用户名: 密码: 验证码:
PVDF/TPU共混中空纤维膜的制备及其在印染废水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对聚偏氟乙烯(PVDF)中空纤维膜性能中存在的问题,制备了一种新型的PVDF/热塑性聚氨酯(TPU)共混中空纤维膜。基于"利用PVDF和TPU的相容性来改善分离膜结构与性能"的设计理念,对PVDF和TPU的共混相容性、以及PVDF/TPU共混中空纤维膜的成膜工艺进行了较为全面的研究;同时将其应用于印染废水的处理,采用水解酸化-一体式膜生物反应器(SMBR)处理工艺,并投加絮凝剂聚合硫酸铝铁(PAFS),考察了PVDF/TPU共混中空纤维膜在印染废水MBR处理工艺中的实际应用情况。
     通过混合焓值、Flory-huggins相互作用参数、稀溶液粘度法(Dilute SolutionViscosity)、差示扫描量热法(Differential Scanning Calorimetry)、红外光谱法(FTIR)等理论和试验方法,对PVDF/TPU的相容性进行了预测和分析。研究结果表明:PVDF与TPU具有部分相容性,且相容性与混合比、浓度等因素有关,PVDF含量)60%的体系相容性优于PVDF含量<60%的体系,PVDF富相的相容性优于TPU富相的相容性。
     通过考察铸膜液中聚合物浓度以及PVDF/TPU共混比对铸膜液运动粘度、相容性、浊点数据、凝胶值的影响,从热力学以及传质动力学的角度对DMAc-PVDF/TPU-H_2O体系膜孔形成机理进行了研究。研究结果表明,随着PVDF/TPU浓度的增加,粘度增大,溶剂与非溶剂交换速率变小,有利于发生延迟相分离,大孔减少,孔隙率、水通量降低。聚合物浓度增加,聚合物与溶剂间的相互作用增强,分子链的运动能力减弱,铸膜液粘度急剧增大,使凝胶过程中铸膜液内的溶剂和凝胶介质之间的传质阻力增大,凝胶速度降低,膜孔隙率降低。铸膜液中聚合物浓度比较低时,体系粘度低,在动力学因素影响下,溶剂和非溶剂间交换速率快,凝胶值小,液液分相较早出现,从开始出现液液分相到最后聚合物浓相固化之间有较长的时间使得稀相孔长大,因而所成膜有较大的孔。但是聚合物浓度低导致膜的机械强度变差。浊点实验说明随着共混比的增大,少量的非溶剂就可以使铸膜液沉淀分相。PVDF与TPU共混比逐渐降低时,体系粘度逐渐增高,相容性变差,加入少量非溶剂就可以加速这种分离倾向,但是膜的机械性能大大提高。膜结构也说明随着TPU的含量增高,相分离严重,膜孔径变大,孔隙率增大,水通量增大,截留率迅速减小。
     按添加剂功能的不同,将添加剂区分为高分子有机添加剂与无机添加剂。通过热力学、动力学因素,DSC热焓分析,FTIR-ATR的PVDF晶型转化分析、SEM观察、水通量、截留率和机械强度的实验,对膜的性能与结构进行比较。结果表明,添加剂影响溶剂的化学位,改变了铸膜液中PVDF/TPU大分子的溶解状态。影响凝胶过程中溶剂和水之间的互散速度,进而影响凝胶过程,改变膜结构。在致孔添加剂-DMAc-PVDF/TPU-水的体系中,PVP(K30)是一种比较复杂的改良剂,可以制备不同性质的膜。由于其高分子量的特性,浓度增大,反而会抑制大孔的形成。因为它使铸膜液的粘度变化极为显著,粘度造成的动力学引发膜分相的作用大于热动力学造成的铸膜液相分离的因素,体系需要提供部分热动力驱动力来引发相分离,相分离延迟时间较长,最终发生铸膜液延迟液液分相。形成较致密的皮层,导致膜的结晶度先降低后升高,水通量也随之由高变低。在高分子添加剂中以PVPK30和PEG6000这两种添加剂的膜的PVDF结晶减少最为显著,表现为膜结构的孔的连通性比较好,膜的过滤性能及机械性能都优于其他添加剂。
     纺丝工艺包括凝胶浴的组成和温度、芯液的组成和流量、干纺程长度等,在以上因素的共同作用下,同铸膜液结构一起决定了膜的结构与性能。以动力学扩散对膜结构与性能影响的讨论为主。以溶剂DMAc的水溶液作凝胶浴时,凝胶浴的凝固能力降低,降低了溶剂与非溶剂扩散传质的化学势变化,容易发生延迟相分离,断面结构从指状向海绵状转变。以水为凝胶浴介质,因为扩散速度快,脱溶剂迅速,更易实现瞬间相分离,有利于大空腔结构的生成,提高膜的水通量。凝胶浴温度影响溶剂-非溶剂扩散。在25℃时,水通量和截留率得到最大值。当芯液选择酒精水溶液时,内、外凝固速率的差别对海绵层位置有明显的影响,浓度增大,海绵层逐渐外移,最终形成贯穿整个膜的大孔,水通量急剧增大。对其他纺丝工艺参数的研究中,确定当干纺程在14cm,芯液为水,流量为2.5-3ml/min时,可以制备出通量较大,截留性能较好的共混膜。
     选择不同pH值次氯酸钠(NaClO)溶液对PVDF/TPU中空纤维膜进行后处理。研究表明NaClO溶液可以明显地改善共混膜的表面微孔,提高膜的水通量。同时不同pH值的NaClO溶液随时间变化对膜的截留率的影响不大,均处于82-89%之间,表明NaClO溶液对膜孔径并没有显著影响。PVDF/TPU/PVP共混膜经酸碱浸泡处理后,失重比率在3%内,膜的机械强度影响不大,说明它可以在较宽的pH值范围内应用,具有较好的耐酸碱及氧化性能力。在超滤装置中,组件对活性艳兰KN-R的透过速率在60min后达到稳定,随着操作压力的增大,通量有所提高,压力过大会影响膜的寿命,在0.1MPa下,可以保持较高的通量。运行后的膜用清水冲洗,污染恢复率明显高于未添加PVP的PVDF/TPU共混膜,说明添加亲水性物质PVP后可以提高膜的抗污染能力。实验表明PVDF/TPU/PVP共混膜由于具有良好的抗酸碱性,耐污染性能强,在工业水处理应用中应会有良好的前景。
     通过平行对比试验,以生物相、颗粒粒径分布混合液特性指标,研究了PAFS对膜污染的缓解作用。投加PAFS后,活性污泥中会存在大量原生、后生动物,生物相变得更加丰富;混合液颗粒平均粒径显著增大,同时小于15μm的颗粒所占的比例显著减小;粒径增大说明加入PAFS后对缓解膜污染是有利的。在PVDF/TPU共混膜在活性染料废水处理的应用中,以水解酸化-一体式膜生物反应器(SMBR)组合工艺,对以活性艳兰KN-R和聚乙烯醇(PVA)为主的印染废水进行处理,水解酸化池-SMBR各段作用不同,起初水解酸化完成染料脱色,并且提高废水的可生化性,SMBR主要起去除COD的作用。随着系统运行时间的延长,使得更多的染料被絮凝在活性污泥中,强化了脱色细菌培养和驯化,使得脱色细菌慢慢适应了在Fe、Al存在的状况下生长,SMBR对色度的去除率有所增加。废水中不可生物降解物质的COD占总COD的7.6%左右。通过MBR处理印染废水的以COD为底物浓度的动力学模式、最短生物固体平均停留时间,说明水解酸化-SMBR工艺优于传统的厌氧工艺和厌氧-好氧工艺。污泥层沉积和凝胶层增厚是导致膜污染的主要原因。工艺选择NaOH清洗膜组件,电镜观察可知,活性污泥在膜表面得沉积也得到了缓解,保证系统长期稳定运行。实验结果表明水解酸化-PAFS-SMBR组合工艺是处理活性染料和PVA为主的印染废水的高效工艺。
In order to provide practical and theoretical solutions to the problems faced to Polyvinylidene fluoride (PVDF) hollow fiber membranes, preparing a novel PVDF/ Thermoplastic polyurethane (TPU) hollow fiber membrane, based on the design concept that the membrane structure and performance could be improved by adjusting the compatibility between PVDF and TPU blends, some aspects were studied, which included the studies on the compatibility of polymer blends, preparation and characterization of PVDF/TPU hollow fiber membranes, the effects on casting dope, membrane process, and influence factor in spinning and precipitation process; secondly, PVDF/TPU blend membrane applied in Hydrolysisacidrogenesis-sub membrane bioreactor process was used to treat reactive blue KN-R wastewater with addition of PAFS. A study on submerged membrane bioreactor (SMBR) with PVDF/TPU blend hollow fiber membranes for dyeing wastewater was carried out.
