A, Tessalina S, Bourdon B, et al.,2003. Re-Os isotopic constraints on the genesis and evolution of the Dergamish and Ivanovka Cu(Co, Au) massive sulphide deposits, south Urals, Russia. Chemical Geology,196:193-207.
    [106]Wilson A J, Cooke D R, Stein H J, et al.,2007. U-Pb and Re-Os Geochronologic Evidence for Two Alkalic Porphyry Ore-Forming Events in the Cadia District, New South Wales, Australia. Economic Geology,102:3-26.
    [107]Hulbert L J, Hamilton M A, Horan M F, et al.,2005. U-Pb Zircon and Re-Os Isotope Geochronology of Mineralized Ultramafic Intrusions and Associated Nickel Ores from the Thompson Nickel Belt, Manitoba, Canada. Economic Geology,100:29-41.
    [108]Han C M, Xiao W J, Zhao G C, et al.,2009. A Re-Os study of molybdenites from the Lanjiagou Mo deposit of North China Craton and its geological significance. Gondwana Research,16(2):264-271.
    [109]Feng C Y, Qu W J, Zhang D Q, et al.,2008. Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun Orogenic Belt, northwestern China. Ore Geology Reviews,36(1-3):213-220.
    [110]Dai J Z, Mao J W, Zhao C S, et al.,2009. New U-Pb and Re-Os age data and the geodynamic setting of the Xiaojiayingzi Mo(Fe) deposit, western Liaoning province, Northeastern China. Ore Geology Reviews,35:235-244.
    [111]Walker RJ, Morgan J W, Horan M F, et al.,1994. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia. Geochimica et Cosmochimica Acta,58:4179-4197.
    [112]Foster J G, Lambert D D, Frick L R, et al.,1996. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature,382:703-706.
    [113]吴福元,孙有德,1999.Re-Os同位素体系理论及其应用.地质科技情报,18(3):43-46.
    [114]Mao J W, Zhang Z C, Zhang Z H, et al.,1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta,63:1815-1818.
    [115]张作衡,柴凤梅,杜安道,等,2005.新疆喀拉通克铜镍硫化物矿床Re-O同位素测年及成矿物质来源示踪.岩石矿物学杂志,24(7):285-293.
    [116]杜安道,何红蓼,殷宁万,等,1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,68(4):339-347.
    [117]李永峰,毛景文,郭保健,白凤军,2004.豫西公峪金矿床地质地球化学特征及成因探讨.矿床地质,23(1):61-66.
    [118]Mao J W, Xie G Q, Bierlein F, et al.,2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta,72:4607-4626.
    [119]吴良士,邹晓秋,1997.江西城门山铜矿铼-锇同位素年龄研究.矿床地质,16(4):376-38].
    [120]毛景文,Holly Stein,杜安道,等,2004.长江中下游地区铜金(钼)矿Re-Os年龄精测及其对成矿作用的指示.地质学报,78(1):121-131.
    [121]孟祥金,侯增谦,董光裕,等,2007.江西金溪熊家山钥矿床特征及其Re-Os年龄.地质学报,81(7):946-951.
    [122]Mao J W, Wang Y T, Lehmann B, et al.,2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews,29:307-324
    [123]李红艳,毛景文,孙亚莉,等,1996.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究.地质论评,42(3):261-267.
    [124]丰成友,许建祥,曾载淋,等,2007.赣南天门山—红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义.地质学报,81(7):952-963.
    [125]丰成友,丰耀东,许建祥,等,2007.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据.中国地质,34(3):642-650.
    [126]付建明,李华芹,屈文俊,等,2007.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究.中国地质,34(4):651-656.
    [127]Peng J T, Zhou M F, Hu RZ, et al.,2006.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita,41:661-669.
    [128]Yao J M, Hua R M, Qu W J et al.,2007. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China, Ser.D,50:519-526.
    [129]马丽艳,路远法,梅玉萍,等,2006.湖南水口矿区花岗闪长岩中的锆石SHRIMPU-Pb.岩石学报,22(10):2475-2482.
    [130]路远法,马丽艳,屈文俊,等,2006.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报,22(10):2483-2492.
    [131]王登红,李华芹,秦燕,等,2009.湖南瑶岗仙钨矿成岩成矿作用年代学研究.岩矿测试,28(3):201-208.
    [132]张文兰,华仁民,王汝成,等,2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报,83(5):659-670.
    [133]Alard O, Pearson N, ReisbergL, et al.,2000. Os isotope systematics of the Massif Central mantle lithosphere:In-situ and whole-rock studies. Journal of Conference Abstracts,5(2): 130.
    [134]Stein H, Schersten A, Hannah J, et al.,2003. Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta,67 (19):3673-3686.
