用户名: 密码: 验证码:
西藏洞中拉热液型铅锌矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏扎雪—金达铅锌多金属矿成矿带内嘉黎县绒多乡—墨竹工卡县门巴乡—工布江达县金达镇的铜铅锌钼银金多金属矿集区是冈底斯东段近年来发现的重要成矿区域,洞中拉铅锌矿床是该成矿带内新发现的矿床,研究程度很低。本文以板块构造理论和碰撞造山带成矿理论为基础,系统的运用现代矿床学、地球化学理论和高精度的分析测试方法,通过对洞中拉铅锌矿床成矿作用的研究,取得以下创新成果与认识:
     1)矿体呈层状,似层状,透镜状,赋存于中二叠统洛巴堆组(P2l)灰岩(大理岩)、板岩中。矿石构造主要有块状构造、浸染状构造、细脉状构造、角砾状构造、条带状构造等;结构主要有半自形粒状结构、他形粒状结构、包含结构、共边结构、交代残余结构、固溶体分离结构等。金属矿物主要有黄铁矿、磁黄铁矿、黄铜矿、方铅矿,闪锌矿;次为蓝铜矿,斑铜矿等。脉石矿物有石英、长石、石榴子石、绿泥石、绿帘石、方解石等。
     2)成矿过程分为2个期,即热液成矿期和表生期。其中,热液成矿期又分三个阶段:磁黄铁矿黄铜矿阶段、闪锌矿方铅矿阶段和方解石阶段,热液成矿期是最主要的成矿期。
     3)查明了矿区辉绿玢岩和花岗斑岩的岩石地球化学特征。辉绿玢岩为拉斑玄武岩系列,主量元素以富Al_2O_3 (15.68%~17.61%)、低MgO(3.28%~5.97%)、中等TiO_2(1.89%~2.87%)、贫K_2O(0.14%~0.56%)、Na_2O> K_2O为特征;稀土元素总量相对较低,富集轻稀土元素(LREE/HREE=3.76~4.37,平均4),弱负Eu异常(δEu=0.58~0.93,平均0.81)。微量元素以Nb、Ta、Hf等高场强元素相对富集而Ba、Sr、K等大离子亲石元素相对亏损为特征。花岗斑岩属过铝质钙碱性系列,具有地壳重熔型特点。
     4)铅同位素具有稳定铅的特点,主要来自上部地壳;硫同位素在频率直方图上呈明显的塔式分布,总硫同位素为4.7‰,可能主要源于深源(或岩浆),次为壳源。稀有气体同位素表明流体具有壳幔混合源的特征。硫化物锶同位素研究表明主要来源于地壳。碳同位素研究表明,碳主要来自海相沉积碳酸盐岩的溶解作用。
     5)查明了流体包裹体的岩相学特征,温度、盐度、压力和成分,成矿流体的物理化学条件和成矿流体来源。包裹体类型以气液水包裹体为主,少量纯液相水包裹体和极少量气相包裹体。成矿流体具有中低温(均一温度126.83~240.31℃)低盐度(0.88~4.94 wt%)低密度(0.83~0.95g/cm3)浅成(26.47~67.03 MPa)。流体气相成分以H_2O为主。液相离子成分中,主要以SO_4~(2-), Cl~-, Na~+为主;流体酸碱度(pH)值介于5.036~5.526之间;氧化还原电位(Eh)为0.1745~0.231。成矿流体的逸度lgfo_2、lgfco_2和lgfs_2从热液期成矿作用早阶段到晚阶段都具有降低的趋势。成矿溶液中硫的溶解类型以H_2S、HS~-还原硫形式占绝对优势,其次是S2-形式;碳的溶解类型以CO_2和H_2CO_3为主,其次为HCO_3~-。成矿流体主要来源于大气降水成因的循环地下热水。
     6)查明了铅锌的迁移沉淀机制。成矿流体中的总锌活度从磁黄铁矿黄铜矿阶段(Ⅰ阶段)到闪锌矿方铅矿阶段(Ⅱ阶段)到方解石阶段(Ⅲ阶段)显示为由高到低的变化规律;铅的总活度也表现出降低后升高的变化规律,但是整体各成矿阶段还是呈现降低的趋势。锌的络合物中,磁黄铁矿黄铜矿闪锌矿阶段锌主要以Zn(HS)_3~-和ZnS(H_2S)_2~0形式存在,其次为ZnCl_3~-和ZnCl~+形式;在闪锌矿方铅矿阶段,主要以ZnCl_3~-和ZnCl~+形式存在;在闪锌矿方解石阶段(Ⅲ阶段)主要以Zn(HS)_3~-形式存在。铅的络合物中,磁黄铁矿黄铜矿闪锌矿阶段,主要以PbS(H_2S)_2~0形式存在;在闪锌矿方铅矿阶段,主要以PbCl~+和PbCl_3~-形式存在;在闪锌矿方解石阶段,络合物的活度很低,几乎为零。
     7)查明了成岩成矿年龄。矿区岩体为复式岩体,主岩浆期辉绿玢岩和花岗斑岩锆石SHRIMP年龄分别为117.1±1.0 Ma和124.4±1.9Ma,形成于燕山晚期。花岗斑岩和辉绿玢岩脉年龄介于38.47~53.35Ma之间,结合洞中拉-亚贵拉-沙让矿集区(4公里范围)内发现主碰撞期花岗岩体(沙让角闪石闪长岩体锆石SHRIMP U-Pb年龄为49.0±1.0Ma,含矿斑岩SHRIMP U-Pb年龄为53±1.0Ma,沙让花岗岩为55.0±0.53Ma,花岗斑岩为53.68±0.38Ma,石英斑岩为53.16±0.40Ma;亚贵拉石英斑岩为53 Ma),形成于喜山早期。通过含矿石英脉Ar-Ar定年,获取了洞中拉铅锌矿的成矿年龄为42.2±1.7 Ma。首次提出洞中拉铅锌矿床为与燕山晚期和喜山早期岩浆活动有关的印-亚大陆主碰撞期作用(65~40Ma)而形成的矿床。
     8)通过对流体包裹体的物理化学条件的研究,基于大量的地质事实,结合大量的测试分析数据,并与各种类型的典型铅锌矿床对比,首次提出洞中拉铅锌矿床属于中低温热液型铅锌矿床。系统分析洞中拉铅锌矿床的成矿作用基础上,最终建立了洞中拉铅锌矿床的成矿模式。