     For the first time the compatibility of PVDF and TPU was predicted and analyzed by means of calculation ofΔHm, Flory-huggins interaction parameters, Differential Scanning Calorimetry method and Dilute Solution Viscosity method respectively. It was demonstrated that PVDF and TPU possessed partial compatibility which was depended on and influenced by blend ratio, concentration of polymers in solution, temperature, etc. The compatibility of the systems with the percentage of PVDF in blends more than 60% was superior to systems with the percentage less than 60%. The compatibility in PVDF-rich phase was greater than in TPU-rich phase.
     The influence of the polymer concentration and PVDF/TPU ratio on such items was studied, as the viscosity of the casting solution, the compatibility, the cloud point, the gelation value, while as far as the system of DMAc-PVDF/TPU-H_2O was concerned, the formation mechanisms of the membrane were studied and explained based on thermodynamics and mass transfer dynamics. It was found that with the increase of polymer concentration, the viscosity of casting solution increased, the velocity of mass transfer between solvent and non solvent slowed down, which happened delay phase separation easily. Fewer big pores observed in the membrane structure, flux and porosity decreased. Due to the enhanced mutual function, molecule chain moved slowly. The diffusion was inhibited by TPU in the casting dope and the porosity reduced with the increase of the viscosity. The decrease of polymer concentration also reduced the viscosity of casting dope. Diffusion mass transfer between solvent and nonsolvent fasted, inducing spontaneous demixing and developing larger pores, while low polymer concentration resulted in poor mechanical properties. Cloud points experiments showed that with the increase of blends ratios, a very little amount of non-solvent can induce phase separation. When blends ratio reduced, the viscosity of casting dope increased, whereas the compatibility of the system reduced. Adding TPU to the casting dope can improve the membrane's mechanical properties. High concentration of TPU in casting dope made the separation too serious, water flux and porosity increased, while retention decreased sharply.
     According to the function of additives, it could be classified into high molecular weight organic additives and inorganic additives. In the system of Additives-DMAC-PVDF/TPU-H_2O, PVP was a complicated improver, which can prepare membranes with different property due to its high molecular weight. The separation property, microstructure and crystalline phase of membranes were characterized by bovine serum albumin (BSA) retention experiments, mechanical property scanning electron microscopy (SEM), Fourier transform infrared spectroscopy- attenuated total reflection (FTIR-ATR)and differential scanning calorimetric (DSC), respectively. The results showed that additives can affect Chemical Potential of solvent, change PVDF/TPU macromolecule soluble state. Additives also can affect the diffusion velocity between solvent and nonsolvent, forming different membrane structure. High PVP concentration would suppress macrovoid formation. PVP can not come to terms with the demixing enhancement, it was not because the PVP fails to induce thermodynamic enhancement but because it was overwhelmed by kinetic hindrance. Due to the increase of the dope viscosity, affected the exchange between Water and DMAc during the phase inversion and phase separation time increased and demixing delayed. Thus firstly the water flux increased while Crystallinity decreased, then flux reduced while crystallinity increased. PVP K30 and PEG6000 can reduce crystallinity of membrane significantly. Membranes added PVP K30 and PEG6000 possessed good retention and mechanical properties because the pores in membranes connected well. The membranes with 5 wt% content of PVP, comparing membranes without additive, flux improved from 9.25 L/m~2·h to 346.73 L/m~2·h, retention was from 82.54% to 86.88%, which can prepare excellent blend membranes with high water flux and retention..
     The influences of various parameters on the spinning technology included coagulation bath agent, coagulation bath temperature, bore liquid agent, bore liquid velocity, dry spinning gap distance, etc. Structure and performance of membranes were affected by spinning condition and the casting dope content. The dynamic diffusion was discussed. DMAc solvent as a coagulation bath, resulting in concrete slowing, chemical potential of diffusion mass transfer between solvent and non-solvent changed, which induced delay demixing, membrane structure changed from finger-like structure to spongy structure. Diffusion velocity increased with water as a coagulation bath. It is easy to desolventize and induce spontaneous demixing. Water flux increased with the development of macrovoid. The temperature of coagulation also effected solvent and non-solvent diffusion. At 25℃water flux and retention reached to their maximum. EtOH as bore liquid, different internal and external concerted velocity resulted in spongy layer location. With the increase of ethanol concentration, spongy layer removed to membrane outboard, finally forming macrovoid from the underneath of membrane skin to the bottom of a sublayer with water flux increase quickly Considering for other factors, when dry spinning gap distance being 14cm, water as bore liquid and velocity 2.5-3 ml/min, it can prepare excellent blend membranes with high water flux and retention.
     PVDF/TPU blends hollow fiber membranes with NaClO solvent post-treatment was studied and the results indicated that post-treatment with NaClO can enlarge the micropore on membrane surface, increase water flux significantly. NaClO had no distinct influence on membrane aperture size, which resulted in retention remained stable between 82% and 89%. PVDF/TPU/PVP blends hollow fiber membrane weight loss was below 3%, after membrane dipped in both acid and alkaline solution. Acid and alkaline soak had little effect on mechanical property. The results showed that PVDF/TPU blend hollow fiber membranes owned good ability of resistance to acid and alkali in the broad pH range. The membranes flux declined as the filtration time increased, followed by 60 minutes with a steady value. Reactive sapphire KN-R dyeing fluxes can be improved through increasing driving force, but excessive driving force would affect the membranes natural life, In the experiment, we would take 0.1 MPa as the transmembrane pressure, which also can remain high flux. Fouled membranes cleaned by water, membrane added PVP flux recovery higher than membrane free of PVP, It showed that PVP can improve hydrophilicity of membranes. Membranes modified by PVP had a more favorable antifouling performance and can be applied in wastewater treatment.
     Based on parallel experiment including biomorphic variety, particle diameter distributing in mixing sludge solution, PAFS addition can reduce membrane fouling. When PAFS was added in suludge, different kinds microorganism such as protozoan, metazoan had exited in sludge. Particle diameter increased, microorganism with particle diameter less than 15μm increased obviously, which can reduce membrane fouling and improve sludge characteristic. While the PVDF/TPU hollow fiber membrane was used in submerged membrane bioreactor (SMBR) process, Hydrolysisacidrogenesis-sub membrane bioreactor process was used to treat reactive sapphire KN-R and Polyvinyl Alcohol (PVA) dyeing wastewater. It showed different function. The results showed that decolorization was accomplished hydrolysisacidroginesis process in the beginning. COD was removed by SMBR system mostly. With the increase of running period, more and more coloring matter was flocculate in the sludge, which strengthened decolor bacteria culture, decolor bacteria can exist in the ferriferous and aluminous sludge, which resulted in the increase of color reduction. Based on the calculation result of dyestuff degradation dynamics parameters, COD of non-degradable pollutants account was only 7.6 % of the total COD. Based on the calculation result of dyestuff degradation dynamics parameters and the shortest bio-solid residence time, it can draw the conclusion that hydrolysisacidrogenesis-PAFS-SMBR process superior than anaerobic process and anaerobic-aerobic process. The fouling of membrane was mainly formed by gel polarity and sludge sediment. The alkali cleaning can reduce activated sludge sediment on the surface of membranes, which can ensure that SMBR system run stably for long time. It showed that a combined Hydrolysisacidroginesis-membrane bioreactor process adding flocculant PAFS was considered as a high efficient combination.