    [135]Selby D, Creaser R A,2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta,68 (19):3897-3908.
    [136]Selby D, Creaser R A, Fowler M G,2007. Re-Os elemental and isotopic systematics in crude oils. Geochimica et Cosmochimica Acta,71:378-386.
    [137]杜安道,屈文俊,李超,等,2009.铼-锇同位素定年方法及分析测试技术的进展.岩矿测试,28(3):288-304.
    [138]Singh S K, Trivedi J R, Krishnaswami S,1999. Re-Os isotope systematics in black shales from the Lesser Himalaya:Their chronology and role in the 187Os/188Os evolution of seawater. Geochimica et Cosmochimica Acta,63(16):2381-2392.
    [139]Singh S K, Reisberg L, France-Lanord C,2003. Re-Os isotope systematics of sediments of the Brahmaputra River system. Geochimica et Cosmochimica Acta,67(21):4101-4111.
    [140]Selby D, Creaser R A, Fowler M G,2007. Re-Os elemental and isotopic systematics in crude oils. Geochimica et Cosmochimica Acta,71:378-386.
    [141]Rooney A D, Selby D, Houzay J P, et al.,2010. Re-Os geochronology of a Mesoprote-rozoic sedimentary succession, Taoudeni basin, Mauritania:Implications for basin-wide correlations and Re-Os organic-rich sediments systematics. Earth and Planetary Science Letters,289(3-4):486-496
    [142]Xu G P, Hannah J L, Stein H J, et al.,2009. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations. Earth and Planetary Science Letters,288:581-587.
    [143]Kendall B, Creaser R A, Gordon G W, et al.,2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta,73:2534-2558.
    [144]覃慕陶,刘师先,1998.广东、海南主要成矿区带矿床成矿系列、成矿模式.地球化学,27(4):391-399.
    [145]曾世伟,1979.大宝山铁铜多金属矿区地质特征与矿床成因探讨.广东冶金地质,第2期.
    [146]赖应篯,卢炳,1986.粤北泥盆系主要金属矿床成矿地质条件研究.广东省地质科学研究所汇刊.第3号.
    [147]中科院地球化学研究所资料,1963.
    [148]王联魁,覃慕陶,刘师先,等,2001.吴川-四会断裂带铜金矿控矿条件和成矿预测.北京:地质出版社.
    [149]陈学明,1992.粤北层控矿床的构浩演化、成矿模式和找矿预测.北京:地质出版.
    [150]兰井志,2002.粤北地区典型矿床矿物表型特征研究.中国地质大学(北京).硕士学位论文.
    [151]广东省地质矿产局,1988.广东省区域地质志.北京:地质出版社.
    [152]陈挺光,1985.吴川-四会断裂带地质特征与成矿关系.南岭地质矿产文集,第一辑.地质出版社.
    [153]郑家仪,1996.吴川-四会断裂北段特征及其与金属成矿的关系.铀矿地质,12(5):265-275.
    [154]华仁民,陈培荣,张文兰,等,2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,11(3):291-304.
    [155]Wang Y J, Fan W M, Guo F, et al.,2002. U-Pb dating of early Mesozoic granodiorite intrusions in Southeast Hunan Province, China. Science in China (Ser.D),45(3):280-288.
    [156]魏道芳,鲍征宇,付建明,2007.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年.大地构造与成矿学,31(4):482-489.
    [157]王强,赵振华,简平,等,2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学.岩石学报,20(2):315-324.
    [158]Xu X S, Deng P, O'Reilly S Y,2003. Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chinese Science Bulletin,4: 1892-1899.
    [159]凌洪飞,沈渭洲,邓平,等,2005.粤北帽峰花岗岩体地球化学特征及其成因研究.岩石学报,21(3):677-687.
    [160]凌洪飞,沈渭洲,邓平,等,2004.粤北笋洞花岗岩的形成时代、地球化学特征与 成因.岩石学报,20(3):413-424.
    [161]张敏,陈培荣,张文兰,等,2003.南岭中段大东山花岗岩体的地球化学特征和成因.地球化学,32(6):529-539.
    [162]马铁球,柏道远,邝军,等,2006.南岭大东山岩体北部40Ar/39Ar定年及地球化学特征.地球化学,35(4):346-358.
    [163]黄会清,李献华,李武显,等,2008.南岭大东山花岗岩的形成时代与成因—SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素地球化学.高校地质学报,14(3):317-333.
    [164]陈小明,王汝成,刘昌实,等,2002.广东从化佛冈主体黑云母花岗岩定年和成因.高校地质学报,8(3):293-307.
    [165]包志伟,赵振华,2003.佛冈铝质A型花岗岩的地球化学及其形成环境初探.地质地球化学,31(1):52-61.