Dongzhongla deposit, located in the Zhaxue-Jinda lead-zinic mining area , Nyainqentanglha Range,Tibet,is the new founded lead-zinc polymetallic deposit and the degree research of geology in this area is low.In this paper,we use did works with the mineral deposit,geochemistry,plate tectonics, collision orogen theory, we gain the innovation achievements and judgements:
     1)The shape of the orebody is layered,stratoid,lens,located in the contact zone between limestone (griotte)and calcareous slate in Luobadui formation.The ore structure include massive,impregnation,vein,breccia and ribbon;the texture include euhedral crystal,subhedron,contained,coterminal,metasomatic relict,solid solution separated.The metallic minerals are pyrrhotite, pyrites,chalcopyrite,galena,sphalerite, azurite and bornite.The rocky mineral are quartz, feldspar,garnet,chlorite,epidote and calcite.
     2)The metallogenic process of Dongzhongla deposit are two stage,which are epithermal ore forming stage and supergene stage.When it terms to epithermal ore forming stage,we divide it to three period also,which are pyrrhotite-chalcopyrite period , galena-sphalerite period and calcite period.So, epithermal ore forming stage is the most important metallogenic period
     3)allgovite in Dong zhongla area belong to the alkali basalts series.The major elements of the allgovite are characterized by high Al_2O_3, intermddiate TiO_2,poor MgO and K_2O , and Na_2O> K_2O.The allgovite have high content of∑REE, a weak negative Eu anomaly or no Eu anomaly(δEu = 0.58~0.93, with a mean of 0.81),Chondrite-normalized REE diagrams show LREE-enriched patterns (LREE/HREE=3.76~4.37,with a mean of 4).traceelements are characterized by enrichments in HFSE(Nb、Ta、Hf and Th) and depletments in LILE(Ba、Sr and K). They are similar to ocean island basalts(OIB),the magmacontent were likely from enrichment mantl and have not experienced crustal contamination.The porphyry granite belong to peraluminous calc-alkaline series and the result of the crust crustal thicking melting.
     4)The lead-znic mineral are mainly from strata; Pb isotope belong to normal lead,and mainly from supracrust;the sulfur isotope is mainly from the magma.The nobel gas isotope shows the fluid is from crust and mantl;the sulfide strontium show that the fluid is from crust.The C is mainly from crust.