引文
[1]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002,37-45
    [2]许嘉敏.功能性高分子膜材料[J].高分子材料科学与工程.1988,4:7-14
    [3]郑领英,袁权.展望21世纪的膜分离技术[J].水处理技术.1995,21(3):125-131
    [4]Owen G Economic assessment of membrane processes for water and wastewater treatment[J].J.Membr.Sci.,1995,102:77-91
    [5]Loeb S.,Sourirajan S.Sea water demineralization by means of an osmotic membrane[J].Adv Chem ser,1963,38:117-132
    [6]Kesting R.E.Synthetic polymeric membrane[M].John Wiley& Sons,Inc.,New York,1985
    [7]Zeman L,Fraser T.Formation of ari-cast cellulose acetate membranes,part Ⅱ.Kinetic of demixing and macrovoid growth[J].Membr.Sci.,1993,87:267-279
    [8]Wang Y.C.,Li C.L,Huang J.,Lin C,et al.Pervaporation of benezene/cyclohexane mixtures through aromatic polyamide membranes[J].J.Membr.Sci.,2001,185:193-200
    [9]Kesting R.E.Phase inversion membranes[J].ACS Symper,1985,269:131-152
    [10]陈立新,沈新元.相转换法的湿法成膜机理[J].膜科学与技术,1997,17(3):1-6
    [11]Strathmann H.,Kock K.The formation mechanism of phase inversion membrane[J].Desalination,1977,21:214-255
    [12]Mulder M..Basic principles of membrane technology.Kluwer Academic Publishers,The Netherlands,1996
    [13]Lai J.Y.,Liu M.J.,Lee K.R.Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air[J]..J.Membr.Sci.,1994,86:103-118
    [14]Lin F.C.,Wang D.M.,Lai J.Y..Asymmetric TPX membranes with high gas flux[J].J.Membr.Sci.,1996,110:25-36
    [15]Van de Witte P.,Dijkstra P.J.,Berg J.W.A.,et al.Phase separation processed in polymer solutions in relation to membrane formation[J].J.Membr.Sci.,1996,117:1-31
    [16]俞三传,高从(土比白).浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):36-41
    [17]Frommer M.A.,Lancet D.The mechanism of membrane formation:membrane structures and
    their relation to preparation conditions,in A.K.Londsdale and H.E.Podall(Eds.),Reverse Osmosis Membrane Research,Plenum Press,New York,1972:85-110
    [18]Wijmans J.G,Smolders C.A.Preparation of asymmetric membranes by the phase inversion process,in H.K.Londsdale and M.H.Pinho(Eds.),Synthetic Membranes:Science,Engineering and Applications,Reidel,Dordrecht,The Netherlands,1986:39-56
    [19]Mason E.A.From pig bladders and cracked jars to polysulfones:an historical perspective on membrane transport;J.Membr.Sci.,1991,60:125-145
    [20]Cuperus E.P.,Smolders C.A.Characterization of ultrafiltration membranes.Membrane characteristics and characterization techniques;Adv.Colloid Interface Sci.,1991,34:135-142
    [21]Altena F.W.,Smolders C.A..Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent[J].Macromolecules,1982,15:1491-1497
    [22]Zeman L.,Tkacik G..Thermodynamic analysis of a membrane-formation system water/n-methyl-2-pyrrolidone/polysulfone[J].J.Membr.Sci.,1988,36:119-140
    [23]Flory P.J.,Principles of polymer chemistry.Cornell University Press.New York,1953
    [24]Wood H.,Sourirajan S.The effect of additives,solvent type,and polymer concentration on macromolecule dimensions[J].J.Appl.Polym.Sci.,1991,43:213
    [25]王连军,李恕广,江成璋.PES制膜体系亚层形成机理的研究[J].膜科学与技术,2001,21(1):4-10
    [26]王学松编著.膜分离技术及其应用[M].北京:科学出版社,1994
    [27]Lau W W Y,Guiver M D,Matsuura T.Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems[J].J Membr Sci,1991,59:219-227
    [28]Smolders C.A,Reuvers A J,et al.Microstructures in phase-inversion membranes.(1)Formation of macrovoids[J].JmEMBR Sci.,1992,73:259-272
    [29]Yilmaz L,McHugh A J.Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling[J].J Appl Polym Sci.,1986,31:997-1018
    [30]McHugh A J,Miller D C.The dynamics of diffusion and gel growth during nonsolvent-induced phase inversion of polyethersulfone[J].J Membr Sci,1995,105(1):121-136
    [31]Wang D.,Li K.,Sourirajan S.,et al.Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems[J].J Appl Polym Sci,1993,50(10):1693-1700
    [32]钟银屏,赵长生,欧阳庆,等.聚醚砜四元制膜液体系的相图计算[J].膜科学与技术,1997,17(1):63-68
    [33]Li S.G.,Jiang C.Z.,Zhang Y.Q.The investigation of solution thermodynamics for the polysulfone-DMAC-water system[J].Desalination,1987,62(1-3):79-88
    [34]Altena F W,Smolders C A.Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a nonsolvent[J].Macromolecules,1982,15(6):1491-1497
    [35]俞三传,高从(土比白).聚砜-聚醚砜共混相容性及凝胶特性研究[J].膜科学与技术,1999,19(5:23-26
    [36]Zeman L,Tkacik G.Thermodynamic analysis of a membrane-forming system water/N-methyl-2-pyrrolidone/polyethersulfone[J].J Membr Sci,1988,36(1-3):119-140
    [37]Li Z.S.,Jiang C.Z.Determination of the nonsolvent-polymer Interaction parameterx_(13)in the casting solutions[J].J Membr.Sci.,2000,174:87-96
    [38]Cohen C.,Tanny G.B.,,Prager S.Diffusion-controlled formation of porous structures in ternary polymer systems[J].J Polym Sci:Polym Phys Ed,1979,17:477-489
    [39]Deshmukh S.P.,Li K.Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes[J].J.Membr.Sci.,1998,150:75-85
    [40]Strathmann H.,Kock K.,Amar P.,et al.The formation mechanism of asymmetric membranes[J].Desalination,1975,16:179-192
    [41]Kang Y.S.,Kim H.J.,Kim U.Y..Asymmetric membrane formation via immersion precipitation method.I.Kinetic effect[J].J.Membr.Sci.,1991,60:219-232
    [42]Wang D.M.,F.C.Lin,J.C.Chiang,J.Y.Lai,Control of the porosity of asymmetric TPX membranes[J],J.Membr.Sci.,1998,141:1-12
    [43]Zheng Q.Z.,Wang P.,Yang Y.N.Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process[J].J.Membr.Sci.,2006,279:230-237
    [44]王志,王世昌.制膜过程中铸膜液流体力学不稳定性与超薄膜的适宜厚度[J].化工学报,1994,45(1):1-9
    [45]Chandrasekber S..Hydrodynamic and hydromagnetic stability.London:Oxford University Press,1961:1-7
    [46]林家翘,西格尔 L.A.赵国英等译自然科学中确定性问题的应用教学.北京:科学出版社,1986:581-601
    [47]易家训,章克本等译.流体力学.北京:高等教育出版社,1982:327-401