    [166]徐夕生,鲁为敏,贺振宇,2007.佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源.中国科学D,37(1):27-38.
    [167]汪洋,2008.南岭燕山早期花岗岩成因类型的进一步探讨.地质论评,54(2):162-174.
    [168]Pitcher W S.1982. Granite type and tectonic environment. In:Hsu K J. ed. Mountain Building Processes. London:Academic Press,19-40.
    [169]Pitcher W S.1997. The nature and origin of granite (2nd Edition). London:Chapman and Hall,1-387.
    [170]李武显,周新民.中国东南部晚中生代俯冲带探索.高校地质学报,1999,5(2):164-169.
    [171]Hua R M, Chen P R, Zhang W L, et al.,2003. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China. Science in China (Series D),2003,46(8):816-829.
    [172]张展适,华仁民,刘晓东,等,2005.贵东花岗杂岩体的稀土元素特征及与铀成矿关系.中国稀土学报,23(6):749-756.
    [173]朱训,黄崇轲,芮宗瑶,等,1983.德兴斑岩铜矿.北京:地质出版社.
    [174]左力艳,2008.江西冷水坑斑岩型银铅锌矿床成矿作用研究.中国地质科学院博士论文.
    [175]Le Maitre R W, et al.,1989. A classification of igneous rocks and glossary of terms, recommendations of the International Union of Science Subcommission on the systematics of igneous rocks.London:Blackwell Scientific Publications.
    [176]Rollinson H R,1993. Using geochemical data:evaluation, presentation, interpretation. London:Longman Group UK Limited,1-352.
    [177]Maniar P D, Piccoli P M,1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin,101:635-643.
    [178]Miller C, Schuster R, Klotzli U, et al.,1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology,40(9):1399-1424.
    [179]王岳军,范蔚茗,郭锋,等,2001.湘东南中生代花岗闪长质小岩体的岩石地球化学特征.岩石学报,17(1):169-176.
    [180]伍光英,2005.湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用.中国地质科学研究院博士论文.
    [181]Taylor P, Hugh J R,1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition, Economic Geology,69:843-883.
    [182]Oneil J R, Taylor H P Jr,1971. The oxygen isotpe and cation exehange chemistry of keflds-Pasr. American Mineralogist,52:1414-1437.
    [183]吴利仁,1985.中国东部中生代花岗岩类.岩石学报,1(1):1-9.
    [184]黎彤,袁怀雨,吴胜昔,1998.中国花岗岩类和世界花岗岩类平均化学成分的对比研究.大地构造与成矿学,22(1):29-34.
    [185]Sun S S, McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In:Saunders A D, Norry M J, eds. Magmatism in Ocean Basins. Geology Society London Specical Publication,42:313-345.
    [186]黎彤,1976.化学元素的地球丰度.地球化学,3:167-184.
    [187]赵振华,1994.微量元素地球化学原理.北京:地质出版社.
    [188]刘月星,1985.大宝山铅锌矿床气液包裹体特征研究.寻找隐伏矿床的理论方法及应用——广东大宝山多金属矿床研究论文集.
    [189]http://www.geochem-model.org/fluidinc/h2o_nacl/calc.php.
    [190]韩友科,1986.大宝山铜多金属硫化物矿床硫同位素分馏机理探讨.宜昌地质矿产研究所所刊,12:55-63.
    [191]赵伦山,张本仁,2001.地球化学.北京:地质出版社.
    [192]Doe B R, Stacey J S,1974. The application of lead isotope of the Problem of ore genesis and ore prospect evolution.Economic Geology,69:724-789.
    [193]Zartmna R E, B R,1982. Plumbteetonics. The model tectonophys,75:125-177.
    [194]Stacey J S.Hedlund D C,1983. Lead-isotope compositions of diverse igneous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States.Geological Society of America Bulletin January,94(1):43-57.
    [195]Stendal H,1998. Contrasting Pb isotopes of Archaean and Palaeoproterozoic sulphide mineralisation, Disko Bugt, central West Greenland. Mineralium Deposita,33:255-265.
    [196]Kamona A F, Leveque J, Friedrich G,1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian Fold Belt of Central Africa. Mineralium Deposita,34:273-283.
    [197]Townley B K, Godwin C I,2001. Isotope characterization of lead in galena from ore deposits of the Aysen Region,southern Chile. Mineralium Deposita,36:45-57.
    [198]张理刚,1985.稳定同位素在地质科学中的应用.陕西科学技术出版社.
    [199]吴开兴,胡瑞忠,毕献武,等,2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学,30(3):73-86.
    [200]朱炳泉,陈毓蔚,1985.中国太古代地盾边缘成矿作用的铅同位素组成特征.国际早前寒武纪成矿作用讨论会论文摘要.