     5)There are three types of fluid inclusions in Dongzhongla deposit,mainly are gas-liquid fluid inclusions. The fluid belong to low and medium temperature,low sality,low density and formed in a low pressureand shallow environment. The gas compositions is dominated by H_2O,the liguid ion is SO42-,Cl-,Na+,belong to Cl--SO42--K+-Na+ hydrochemical type. The pH is weakly acidic, shows decreasing tendency in the different epithermal ore period ;The fugacity also shows decreasing tendency.The the ore fluids may have been derived from subsurface airsatutated water prodorminent.
     6)The total lead and zinic activity in the fluid have the law that,form pyrrhotite-chalcopyrite period,galena-sphalerite period and calcite period drop sharply.In the zinic complex compound,the Zn(HS)3- and ZnS(H_2S)20 prodorminent in pyrrhotite-chalcopyrite period; Zn(HS)3- prodorminent in galena-sphalerite period.In the lead complex compound, the PbS(H_2S)20 prodorminent in pyrrhotite-chalcopyrite period; PbCl+和PbCl3- prodorminent in the galena-sphalerite period.
     7)The magmatic body are complex massif.the porphyry granite Zircon SHRIMP U-Pb age is 124.4±1.9 Ma, and the allgovite Zircon SHRIMP U-Pb age is117.1±1.0 Ma, in late stage of Yanshan.And the dike age is from 38.47 to 53.35Ma(K-Ar),in early Himalayan.The Laser microprobe 40Ar-39Ar geochronology of ore quartz age is 42.2±1.7 Ma,represent the metallogenic age.we firstly put forward that Dongzhongla lesd-zinic deposit were metallogenic during main Indian-Asian collision period(41~65Ma) with the magmatic movement in late Yanshan and early Himalayan.
     8)Based on the physical chemical condition of the fluid,systemly analyzing the metallgenesis ,and combined with the geological evidence and large testing data, contrast with the different typical type lead-zinic deposit,we conclude that the Dongzhongla lead-zinic deposit is low and medium temperature epithermal type ,and establish the collision metallogenic model.
引文
安伟,曹志敏,郑建斌,等.古代与现代火山成因块状硫化物矿床研究进展[J].地球科学进展,18(5):773-782.
    陈喜峰,彭润民.2007.铅锌矿床类型划分评析[J].化工矿产地质,29(4):209-214.
    陈毓川,朱裕生.1995.中国矿床成矿模式[M].北京:地质出版社, 1-367.
    程力军,李志,刘鸿飞,等.2001.冈底斯东段铜多金属成矿带的基本特征[J].西藏地质,19(1):43-53.
    程顺波,庞迎春,曹亮. 2008.西藏蒙亚啊夕卡岩铅锌矿床的成因探讨[J].华南地质与矿产, (3):50-56.
    崔晓亮.2009.西藏墨竹工卡县洞中拉铅锌多金属矿矿床地质特征[D].成都:成都理工大学,1-91.
    戴自希.2004.世界铅锌资源和开发利用现状[J].世界有色金属,3:22-31.
    戴自希.2005.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,3:15-24.
    董国臣,莫宣学,赵志丹,等.2005.印度-欧亚大陆碰撞过程中冈底斯带岩浆底侵作用的年代学限定:SHRIMP锆石U-Pb年龄证据[J].地质学报,79(6): 756-765.
    董树文.1999.造山带构造岩浆演化与成矿作用[M].北京:地震出版社.83-89.
    杜光伟,程力军,赵咸明.2001.西藏冈底斯东段地球化学特征及其找矿意义[J].西藏地质, 19(1): 43-53.
    杜欣,刘俊涛,王亚平,等.2004.西藏拉屋铜铅锌多金属矿床地质特征及成因分析[J]. 矿产与地质, 18(5): 410-415.
    费光春,李佑国,温春齐,等.2009a.四川乡城-稻城地区花岗岩地球化学特征及构造背景探讨[J]矿物岩石,29(2):88-95.
    费光春,李佑国,温春齐,等.2009b.川西热香铜矿含矿花岗岩地球化学特征及成因初探[J]新疆地质,27(3):276-279.
    费光春,温春齐,王成松,等.2010a.西藏墨竹工卡县洞中拉花岗斑岩锆石SHRIMP U-Pb定年[J]中国地质, 37(2):470-476.
    费光春,温春齐,王成松,等. 2010b.冈底斯东段洞中拉辉绿玢岩锆石SHRIMP U-Pb定年及意义[J]地质通报,第七期.
    费光春,温春齐,周雄,等.2010c.西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义[J]矿物岩石,2010第二期(6月).