    [48]王湛.膜分离技术基础[M].北京:化学工业出版社,2000
    [49]税永红.超滤在印染废水处理中的应用[J].成都纺织高等专科学校学报.2004,21(3):15-17
    [50]郑辉东,董声雄.中空纤维超滤膜回收 PVA 废水研究[J].福建化工,2004,(1):1-3
    [51]Ribeim R.M.,Bergamasco R.,Gimenes M.L..Membrane synthesis study for color removal of a textile effluent[J].Desalination,2002,145:61-63
    [52]Porter J.J.Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes[J].J.Membr.Sci.,1998,151:45-53
    [53]Schoeberl P.,Brik M.,Braun R.,et al.Treatment and recycling of textile wastewater-case study and developm ent of a recycling concept[J].Desalination,2004,171:173-183
    [54]冯冰凌,叶菊招,郎雪梅.聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用[J].工业水处理,1998,18(4):16-18
    [55]程刚,蒋涛.水溶性壳聚糖及其在印染水处理中的应用[J].陕西纺织,2000,(2):16-17
    [56]程刚,崔双科.水溶性壳聚糖的制备及其在工业水处理中的应用[J].陕西化工,2000,29(2):29-32
    [57]袁毅桦,赖兴华.壳聚糖对印染废水的絮凝作用和脱色效果[J].应用化学,2000,17(2):217-218
    [58]喻胜飞,叶菊招,郎雪梅等.壳聚糖活性炭共混超滤膜的研制[J].水处理技术,1999,25(5):255-258
    [59]鲍廷镛,方孟伟等.反渗透法处理锦纶染色废水[J].水处理技术,1981,7(4):19-21
    [60]Porter J.J.,Brandon C.Zero discharge as exemplified by textile dyeing and finishing[J].Chemtech.,1976,(6):402-407
    [61]彭晓文,杨迎新.膜分离技术在印染废水处理中的应用[J].江西化工,2003,(1):21-23
    [62]蔡惠如,高从.纳滤技术治理染料废水的尝试[J].环境工程,2002,20(1):24-25
    [63]余跃,冯晖等.纳滤膜处理印染废水的研究[J].化工时刊,2004,18(9):26-29
    [64]Chakraborty S.,De S.,Basu J.K.,et al.Treatment of a textile effluent:application of a combination method involving adsorption and nanofiltration[J].Desalination,2005,174(1):73-85
    [65]Voigt I.,Stahn M.,Wohner S..Integrated cleaning of coloured wastewater by ceramic NF Membranes[J].Separation and purification technology,2001,25(1-3):509-512
    [66]王丛厚,吴鸣.国外膜工业发展概况[J].膜科学与技术,2002,22(1):65-72
    [67]Ho W.,Sirkar k.K.Membrane Handbook[M].NewYork:Van Nostrand Reinhold,1992
    [68]刘茉娥,吴礼光.朱常乐.膜分离技术[M].北京:化学工业出版社,1998
    [69]杜润红,赵家森.一种新的膜材料**聚苯硫醚[J].膜科学与技术,2002,22(3):56-59
    [70]张亨.中空纤维膜研究进展.化工新型材料,2003,31(4):4-8
    [71]郑领英.膜分离科学与技术[J].高分子通报,1993(3):134-137
    [72]江成璋,徐仁贤等.芳香聚酰胺中空纤维素膜的研制海水淡化,1980,(1):59-64
    [73]Cabasso I.Robert K.Q.,Smith J.K.,etal.Porosity and Pore Size Determination in Polysulfone Hollow Fibers[J].Appl.Polym.Sci.,1977,21:1883-1900
    [74]潘巧明,何昌生.工业化生产聚砜中空纤维超滤膜工艺条件的研究[J].水处理技术,1998,24 (6):329-332
    [75]俞三传,金可勇等.高性能聚砜支撑膜的研制[J].膜科学与技术,1999,19(6):45-49
    [76]刘桂香,黄向阳等.干湿法纺制聚砜中空纤维N2-H2分离膜──料液及膜厚的影响[J].膜科学与技术,1996,16(1):33-38
    [77]Khayet M.,Feng C.Y.,Khulbe K.C.,Matsuura T.Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultra filtration[J].Polymer.2002,43:3879-3890
    [78]Young T.H.,Cheng L.P.,Lin D.J.,Mechanisms of PVDF membrane formation by immersion-precipitation in soft(1-octanol)and harsh(water)nonsolvents.Polymer.1999,40:5315-5323
    [79]吕晓龙.聚偏氟乙烯中空纤维微孔膜及其产业应用[M].天津:南开大学出版社,1998
    [80]王庐岩,钱英,刘淑秀,叶晓.聚偏氟乙烯分离膜改性研究进展[J].膜科学与技术,2002,22(5):52-57
    [81]黎雁,吕晓龙.聚偏氟乙烯多孔膜的改性研究进展[J].天津工业大学学报.2001,20(5):74-78
    [82]包艳辉,朱宝库,陈炜等.聚偏氟乙烯微孔膜的亲水化改性及功能化研究进展[J].功能高分子学报.2003,16(2):269-274
    [83]陈炜,朱宝库,徐又一.聚偏氟乙烯微孔膜的改性和应用研究进展[J].功能材料,2003,34(1):13-16
    [84]陆晓峰,汪庚华,梁国明等.聚偏氯乙烯超滤膜的辐照接枝改性研究[J].膜科学与技术,1998,18(6):54-57
    [85]尹秀丽,邓桦,杨溥臣.PVDF/PS 共混超滤膜的研究[J].水处理技术,1997,23(2):131-134
    [86]董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性[J].福州大学学报:自然科学版,1998,26(6):119-122
    [87]Yin X.L.,Cheng H.B.,Wang X.,Yao Y.X.,Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF[J],J.Membr.Sci.,1998,146:179-184
    [88]Yang M.C.,Liu T.Y.The permeation of polyacrylonitrile/polyvinylidine fluoride blend membranes[J].J.Membr.Sci.,226:119-130
    [89]于志辉,钱英.聚偏氟乙烯聚丙烯腈共混超滤膜的研究[J].膜科学与技术,2000(20):10-15
    [90]王湛,李亚文.PVDF/CA 共混超滤膜制备及其特性的研究[J].膜科学与技术,2002(22):4-7
    [91]孙漓青,钱英.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究[J].膜科学与技术,2001(21):1-5
    [92]Ochoa N.A,Masuelli M.,Marchese J..Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J].J.Membr.Sci.,2003,226:203-211
    [93]Moussaif N.,Groeninckx G..Nanocomposites based on layered silicate and miscible PVDF/PMMA blends:melt preparation,nanophase morphology and rheological behaviour[J].Polymer,2003,44:7899-7906
    [94]齐文玉.PES/PVDF 共混中空纤维膜的研制[J].纺织科学研究.2001,1:41-48
    [95]于品早.CTA/PVDF 共混中空纤维纳滤膜的研制[J].水处理技术.2005,31(12):6-10
    [96]Mascia L,Has him K.Compatibilization of PVDF/nylon6 blends by carboxylic acid functionalization and metal salts formation[J].J.Appl..Polym Sci,1997,66(10):1911-1923
    [97]龚琦,杜绍龙.小截留分子量共混超滤膜的研究(Ⅲ)──PVDF 与 PVAC 共混超滤膜的后处理及化学稳定性比较[J].福州大学学报:自然科学版.2002(30):887.890
    [98]负延滨,李继定,马润宇.PVDF/PS 共混微孔膜的制备.膜科学与技术.2005,25(5):10-15
    [99]杜军,白晓渝,陶长元,秦操.PVDF-PANI 共混膜气体分离性能的研究[J].膜科学与技术.2002,22(1):21-23
    [100]江冠金,陈翠仙,李继定.阳离子季铵型表面活性剂对 PVDF/HEMA 共混微滤膜的成膜性能研究.2006,26(3):46-50
    [101]方少明,王明花,张宏忠等.两亲聚合物改性聚偏氟乙烯膜及其渗透性能[J].华东理工大学学报(自然科学版),2006,32(2):193-196
    [102]陈健波.PVDF/PVC/PMMA 共混膜的制备及其在水处中的应用.博士论文,东华大学,2006
    [103]Noureddin Moussaif.Compatibilization of immiscible polymer blends(PC/PVDF)by the addition of a third polymer(PMMA)analysis of phase morphology and mechanical properties[J].Polymer 40(1999):3919-3932
    [104]Peng Y.,Wu P.Y.A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process[J].Polymer,2004,45:5295-5299
    [105]Lin D.J.,Chang C.L.,Huang,F.M.Cheng L.P.Effect of salt additive on the formation of micro porous poly(vinylidene fluoride)membranes by phase inversion from LiCIO_4/Water/DMF/PVDF system[J].Polymer,2003,44:413-422
    [106]Rajendran S.,Mahendran O.Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes[J].Materuaks Chemistry and Physics.,2002,74:52-57
    [107]陆茵.添加剂对 PVDF 相转化过程及膜孔结构的影响.高分子学报.2002,5:656-661
    [108]Kim J.H.,Lee K.H.,Effect of PEG additive on membrane formation by phase inversion,J.Membr.Sci.,1998,138:153-163