    [201]朱炳泉,1993.矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划.地球化学,3:209-213.
    [202]朱炳泉,1998.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京:科学出版社.
    [203]Yuan H L, Gao S, Liu X M, et al.,2004. Accurate U-Pb age and trace element determinations of zircon by laser geochronology ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research,28:353-370.
    [204]Jackson S E, Pearson N J, Griffin W L, et al.,2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geoloy,211:47-69.
    [205]Andersen T,2002. Correction of common lead in U-Pb analyses that do not report 204 Pb. Chemical Geology,192:59-79.
    [206]Ludwig K R,2003. ISOPLOT 3:A geochronological toolkit for Microsoft excel. Berkeley Geochronology Centre Special Publication4.
    [207]Crofu F, Hanchar J M, Hoskin P W, et al.,2003. Atlas of zircon textures. Review Mineral Geochemistry,53:469-495.
    [208]吴元保,郑永飞,2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604.
    [209]陈丹玲,孙勇,刘良,等,2007.柴北缘鱼卡和榴辉岩的超高压变质年龄:锆石LA-ICP-MS微区定年.中国科学D辑:地球科学,37(增刊Ⅰ):279-287.
    [210]Smoliar M I, Warker R J, Morgan J W,1996. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites. Science,271:1099-1102.
    [211]Markey R, Stein H, Morgan J,1998. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS. Talanta,45:935-946.
    [212]Stein H J, Sundblad K, Markey R J, et al.,1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland, and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 33:329-345.
    [213]Du A D, Wang S X, Sun D, et al.,2001. Precise Re-Os dating of molybdenite using Carius tube, NTIMS and ICP-MS. In:Piestrzynski (Ed.), Mineral Deposits at the 21st Century, 405-407.
    [214]Du A D, Wu S Q, Sun D Z, et al.,2004. Preparation and certification of Re-Os dating reference materials:molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 28:41-52.
    [215]邹先武,崔森,屈文俊,等,2009.广西都庞岭李贵福钨锡多金属矿Re-Os同位素定 年研究.中国地质,36(4):837-844.
    [216]王永磊,裴荣富,李进文,等,2009.湘东南将军寨钨矿花岗岩地球化学特征及铼-锇同位素定年.岩矿测试,28(3):274-278.
    [217]马丽艳,路远发,屈文俊,等,2007.湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义.矿床地质,26(4):425-431.
    [218]蔡明海,陈开旭,屈文俊,2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,25(3):263-268.
    [219]付建明,李华芹,屈文俊,等,2008.粤北始兴地区石英脉型钨矿成矿时代的确定及其地质意义.大地构造与成矿,32(1):57-62.
    [220]Pearce J A, Harris N B W, Tindle A G,1984. Trace element discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956-983.
    [221]Barbarin B,1999.A reviwe of the relationship berween granitoids types, their origins and their geodynamic environments. Lithos,46:605-626.
    [222]杨德彬,2009.蚌埠隆起区花岗岩的年代学和地球化学:对华北克拉通东部构造演化的制约.吉林大学博士论文.
    [223]Pearce J A,1996. Sources and settings of granitic rocks. Episodes,19:120-125.
    [224]姚军明,华仁民,林锦富,等,2006.湘南宝山矿床REE、Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年.地质学报,80(7):1045-1055.
    [225]钱鹏,陆建军,2005.德兴铜矿花岗闪长斑岩物质来源的微量元素研究.地质找矿论丛,20(2):75-80.
    [226]李建红,卫三元,梁良,2004.贵东岩体地质地球化学特征及其形成的构造环境识别.铀矿地质,20(6):321-329.
    [227]彭建堂,胡瑞忠,袁顺达,等,2008.湘南中生代花岗质岩时成岩成矿的时限.地质论评,54(5):617-625.
    [228]谢桂青,2003.中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例.中国科学院地球化学研究所博士论文.
    [229]范蔚茗,王岳军,郭峰,等,2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘,10(3):159-169.
    [230]刘新秒,2000.碰撞后岩浆岩的大地构造环境及特征.前寒武纪研究进展,23(2):121-127.
    [231]裴荣富,1995.中国矿床模式.北京:地质出版社.
    [232]杨明桂,王发宁,曾勇,2002.赣东北地区的成矿环境与成矿作用.资源调查与环境,23(2):122-129.
    [233]陈毓川,朱裕生,等,1993.中国矿床成矿模式.北京:地质出版社.
    [234]朱裕生,梅燕雄.成矿模式研究的几个问题.地球学报,1995,16(2):182-189.
    [235]邬凤茂,1980.大宝山斑岩钼矿床的地球化学异常特征及找矿标志.地质与勘探,3:53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700