    费光春,温春齐,王成松,等.2010d.西藏洞中拉铅锌矿床成矿流体研究[J]地质与勘探,第四期(8月).
    高一鸣,陈毓川,唐菊兴,等.2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报, 83(10):1436-1444.
    何国朝,赵延朋,原恩慧,等.2009.西藏拉屋铜锌矿床成因探讨[J].矿产与地质, 23(2):147-151.
    和钟铧,杨德明,王天武. 2006a.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义[J]岩石矿物学杂志, 25(3)185-193.
    和钟铧,杨德明,郑常青,等. 2006b.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束[J].地质论评, 52 (1) : 100-106.
    侯增谦,张琦玲. 1998.冲绳海槽现代活动热水区CO2 2烃类流体:流体包裹体证据[J].中国科学(D辑), 2 :142-148.
    侯增谦,吕庆田,王安建,等. 2003a.初论陆一陆碰撞与成矿作用-以青藏高原造山带为例[J].矿床地质, 22(4): 319-323.
    侯增谦,曲晓明,王淑贤,等.2003b.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学,33(7):609-619.
    侯增谦,莫宣学,扬志明,等. 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质, 33(2): 340-351.
    侯增谦,赵志丹,高永丰,等. 2006b.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山—岩浆作用证据[J].岩石学报, 22:761-774.
    侯增谦,杨竹森,徐文艺,等. 2006c.青藏高原碰撞造山带: I主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337-358.
    侯增谦,潘桂棠,王安建,等.2006d.青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用[J]. 矿床地质25(5): 521-543.
    侯增谦,曲晓明,杨竹森,等. 2006e.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质, 25(6):629-651.
    金景福,胡瑞忠,1990. XW铀矿床成矿物理化学条件[J].成都理工学院学报, 16(3): 1-9.
    李葆华,蔡建明,刘若兰. 1991.矿物包裹体学(下册)[M].成都:成都地质学院矿床教研室(内部教材).
    李光明,王高明,高大发,等. 2002a.西藏冈底斯南缘构造格架与成矿系统[J].沉积与特提斯地质, 22(2): 1-7.
    李光明,潘桂棠.2002b.西藏矿产资源远景评价与展望[J].资源科学,24(4):16-22.
    李光明,杨家瑞,丁俊.2003.西藏西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,22(9):699-703.
    李光明,潘桂棠,王高明,等. 2004.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报(自然科学版), 31(1): 22-27.
    李光明,刘波,屈文俊.2005.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学, 29 (4): 482-490.
    李光明,刘波,佘宏全,等.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用-来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,25(12):1481-1486.
    李光明,刘波,张晖.2009b.西藏冈底斯成矿带大型铅锌矿床的叠加改造作用[J].矿物学报(增刊),179.
    李光明,余宏全,张丽,等.2009a.西藏冈底斯铜多金属成矿带基于MRAS资源评价系统的成矿预测[J].地质与勘探,45(6):645-654.
    李建忠,王高明,高大发,等. 2004.西藏林周县勒青拉铅锌矿床矿田构造特征[J].沉积与特提斯地质, 24(4): 59-65.
    李曙光.1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图解[J].岩石学报,9(2):146-157.
    李廷栋.2002.青藏高原地质科学研究的新进展[J].地质通报, 21(7):370-376.
    李文章.2009.西成铅锌矿田厂坝―李家沟矿床矿石组构特征[J].甘肃地质,18(2):26-29.
    连永牢,曹新志,燕长海,等. 2009.西藏工布江达县亚贵拉铅锌矿床地质特征及成因分析[J].地质与勘探. 45(5): 57-63.
    林建英.1986.中国西南三省二叠纪玄武岩的时空分布及其地质特征[J].科学通报,12 (3):929-932.
    刘斌,沈昆. 1999.流体包裹体热力学[M].北京:地质出版社, 1-92.
    刘崇民,马生明,胡树起,等.火山热液型铅锌矿床岩石地球化学特征及预测指标[J]物探与化探,32 (2):154-158.
    刘晓东,周涛发.1999.块状硫化物矿床地质地球化学特征与形成机理[J].合肥工业大学学报,20 (4) :42-47.
    刘晓吉.2008.西藏勒青拉铅锌矿成矿构造环境与矿床成因[D].北京:中国地质大学(北京),1-96.
    刘延勇.2008.西藏拉屋多金属矿床的成矿元素分带规律[J].中山大学学报(自然科学版),47(6): 66-69.