    [109]Jung B.,Effect of molecular weight of polymeric additives on formation,permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes.J.Membr.Sci.,2004,163:45-57
    [110]负延滨,李继定,陈翠仙.PVPK30 和 Tween80 对中空纤维超滤膜结构和性能的影响[J].水处理技术,2006,32(1):14-17
    [111]Yan L.,Li Y.S.Preparation of poly(vinylidene fluoride)(pvdf)ultra filtration membrane modified by nano-sized alumina(Al_2 O_3)and its antifouling research[J].Polymer,2005:7701-7706
    [112]Moaddeb M.,Koros W.J.Occlusion of pores of polymeric membranes with colloidal silica[J].J.Membr.Sci.,1999,136:273-277
    [113]Bottino A.Camera-Roda,G.,Capannelli G.,et al.The formation of micro porous polyvinylidene difluoride membranes by phase separation[J].J.Membr.Sci.,1991,57:1-20
    [114]李健生.TiO2/PVDF 复合中空纤维膜的制备和表征.高分子学报[J].2004(5):709-712
    [115]曲云,张裕卿.具有耐污染性的 SiO_2 聚砜共混膜的研究.工业水处理[J].2006,26(7):26-29
    [116]Bottino A.,Capannelli G.,Comite A..Preparation and characterization of novel porous PVDF-ZrO_2 composite membranes.Desalination.2002,146:35-40
    [117]Doyen W.,Adriansens W.,Molenberghs B.,Leysen R.A comparison between polysulfone,zirconia and organo-mineral membranes for use in ultra filtration[J].J.Memb.Sci.,1996,113:247-258
    [118]Gene I.,Kuypers S.,Leysen R.Effect of the addition of ZrO_2 to polysulfone based UF membranes[J].J.Memb.Sci.,1996,113:343-350
    [119]张裕卿,丁健.Al_2 O_3 的添加对聚砜膜性能的影响[J].化学工程,2000,28(5):42-44
    [120]姜云鹏,王榕树.纳米 SiO_2──聚乙烯醇复合超滤膜的制备有应用[J].工业水处理,2002,22(5):12-14
    [121]刘超翔,黄霞,文湘华等.一体式膜─生物反应器处理毛染废水的中试研究.给水排水,2002,28(2):56-59
    [122]杨琦,文湘华,钱易等.分置式膜生物反应器处理染料废水研究[J].给水排水,2004,30(10):55-59
    [123]Adham S.,et al.Feasibility of the membrane bioreactors for water reclamation[J].Wat.Sci.,Tech.,2001,43:203-209
    [124]Chaize S.Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach[J].Wat.Sci.Tech.,1991,23(7-9):1591-1600
    [125]彭跃莲,刘忠洲,膜生物反应器在废水处理中的应用[J].水处理技术,1999,25(2):63-69
    [126]Bailey A.D.,Hansfort G.S.,Dold P.L.The use of CROSS-flow micro filtration to enhance the performance of an activated sludge reactor[J].Water Research,1994,28:297-301
    [127]Manem J.Membrance bioreactors for waste water treatment and drinking water production.Proceeding S of the 3nd world congress of the world formation of engineering organizations,Oct 10-12,1993,Beijing,China,907-914
    [128]Muller I B,Stoughamber A H.Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration.Water Research,1995,29:1179-1189
    [129]何毅,胡永红,柴本忠.膜生物反应器废水处理组合工艺的研究进展[J].工业水处理,2001,21(7):1-5
    [130]Cicek N,Winna H,Suidan M T,et al.Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds[I].Water Research,1998,32:1553-1563
    [131]Bloeher C,Nomnha M.Recycling of spent process water in the food industry by an integrated process of biological treatment and membrane separation[J].Desalination,2002,144:143-150
    [132]Xing C.H.,Tardieu E.,Qian Y.Ultra filtration membrane bioreactor for urban wastewater reclamation[J].J.Memb.Sci.,2000,177(2):73-82
    [133]徐又一,石灯水,王剑鸣等.环保领域中聚丙烯中空纤维膜-生物反应器的研究[J].膜科学与技术,2000,20(2):26-30
    [134]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社.2004.124-129
    [135]郑祥,刘俊新.膜生物反应器的技术经济分析[J].给水排水,2002,28(3):105-108
    [136]张军,王宝贞.MVBR 污水处理与回用工艺的经济分析和评价[J].给水排水,2001,27(6):9-11
    [137]程钟.膜生物反应器在废水处理中的研究及应用[J].环境研究与监测,2006,19(3):53-55
    [138]许振良.污水处理膜分离技术的研究进展[J].净水技术,2000,18(3):3-6
    [1391岑运华.日本水综合再生利用系统90计划的进展概要[J].环境科学研究,1990,3(2):50-55
    [140]Kimura S.Japan's aqua renaissance'90 protect.Water Scientific Technology,1991,23:1573-1592
    [141]李红岩,高盂春,杨敏等.组合式膜生物反应器处理高浓度氨氮废水[J].环境科学,2002,23(5):62-66
    [142]白晓慧,陈英旭.一体式膜生物反应器处理医药化工废水的试验[J].环境污染与防治.2000,22(6):19-21
    [1431金漫彤,陈晨宇.中空纤维膜生物反应器处理造纸废水[J].环境污染与防治,2001,23(3):126-127
    [144]刘锐,黄霞.一体式膜─生物反应器处理洗浴污水[J].中国给水排水,2001,17(1):5-8
    [145]杨磊,王栋.超滤膜生物反应器处理生活污水的试验研究[J].膜科学与技术,1999,19(3): 29-31
    [146]邬向东,雍文斌,李力.膜生物反应器在石化污水处理与回用中的应用[J].中国膜工业信息,2005,109(3):11-19
    [147]冯久鸿.高效膜生物反应器处理采油污水试验研究[J].石油规划设计,2003,14(3):14-16
    [148]郑祥,朱小龙,樊耀波.膜生物反应器处理毛纺废水中的中试研究[J].环境科学,2001,22(4):91-94
    [149]刘超翔,黄霞,文湘华等.一体式膜─生物反应器处理毛染废水的中试研究[J].给水排水,2002,28(2):56-59
    [150]王连军,蔡敏敏,荆晶等.无机膜─生物反应器处理啤酒废水及其膜清洗的试验研究[J].工业水处理.2000,20(2):32-34
    [151]许宁,李志富,冯文华.膜生物反应器处理医院污水的应用研究[J].泰山医学院学报,2003,24(3):216-219
    [152]高以烜,赵玉琴等.聚氯乙烯超滤膜以及工业化[J].北京工业大学学报,1992,18(2):80-87
    [153]钱伯章.世界热塑性弹性体的现状和发展趋势[J],世界橡胶工业,2005,7:40.46.
    [154]刘程,张万福等.表面活性剂应用手册(第二版)[M].北京:化学工业出版社,1995
    [155]董理,刘光烨.热塑性聚氨酯弹性体共混改性材料研究进展[J].塑料,1999,28(1):23·28
    [156]海普本等.聚氨酯弹性体[M].沈阳:辽宁科学技术出版社,1985
    [157]山西省化工研究所编.聚氨酯弹性体.北京:化学工业出版社,1985
    [158]Lu Q.W.,Christopher W.,Macosko,Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane(TPU),Polymer,2004,45,1981-1991
    [159]Shadi H.,Ajili,N.G.,Ebrahimi,M.T.,Study on thermoplastic polyurethane/polypmpylene(TPU/PP)blend as a blood bag material[J].J.Appl.Polym.Sci.,2003,89,2496-2501
    [160]Puskas,J.E.,Chen Y.Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement[J].Biomacromolecules,2004,5,1141-1154
    [161]徐进礼,董理,刘波等.PVC/TPU 合金制备及性能研究[J].现代塑料加工应用,1998,10(6):10-14
    [162]Alicja,Koscielecka.European Polymer Journal.1993,129:23-25
    [163]Eur.Pat 116456
    [164]杨建军,李增滋.TPU/ABS 塑料合金的研制[J].塑料工业.1995(4):13-16
    [165]Plastics Technology,1987,133(8):428
    [166]耿同谋,李欣欣,李丽敏等.聚氨酯改性环氧及其应用[J].化工新型材料,1998,,5:28-31
    [167]Chen,J.N.;Zhang,J.E,Zhu T.Y.;et al.Blends of thermoplastic polyurethane and polyether-polyimide:Preparation and properties[J],Polymer,2000,42(4):1493-1500
    [168]Takeichi,Tsutomu,Sue Fuji,et al.Novel poly(urethane-amide)s from polyurethane prepolymer and reactive polyamide,Preparation and properties[J].Polymer,2002,36:455-460.