    孟祥金,侯增谦,高永丰.2003.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re 0s年龄证据[J].矿床地质, 22(3):246-252.
    莫宣学,赵志丹,邓晋福,等.2003.印度一亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,(3):136-147.
    潘桂棠,莫宣学,侯增谦,等. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3): 521-533.
    秦克章,李光明,赵俊兴,等. 2008.西藏首例独立钼矿———冈底斯沙让大型斑岩钼矿的发现及其意义[J].中国地质,35(6): 1101-1112.
    芮宗瑶,李光明,王龙生,等.2006.青藏高原的矿产资源[J].中国地质,33(2):363-373.
    邵洁涟. 1988.金矿找矿矿物学[M].北京:中国地质大学出版社, 147-205.
    佘宏全,丰成友,张德全,等.2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,24:508-520.
    宋彪,张拴宏,王彦斌,等. 2006.锆石SHRIMP年龄测定数据处理时系统偏差的避免——标准锆石分段校正的必要性[J].岩矿测试, 25(1):9-14.
    宋彪,张玉海,万渝生,等. 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评(增刊),48:26-30.
    宋彪,乔秀夫.2008.辽北辉绿岩墙(床)群及二道沟组玄武岩锆石年龄及其构造意义.地学前缘,3(5):250-262.
    孙景贵,赵俊康,陈军强.2007.延边小西南岔富金铜矿床的成矿机理研究:矿物流体包裹体的稀有气体同位素地球化学证据[J].中国科学D辑,37(12):1588-1598.
    孙忠军,任天祥,向运川.2003.西藏冈底斯东段成矿系列区域地球化学预测[J].中国地质, 30(1): 105-112.
    谭建湘,宛克勇.2008.湖南水口山铅锌金银矿床地球化学特征[J].地质与勘探,44(3): 22-27.
    唐菊兴.2003.西藏玉龙斑岩铜-钼-矿成矿作用与矿床定位预测研究[D].成都:成都理工大学,1-145.
    唐菊兴,陈毓川,王登红,等.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报.83(5): 698-704.
    涂光炽.1988.中国层控矿床地球化学(第三卷)[M].北京:科学出版社,359-360.
    涂光炽.1989.中国矿床(上册)[M].北京:地质出版社,16-17.
    汪礼明.2006.广东凡口超大型铅锌矿田成矿学研究[D].湖南:中南大学,1-126.
    王方国,李光明,林方成. 2005.西藏冈底斯地区夕卡岩型矿床资源潜力初析[J].地质通报, 24(4): 378-385.
    王立全,潘桂棠,朱弟成,等. 2008.西藏冈底斯带石炭纪—二叠纪岛弧造山作用:火山岩和地球化学证据[J].地质通报, 27 (9):1509-1534.
    王全海,王保生,李金高,等.2002.西藏冈底斯岛弧及铜多金属矿带的基本特征与远景评估[J].地质通报, 2002,21(1):35-40.
    吴昌志,顾连兴,冯慧,等.2008.青海锡铁山铅锌矿床的矿体成因类型讨论[J].中国地质,35(6):1185-1196.
    吴荣庆.2008.我国铅锌矿资源特点与综合利用[J].中国金属通报, 9: 1-2.
    西藏自治区地质矿产局.1991.西藏自治区区域地质志[M].北京:地质出版社.
    徐文炘.1991.矿物包裹体中水溶气体成分的物理化学参数图解[J].矿产与地质,5(3): 200-206.
    杨德明,何钟铧,王天武,等. 2005a.1:25万门巴幅区域地质调查报告[R].吉林大学地质调查研究院, 251-259.
    杨德明,黄映聪,戴琳娜,等. 2005b.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石年龄及其意义[J]地质通报, 24 (3):235-238.
    杨永强,翟裕生,侯玉树,等.2006.沉积岩型铅锌矿床的成矿系统研究[J].地学前沿, 13(3): 200-205.
    叶庆同,胡云中,杨岳清,等.1992.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社.
    臧文栓,孟祥金,杨竹森,等.2007.西藏冈底斯成矿带铅锌银矿床的S、Pb同位素组成及其地质意义[J].地质通报, 26(10): 1393-1397.
    曾荣.2006.兰坪盆地流体大规模成矿过程[D].陕西:长安大学,1-109.
    张彩华,刘继顺,刘德利. 2006.滇西南澜沧江带官房地区三叠纪火山岩地质地球化学特征及其构造环境[J].岩石矿物学杂志,25(5):377-386.
    张长青,余金杰,毛景文.2009.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,28(2):195-210.