    [169]罗欣,苏玉峰,武德珍等.TPU/EPDM 共混体系相态与力学性能的研究[J].中国塑料,2003,17(2):39-42.
    [170]Kutty S.K.N.,Nan do G.B.PET 短纤维─热塑性聚氨酯复合材料的机械性能[J].橡胶参考资料,1994,24(6):38-43
    [171]Kutty S K.N..Stress Relaxation Behavior of Short Kelvlar Fiber-Reinforced Thermoplastic Polyurethane[J].Journal of Applied Polymer Science,1991,42:1835-1844
    [172]贺建芸,张建文,程源.短纤维-热塑性聚氨酯弹性体注射充模过程的研究进展[J].合成橡胶工业,1998,21(5):310
    [173]贺建芸,刘亚康,.SF-TPU复合材料线热膨胀性能研究[J]北京化工大学学报,2000,22(4):59
    [174]贺建芸,张立群,程源,玻璃短纤维-热塑性聚氨酯复合材料的性能研究[J].橡胶工业,199,946(1):3
    [175]塑料工业手册─聚氨酯分册[M]北京:化学工业出版社,1999:375-386
    [176]叶成兵.热塑性聚氨酯与聚氯乙烯共混研究.学位论文.南京工业大学,2004
    [177]Lee K.F.,Hon H.W.,Reddy R.An overview of the sphinx speech recognition system[J].IEEE Trans On Acoustics,Speech Signal Processing,1990,38(1):35-44
    [178]Chen S.Building Probabilistic models for natural language[D].Cambridge:Harvard University,1996
    [179]Bahl L.The IBM large vocabulary continuous speech recognition system for the ARPA NAB news task[A].Proc ARPA Workshop on Spoken Language Technology[C].Austin,TX,1995
    [180]Zhang H.M.,Xiao J.N.Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreactor[J].Process Biochem.,2006,23(4):87-95
    [181]洪俊明,洪华生.A/O膜生物反应器组合工艺处理活性染料废水的实验研究[J].厦门大学学报,2005,44(3):441-444
    [182]胡允良.污泥上清液的有机物浓度及其生物降解性[J].上海环境科学,1998,17(8):12-15
    [183]布多,张颖,顾平.氯化铁絮凝法减轻膜污染[J].城市环境与城市生活.2003,16(6):46-48
    [184]Carroll T.,Gray S.R.The fouling of micro filtration membranes by NOM after coagulation treatment[J].Wat.Res.,2000,34:2861-2868
    [185]铝絮凝剂对活性污泥中微生物活性影响研究[J].环境工程,2000,18(5):28-29,38
    [186]叶敏,贾建洪,盛卫坚.聚硅酸硫酸铝制备及印染废水处理应用[J].化工生产与技术,2007,14(2):38-39,47
    [1]王国全,王秀芬.聚合物改性[M].北京:中国轻工业出版社,2000
    [2]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [3]江明.高分子合金的物理化学[M].成都:四川教育出版社,1988.
    [4]Meier D J.A theory of the interface in block copolymers[J].Polym,Prepr,1974,15:171-175
    [5]Bonner D.C.Vapor-liquid equilibria in concentrated polymer solutions[J].J Macromol Sci-Revs Macromol Chem,1975,C 13(2):263-319
    [6]韩哲文.高分子科学教程[M],上海:华东理工出版社,2001
    [7]赵振河.高分子化学和物理[M],北京:中国纺织出版社.2003
    [8]吴培熙,张留城.聚合物共混改性[M],北京:中国轻工业出版社.1996
    [9]Jaisankar S.N.,Lakshminarayana Y.,Ganga R.Compatibity of poly(vinyl chloridevinyl acetate)/polyester-based polyurethane blend[J].Polymer International,1997,43:368-372
    [10]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社.1982,65-66
    [11]丁马太,余乃梅等.PVC/PAN共混超滤膜的研究I:PVC与PAN共混相容性对共混超滤膜结构和性能的影响[J].水处理技术.1991,17(4):211-215
    [12]邓云祥,刘振兴,冯开才等.高分子化学、物理和应用基础[M].北京:高等教育出版社.1997
    [13]张向宇.实用化学手册[M].北京:国防工业出版社,1986
    [14]安树林.膜科学技术实用教程[M]北京:化学工业出版社.2005
    [15]Akhtar S.Coatings reduce the fouling of micro filtration membranes[J].J.Menbr Sci.,1995, 107:209-218
    [16]Schneier B.Polymer compatibility[J].J Appl Polym Sci.1973,17:3175-3188
    [17]王庐岩.聚偏氟乙烯共混相容性及成膜机理研究.北京工业大学硕士论文.2002
    [18]Olabisi O.,Robeson L M.,Shaw M.T.编,项尚田,沈剑涵,焦扬声等译.聚合物.聚合物溶混性[M].北京:化学工业出版社,1987
    [19]Kuleznev V.N.,Melnikova O.L.,Klykova V.D.Dependence of modulus and viscosity upon composition for mixtures of polymers-Effects of phase composition and properties of phases[J].Eur.Polym.,1978,14(6):455-461
    [20]Singh Y.P.Compatability studies on solutions of polymer blends by viscometric and ultrasonic techniques.Eru.Polym.[J].1983,19(6):535-541
    [21]Zheng O.Z.,Wang P,Yang Y.A.Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process[J].J.Membr.Sci.,2006,279:230-237
    [22]Kulshreshtha,Singh.Viscometric Determination of Compatibility in PVC/ABS Polyblends[J].Eur.Polym.,1988,24:191-194
    [23]Singh Y.R.Compatibility Studies on Solutions of Polymer Blends by Viscometric and Ultrasonic Techniques.Eur.Polym[J].1973,19:535-541
    [24]王湛,吕亚文,王淑梅.PVDF/CA共混超滤膜制备及其特性的研究[J].膜科学与技术,2002,22(6):4-8
    [25]Boccaccio T.,Bottino A.,Capannelli G,Piaggio P.,Characterization of PVDF membranes by vibrational spectroscopy,J.Membr.Sci.,2002,210:315-329
    [1]Li J.X.,Sanderson R.D.,Jacobs E.P.Non-invasive in situ visualisation of membrane fouling and cleaning processes in microfiltration by ultrasonic signal reflection[J].Water s.A.,2002,28:78-85
    [2]Stropnik C.,et al.Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,J Appl.Polym.,1996,61:1821-1830
    [3]Barton B.F,et al.Observations on the dymanics of novsolvent induced phase inversion[J].J.Appl.Polymer.Sci.Part B:Polymer physics.,1997,35:569-585
    [4]Smolders C A.,et al.Microstructures in phase-inversion membranes.Partl Foarmation of macrovoids[J].J.Membr.Sci.,1992,73(2-3):259-275
    [5]李战胜,李恕广等.浸入凝胶法聚合物膜形成机理的研究现状[J].膜科学与技术,2002,22(2):29-35
    [6]Zeman L,Fraser T.Formation of air-casting cellulose acetate membrane.Part Ⅰ.Study of macrovoid formation[J].J.Membr.Sci.,1993,84:93-106
    [7]Zeman L,Fraser T.Formation of air-casting cellulose acetate membrane.Part Ⅱ.Kinetics of demixing and macrovoid growth[J].J Membr Sci,1994,87:267-279
    [8]Kesting R.E.Phase inversion membranes[J].ACS SympSer.,1985,269:131-152
    [9]Van de Witte P.,Dijkstra P.J.,Berg J.W.A.,et al.Phase separation processes in polymer solutions in relation to membrane formation[J].J Membr Sci.,1996,11:1-31
    [10]陈立新,沈新元.相转换法的湿法成膜机理[J].膜科学与技术,1997,17(3):1-6,18
    [11]俞三传,高从(土比白).浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):36-41
    [12]Han M.J.Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes[J].Desalination,1999,121:31-39
    [13]秦建军,江成璋.聚砜制膜液体系的相图研究[J].膜科学与技术,1990,10(3),13-18
    [14]丁马太,余乃梅,何旭敏等.PVC/PAN共混超滤膜的研究I.PVC与PAN相容性对共混超滤膜结构和性能的影[J].水处理技术,1991,17(4):211-218
    [15]Wang D.M.,Lin F.C.Ciang J.C.,Lai J.Y.Control of the porosity of asymmetric TPX membranes[J].J.Membr.Sci.,1998,141:1-12
    [16]Han M.J.Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes[J].Desalination,1999,121:3-39
    [17]Yao C.w.,Burford R.P.,et al.,Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides[J].J.Membr.Sci.,1988,38:113-125
    [18]沈新元等.聚丙烯腈的原液组成与其可纺性和膜性能的关系[J].水处理技术,1988,14(6):319-325
    [19]Lan W.Y.W.,Guiver M.D.,Matsuura T.Phase separation in polysulfone/solvent/water systems[J].J.Membr.Sci.,1991,19:219-227
    [20]Swinyard B.T.,Bare J.A.Phase separation in non-solvent/dimethylformamide/polyethersulfone and non-solvent/dimethylformamide/polysulfone systems[J].Brit.Polym.J.,1988,20:317-321
    [21]Kai M.,Ishii K,Tsugays H.,et al.Development in polyether sulfone ultrafiltration membranes In:Soufirojon S.M.ed.Reverse Osmosis and Ultrafiltration.ACS Symposium Series 281,Washington D C:1985,21-33
    [22]高以烜,叶凌碧.膜分离技术基础.北京:科学出版社,1989
    [23]Altena F W,Smolders C A.Calculation of liquid─liquid phase separation in a ternary system of a polymer in a mixture of a nonsolvent[J].Macromolecules,1982,15:1491-1497
    [24]Yoshida k.Structure feature and membrane property of microporous hollow fibers.Kobunshi,1988,37:142-150
    [25]Frommer M.A,Lancet D.The mechanism of membrane formation:Membrane structure and their relation to preparation conditions.Polym.Preprins.,1971,12:245-257
    [26]Zhu Z.X.Discussion on the formation mechanism of surface pores in Ro U F and M F membranes repared by phase inversion process[J].Colloid and Interface Sci,1991,147:307-309
    [1]丁马太,余乃梅,何旭敏等.PVC/PAN共混超滤膜的研究:Ⅱ.铸膜液组成对膜结构与性能的影响[J].水处理技术,1991,17(5):295-299
    [2]BottinoA.,Camera R.G,Capannelli G,Munari S.The formation of microporous polyvinyldone difluoride membranes by phase separation[J]J.Membr.Sci.,1991,57:1-20
    [3]Guo Q.P.Completely miscible ternary blends──Ⅲ.Poly(Vinylidenefluoride)-poly(methyl methacrylate)-poly(vinyl acetate),Eur Polym J.,1996,32:1409-1413
    [4]Nakagawa,k,Isahida,Y.Annealing effects in poly(vinylidene fluoride)as revealed by specific volume measurements.J.Polym.Sci.,Polym.Phys.Edn.,1973,11:2153-2171
    [5]Bumsuk J.Effect of molecular weight of polymeric additives on formation,permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes.[J].Membr.Sci.,2004,163:45-57
    [6]Zheng Q.Z.,Wang P.,Yang Y.N.Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process[J].Membr.Sci.,2006,279:230-237
    [7]Deshmukh S.P.,Li K Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes.Membr.Sci[J].1998,150:75-85
    [8]Strathmann H.,Kock K,Amar P.,et al.The formation mechanism of asymmetric membranes[J].Desalination,1975,16:179-203
    [9]Kim H.J.,Tyagi R.K,Fouda A.E,et al.The kinetic study for asymmetric membrane formation via phase-inversion process[J].J.Appl.Polym.Sci.,1996,62:621-629
    [10]Sourirajan S.,Matsuura T..Reverse osmosis/uhrafihration process principles[IM].Ottawa:NRCC,1985.
    [11]Wienk I.M.,Boom R.M.,Beerlage M.A.M.,Bulte A.M.W.,Smolders C.A.,Strathmann H.Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers,J.Membr.Sci.,1996,113:361-371
    [12]Han MJ.,Nam S.T.Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane,J.Membr.,2002,202::55-61
    [13]董慧茹.仪器分析[M],北京:化学工业出版社,2000
    [14]Bormashenko Y.Vibrational spectrum of PVDF and its interpretation[J].Polymer Testing,2004,23:792-796
    [15]任萍,张华,张桂芳.聚偏氟乙烯熔纺纤维的晶相研究[J].天津工业大学学报,2003,22(4):8-10
    [16]Laroche G,Marois Y,Guidoin R.Polyvinylidene fluorid(PVDF)as a biomaterial:From polymeric raw material to monofilament vascular suture[J].Journal of Biomedical Materials Research,1995,29,:1525-1536
    [17]Kesting R.E.,Synthetic Polymeric Membranes:A Structural Perspective.2nd ed.,Wiley,New York,1985.p.348
    [18]Cheng L.P,Lin D.J.,Shih C.H.,Dwan A.W.,Gryte C.C.PVDF membrane formation by diffusion-induced phase separation-morphology prediction based on phase behavior and mass transfer modeling.J.Polym Sci B:Polym Phys.,1999,37:2079-2092
    [19]Lu Y,Yu S.L.Preparation of poly(vinylidene fluoride)(pvdf)ultrafiltration membrane modified by nano-sized alumina(Al_2O_3)and its antifouling research[J].Polymer.,2005,46:7701-7706
    [20]陆茵,陈欢林.添加剂对PVDF相转化过程及膜孔结构的影响[J].高分子学报,2002,5:656-661
    [21]武利顺,孙俊芬,王庆瑞.凝固条件对聚偏氟乙烯膜结构的影响[J].纺织学报,2004,12:12-14
    [22]Smolder C.A.,Reuver A.J.,Boom R.M.,Wienk I.M.,Microstructures in phase-inversion membranes.Part l.Formation of macrovoids,Membr Sci.J.,1992,73,259-275
    [23]Kim J.H.,Lee K.H.,Effect of PEG additive on membrane formation by phase inversion,J.Membr.Sci.,1998,138:153-163
    [24]杨亚楠,李良飞,杨海东,王鹏.PSF/PEG共混超滤膜的性能研究[J].长春工业大学学报:自然科学版,2006,27(4):298-301
    [25]王艳丽,杨虎,许振良.凝胶剂对PVA-PEG-H20体系凝胶动力学及膜性能的影响[J].华东理工大学学报:自然科学版.2006,32(10):1169-1172
    [26]负延滨,李继定,陈翠仙.聚乙二醇600和草酸对中空纤维超滤膜结构和性能的影响[J].水处理技术,2006,32(2):34-37
    [27]孙俊芬,王庆瑞.影响聚醚砜超滤膜性能的因素[J].水处理技术,2003,29(6):323-326
    [28]孙漓青.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究[J].膜科学与技术, 2001,21(2):2-5
    [29]Wang D.,Li k,Sourirajan S.,et al.Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems[J].J Appl Polym Sci,1993,50(10):1693-1700.
    [30]Lau W W Y,Guiver M D,Matsuura T.Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems[J].J Membr.Sci.,1991,59:219-227
    [31](?)延滨,李继定,陈翠仙.PVPK30和Tween80对中空纤维超滤膜结构和性能的影响[J].水处理技术,2006,32(1):14-17
    [32]许振良.污水处理膜分离处理的研究进展[J].净水技术,2000,18(3):3-6
    [33]Genne I.,Kuypers S,Leysen R.Effect of the addition of ZrO_2 to polysulfone based UF membranes.J Membr Sci 1996;113:343-350.