    张峰.2008.兰坪金顶铅锌矿床成矿模式探讨[D].成都:成都理工大学,1-115.
    张刚阳,郑有业,龚福志,等. 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(3):473-479.
    张科. 2006.西藏勒青拉铅锌矿床稀土元素地球化学特征[J].地质与勘探, 42(6): 26-31.
    张林奎,范文玉,高大发.2008.西藏林周县勒青拉铅锌多金属矿床地质特征及成因[J].地质与勘探, 44(5): 10-16.
    张哨波,高明,岳国利,等.2009.西藏亚贵拉铅锌矿床地质特征及成因浅析[J].矿产与地质, 23(4):297-305.
    张振亮.2006.云南会泽铅锌矿床成矿流体性质和来源[D].北京:中国质科学院研究生院,1-136.
    赵俊兴,秦克章,李光明,等.2009.冈底斯沙让钼矿的成矿年代学和岩石地球化学与青藏高原主碰撞期成矿作用[J].矿物学报(增刊),197-198.
    郑有业,王保生,樊子珲,等. 2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J]地质科技情报, 21(2):55-60.
    周晶,季建清,韩宝福,等. 2008.新疆北部基性岩脉40Ar/39Ar年代学研究[J].岩石学报,24(5):997-1006.
    HAYMOBГБ.1971.Основопфизикохимигескоймоделиурановогорудообразаваиня[A].张祖还译.铀地球化学[M].北京:原子能出版.
    朱炳泉.1998.地球科学中同位素体系理论与应用-兼论中国大陆壳慢演化[M].北京:科学出版社:216-235.
    朱弟成,潘桂棠,莫宣学,等.2005.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因[J].地球化学,34(1):7-19.
    朱上庆,黄华盛. 1988.层控矿床地球化学[M].北京:冶金工业出版社.
    朱士飞,秦勇,钱壮志等. 2008.云南省丽江_宾川地区二叠纪玄武岩地球化学特征及其构造背景研究[J].矿物岩石, 28(1):64-71.
    左力艳.2008.江西冷水坑斑岩型银铅锌矿床成矿作用研究[D].北京:中国地质科院,1-148.
    Ahmad S N, Rose A W. 1980.Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico[J].Economic Geology,75(2):229-250.
    Bach W, Alt J C ,Niu Y,et al.2001.The chemical consequences oflate-stagehydrothermal circulation alteration in an uplifted block of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg176)[J].Geochemica et Cosmochimica Acta, 65(6):3267-3287.
    Baines H L.1977. Geoehemistry of hydrothermal ore deposit[M].2Nd. Newyork. Baker M B ,Stolper E M.1994.Determining the composition of high2pressure mantle melts using diamond aggregates [J].Geochim Cosmochim Acta,58(2):812-815.
    Bin Lin , Manuel O K.1994.A noble gas technique for the identification of mantle and crustal materials and its application to theKuroko deposits [J]. Geochemical Journal,28(1):47-69.
    Bischoof J, Roserbauser R J.1989.Salinity variations in submarine hydrothermal system by layered double-diffusive convection[J].Journal Geology, 97(5): 613-623.
    Bradley D C ,Leach D L.2003.Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands [J].Mineralium Deposita,38(6):652-667.
    Bourcier W L, Barnes H L.1987.ore solution chemistry stabilities cgloricle and bisuifide complexes of zioce to 350℃.[J].Economic Geology,82(7): 1838-1863.
    Boynton W V. 1984.Cosmochemistry of the Rare Earth Elements: Meteorite Studies[A].In: Henderson P.(ed.).Rare Earth Element Geochemistry[C].Amsterdam: Elsevire Scientific Publishing Company:63-91.
    Cannon R S, Pierce A P, A ntweiler J C, et al.1961.The date of lead isotope geology related to problems of ore genesis[J]. Economic Geology,56(1):1-38.
    Clayton R N,Rex R W,Syers J K,et al. 1972. Oxygen isotope abundance in quartz fromPacific pelagic sediments[J].Journal of Geophysical Research,77(21):3907-3915.
    Crerar D A and Barnes H L. 1976.Ore solution chemistry, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees[J].Economic Geology.71(4): 772-794.
    Doe B R,Zartman R E.1979.Plumbotectonics[A]the Phanerozoic.In: Barnes H L (ed).Geochemistry of hydrothermal ore deposits[C].John Wiley & Sons. New York, NY, United States.22-70.
    Dunai T J, Baur H B.1995. Helium,neon,and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. Geochimica Cosmochimica Acta, 59(13): 2767-2783.
    Franklin J M , Lydon J W, Sangster D F. 1981.Volcanic-associatedmassive sulfide deposits [J]. Economic Geology , ( 75th Anniv): 485-627.
    Faure G and Mensing T M.2005.Isotopes:Principles and Applications[M].Third edition.Hoboken,New Jersey:John Wiley & Sons,Inc.
    Gautheron C, Moreira M, Allègre C. 2005. He, Ne and Ar composition of the European lithospheric mantle. [J]. Chemical Geolpgy,217(6): 97-112.
    Giordano T H and Barnes H L.1981. Giordano Lead-Zinc Transport in Mississippi Valley-type Ore Solutions[J]. Economic Geology ,76(8): 2200-2211.
    Hall D L,Sterner S Ml,Bodnar R J.1988.Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology ,83(1):197-202.
    Hedenquist J W, Lowenstern J B.1994.The role of magma in the formation of hydrothermal deposits[J].Nature, 370(6490): 519-527.
    Helgeson D H, Kirkham, and Flowers G C.1981.Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb[J].American Journal of Science, 281(10):1249-1516.
    Helgeson H C.1969.The rmodynamics of hydrothermal systems at elevated temperatures and pressures[J], American Journal of Science. 267(7):729~804.
    Hodges K V, Ruhl K W, Wobus C W, et al. 2005.40Ar/39Ar Thermochronology of Detrital Minerals[J]. Reviews in Mineralogy and Geochemistry, 58(1): 239-257.
    Hoskin P W O , Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews of Mineralogy and Geochemistry, 53(2) : 27-62.
    Hyodo H. 2008. Laser Probe 40Ar/39Ar dating: History and development from a technical perspective[J]. Gondwana Research, 14(2): 609-616.
    Kendrick M A, Burgess R, Pattrick R A D, et al.2007.Fluid inclusion noble gas and evidence on the origin of Cu–Porphyry mineralising fluids[J]. Geochemica et Cosmochimica Acta, 65(16):2651-2668.
    Kirose K,Kushiro I.1993.Partial melting of dry periodotites at high pressure:Determination of compositions of melts segregates from periodotite using aggregates of diamond[J].Earth Planet Sci Lett,114(3):477-489.
    Huston D L, Sie S H, Suter C F, et al.1995.Trace elements in sulfide minerals from eastern Australian volcanic2hosted massive sulfide deposit[J].Economic Geology, 90(6): 1167-1196.
    Lance P Black, Sandra L K, Ian S W.2003. The Application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards [J]. Chemical Geology, 200(2): 171-188.
    Leach D L, Sangster D F, Kelley K D,et al.2005.Sedement2hosted lead-zinc deposits: A global perspective [C ]. Economic Geology 100thAnniversary Volume. 561-607.
    Ludwig K R. 2001.Squid 1.02 : A user manual [A].Berkeley Geochronological CenterSpecial Publication[C].2:19.
    Ludwig K.R.2003.User's manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[A]. Berkeley :Geochronology Center special Publication[C]. 4: 25-32.
    Mamyrin B A, Tolstikhin L N.1984.Helium isotopes in nature[J].Amsterdam, 221-237.
    Mo X X,Hou Z Q,Niu Y L,et al.2007.Mantle contributions to crustal thicking during continental coollisions :Evidence from Cenozic igeneous rocks in southern Tibet[J].Lithos,96(1):225-242.
    Mo X X, Niu Y L, Dong G C,et al.2009.Contribution of syncollisional felsic magmatism to continental crust growth:Acase study of the Paleogene Linzizong volcanic succession in southern Tibet[J].Chemical Geology,250(1):49-67.
    Meinert. L. D, Lentz. D. R and Newberry. D. J.2000. A Special issue devoted to skarn deposits[J]. Economic Geology. 1(95):1183-1184.
    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram.chemical geology. 56(3): 207-218.
    Miyashiro A. 1974. Volcanic rock series in island arcs and activecontinental margins[J]. American Journal of Science,274(1): 321-355.
    Nasdala L, Hofmeister W, Norberg N, et al. 2008. Zircon M257, a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 32(1): 247-265.
    Nier A O. 1950.A redetermination of the relative abundances of the isotope of carbon, nitrogen oxygen, argon, ana potassium[J].Phys, 77(3):789-793.
    Norman D I, Musgrave J A. 1994.N2-Ar-He compositions in fluid inclusions:N2-Ar-He compositions in fluid inclusions; implicators of fluid source[J].Geochimica et Cosmochimica Acta, 58(3):1119-1131.
    Paradis S, Hannigan P,Dewing K. 2005. Mississippi Valley2type lead-zinc deposits (MVT) EB]. http:// gsc.nrcan. gc.ca/mindep/synth_dep/mvt/ index_e. php.1215.
    Patterson D J, Ohmoto H.1981.Geologic Setting and Genesisof Cassiterite-Sulfid Meineralization at RenisonBell,Western Tasmania[J].Economic Geology, 76(1):393-438.
    Pearce J A, Norry M J. 1979.Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J].contributions to mineralogy and petrology. 69(1): 33-47.
    Plank T,Langmuir C H. 1998.The chemical composition of the subbucting sediment and its consequences for the crust and mantle[J].Chemical Geology,145(1):325-394.
    Porcelli D P, Ballentine C J, Wieler R. 2002.Noble Gases in geochemistry and cosmochemistry[J].Review Mineral Geochemistry, 47(2):1-84.
    Potter R W,Clynne M A and Brown D L.1978.Freezing point depression of aqueous sodium chlorite solutions[J]. Economic Geology,73(2):284-285.
    Reza Tafti, James K, Mortensen et al.2009. Jurassic U-Pb and Re-Os ages for the newly discovered XIETONGMEN Cu-Au porphyry district,Tibet,PRC:implications for metallogenic epochs in the southern Gangdese belt[J].Economic Geology,2009,104(1):127-136.
    Ripley E M, Ohmoto H.1977. Mineralogic,sulfur isotope and fluid inclusion studies of the stratabound copper deposits at the Raul Mine,Peru[J].Economic Geology, 72(6):1017-1041.
    Robert E S, Matthew T H, Laurel B G.2006.40Ar/39Ar thermochronologyconstraints on the timing of Proterozoic basement exhumationand fault ancestry, southern Sangre de Cristo Range, New Mexico[J]. Geological Society of America Bulletin, 118(11/12):1489-1506.
    Sawkins F J.1976.Massive sulfide deposits in relation to geotectonics[J].Geological Association of Canada,(Spec Paper 14):221-240.
    Seward T W.1984. The formation of lead (Ⅱ) chloride comlpetse 300℃[J].Geochin et cosmchin Acta,48(1):121-134.
    Skirrow R G, Franklin J M. 1994. Silification and metal leaching insemiconformable alteration beneath the Chisel lake massive sulfide deposit, Snow lake , Manitoba [J]. Economic Geology,89(1): 31-50.
    Steiger R H and Jager E. 1997.Subcommission on geochronology:convention on the use of decay constants in geo- and cosmo-chronology[J].Earth.Planet.Scie.Lett, 36(5):359-362.
    Stuart F M, Burnard P G, Taylor R P, et al.1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, S.Korea[J]. Geochim Cosmochim Acta, 59(4): 4663-4673.
    Stuart F M, Turner P G, Taylor R P.1994. He/Ar isotope systematics of fluid inclusions : resolving mantle and crustal contributions to hydrothermal fluid[M]. In: Noble Gas Geochemistry and Cosmochemistry. Tokyo: Terra Scientific Publishing Company, 261-277.
    Sun S S, McDonough W F. 1989.Chemical and isotopicsystematics of oceanic basins : implications for mantle composition and processes[C]. Geological Special Publication of Geological Society of London, 42(3):313-346.
    Taylor H P. 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J].Economic Geology, 69(6): 843 -883.
    Taylor S R , McLennan S M. 1985. The Continental Crust: Its Composition and Evolution : An Examination of the Geochemical Record Preserved in Sedimentary Rocks [M]. Oxford ,United Kingdom: Blackwell Scientific,310-312.
    Urabe T, Marumo K.1991.A new model for Kuroko2type deposits of Japan[J].Episodes, 14 (3):246-251.
    Weaver B L. 1991.The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J].Earth Planet SciLett, 104(2): 81-97.
    Wilkinson.2001.Fluid inclusions in hydrothermal ore deposits[J]Lithos. 55(1):229-272.
    Wood D A.1980.The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of British Tertiary volcanic province.[J].Earth and Planetary Science Letters, 50(1):116-130.
    Xu Y G, Lan J B, Yang Q J, et al.2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet[J].Chemical Geology, 255(12):439-453.
    Zhu D C , Mo X X , Niu Y L et al.2008. Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268(12):298-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700