    [34]Aerts P.,Greenberg A.R.,Leysen R.,Krantz W.B.,Reinsch V.,E Jacobs A.The influence of filler concentration on the compaction and filtration properties of Zirfon-composite ultrafiltration membranes.Sep Purif Technol 2001;22/23:663-669
    [35]Bottino A.,Capannelli G.,D'Asti V,Piaggio P.Preparation and properties of novel organic-inorganic porous membranes.Sep Purif Technol 2001;22/23:269-275
    [36]Bottino A.,Capannelli G.,Comite A.Preparation and characterization of novel porous PVDF-ZrO2 composite membranes.Desalination 2002;146:35-40
    [37]Lin D.J.,Chang C.L.,Huang F.M.,Cheng L.P.Effect of salt additive on the formation of microporous poly(vinylidene fluoride)membranes by phase inversion from LiClO_4/water/DVDF system.Polymer 2003;44:413-422
    [38]梁袆,李健生,孙秀云,王连军.纳米r-Al2O3/PVDF中空纤维膜的结构研究[J].水处理技术,2004,30(4):199-201
    [1]Marcel M.Basic principles of membrane technology.Tsinghua University Press,1999
    [2]Kim J.H.,Lee K.H.Effect of PEG additive on membrane formation by phase inversion[J].J.Membr.Sci.,1998,138:153-163
    [3]Young T.H.,Chen L.W.Roles of bimolecular interaction and relative diffusion rate in membrane structure control[J].J.Membr Sci.,1993,83:153-166
    [4]Wijmans J.G.The mechanism of formation of microporos of skinned membranes produced by immersion precipitation[J].J Membr Sci.,1983,14:263-274
    [5]Room R.M.,Wienk I.M.,van den Boomgaard T.Microstructure in phase inversion membranes.Part Ⅱ The role of a polymeric additive[J].J Membr Sci.,1992,73:277-292
    [6]Molders C.A.,Reuvers A.J.Microstmctures in phase inversion membranes.Part l Fromation of macrovoids[J].J Membr Sci.,1992,73:259-276
    [7]Zhang H.,Lau W.W.Y,Sourirajian S..Factors influencing the production of PES microfiltration membrane by immersion phase inversion process[J].Separation Science and Technology,1995,30(1):33-52
    [8]Radovanovic P.,Thiel S.W,Hwang S.T Formation of asymmetric polysulfone membranes by immersion precipitation.(l)Modelling mass transport during gelation[J].J.Membr.Sci.,1992,65:213-229
    [9]Radovanovic P.,Thiel S.W,Hwang S.T.Formation of asymmetric polysulfone membranes by immersion precipitation.(Ⅱ)The effect of casting solution and gelation bath composition on membrane structure and skin formation[J].J.Membr.Sci.1992,65:231-246
    [10]Wijmans J.G.,Cmiller D.The dynamics of diffusion and gel growth during nonsolvent-induced phase inversion of polyethersulfone[J].J.Membr.Sci.1995,105:121-136
    [11]Yong T.H.,Chen L.W.Pore formation mechanism of membranes from phase inversion process[J].Desalination,1995,103:233-247
    [12]Bottino A.,Camera-Roda G.,Capannelli G.,Munari S..The formation of microporous polyvinylidene difluoride membranes by phase inversion[J].J.Membr.Sci.,1991,57:1-20
    [13]Wijmans J.G.,Kant J.,Mulder M.H.V.,Smolders C.A.Preparation of asymmetric Loeb-Sourirajan membranes[J].Polymer,1985,26:1539-1545
    [14]Carman P.C.How of gases through porous medium,Chapters 1 and 3,Butterwords,London,1956
    [15]Tsay C.v.,S McHugh AJ.Mass trasfer modling of asymmetric membrane formation by phase inversion[J].J.Polym.Sci.,Part B:Polym.Phys.,1990,28:1327-1365
    [16]Lloyd D.R.,Kinzer K.E.,et al.Microporous membrane formation via thermally induced phase separation.I.Solid-liquid phase seperation.J.Membrane Sci.,1990,52:239-261
    [17]Deshmukh S.P.,LiK.Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes.Membr.Sci[J].1998,150:75-85
    [18]Vandeweerdt P.,Berghmans H.,et al.Temperature-conceration behavior of solutions of polydisperse atactic poly(methylmethacylate)and its influence on the formation of amorphous,microphous,microporous membranes.Macromolecules,1991,24:3547-3552
    [19]刘永建,沈新元.纺丝工艺与PAN/CA中空纤维超滤膜性能的关系[J].膜科学与技术,1998,18(4):42-45
    [1]陈萍华.N型微孔滤膜化学稳定性的定量测试-溶剂浸泡失重测定方法的研究[J].膜科学与技术,1983,3(3):21-25
    [2]Roesink H.D.K,Microfiltration,Membrane Development and Module Design.Ph.D Thesis,University of Twente,1989
    [3]Roesink H.D.K,Beerlage M.A.M.,Potman W.,et al.Characterization of new membrane materials by means of fouling experiments adsorption of BSA on polyetherimide-poly(vinyl pyrrolidone)membranes[J],Colloids Surf.1991,55:231-243
    [4]Xu Z.L.,Chung T.S.,Huang Y.Effect of poly(vinyl pyrrolidone)molecular weights on morphology,oil/water separation,mechanical and thermal properties of polyetherimide/poly(vinyl pyrrolidone)hollow fiber membranes[J],J.Appl.Polym.Sci.,1999,74:2220-2233
    [5]Qin J.J.,Wong ES.,Li Y,et al.A high flux ultrafiltration membrane spun from PSU-PVP(K90)-DMF-1,2-propanediol[J].J.Membr.Sci.,2003,211:139-147
    [6]Wienk I.M.,Teunis H.A.,ct al.A new spinning technique for hollow fiber ultrafiltration membranes[J].J.Membr.Sci.,1993,78:93-100
    [7]Wienk M.,Meuleman E.E.B.,Borneman Z.,et al.Chemical treatment of membranes of a polymer blend:mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone)[J].J.Polym.Sci.:Pan A:Polym.Chem.,1995,33:49-54
    [8]Lu Y.,Yu S.L.Preparation of poly(vinylidene fluoride)(pvdf)ultrafiltration membrane modified by nano-sized alumina(Al_2O_3)and its antifouling research[J].Polymer,2005,46:7701-7706
    [9]曲云,张裕卿.具有耐污染性的SiO2/聚砜共混膜的研究[J].工业水处理,2006,2(7):26-29
    [1]谢冰,徐亚同.含PVA退浆废水的处理实践[J].环境工程,2002,5(20):7-9
    [2]王承涛,贺启环,贺鹏等.氧化铝载体下二氧化氯催化氧化处理印染废[J].环境科学与技术,2006,12(29):65-67
    [3]罗沽,陈达美.光催化氧化法印染废水的研究[J].水处理技术,2003,1(29):58-59
    [4]邹联沛,王宝贞,范延臻,等.SRT对膜生物反应器出水水质的影响研究[J].中国给水排水,2000,16(7):16-18
    [5]张树国,顾国维,吴志超.膜生物反应器中污泥特性对膜污染的影响研究[J].工业水处理,2003,23(12):8-12
    [6]黄智贤,熊小京,洪俊明,等.膜生物反应器处理葸醌染料废水的实验研究[A].第三届环境模拟与污染控制学术研讨会论文论文集[C].北京:清华大学出版社.2003:91-92
    [7]Nuttapun S.,Kanchana J.,Somsak D.,et al.Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system[J].Chemical Engineering Journal,2004,99:164-176
    [8]孙天华,林少宁,余智梅,等.生物铁法处理高浓度难降解印染废水的研究[J].中国环境科学,1991,11(2):138-142
    [9]Lee J.C.Potential and limitation of alum or zeolite addition to improve the performance of a submerged membrane bioreactor[J].Wat.Sci.Tech.,2001,43(11):59-66
    [10]张素玲,郭中伟,史凯莹.活性炭处理色度废水的研究[J].河北化工,2006,(4):54-56
    [11]Tan N.C.G.,Prenafeta B.F.X.,Opsteeg J.L,et al.Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures[J].Appl.Microbiol.Biotechnol.,1999,51:865-871
    [12]Zhang Y.,et al.Study on retarding membrane fouling by ferric salts dosing in membrane bioreactors,in:Proceedings of the Water Environment-Membrane Technology Conference,Seoul,Korea,2004.
    [13]郑晓虹,王燕,吴挡兰,等.聚硅酸铝铁处理印染废水的研究[J].福建师范大学学报(自然科学版),2006,22(4):58-62
    [14]周群英等.环境工程微生物学[M].北京:高等教育出版社,2000.75-76
    [15]Shimizu Y.,et al.Effect of particle size distributions of activated sludge on CROSS-flow microfiltration flux for submerged membranes[J].Ferment Bioeng,1997;83(6):583-589.
    [16]Luxmy B.S.,et al.Sludge reduction potential of metazoa in membrane bioreactors[J].Water science and Technology,2001;44(10):197-202
    [17]Luxmy B.S,et al Predator grazing effect on bacterial size distribution and floc size variation in membrane-separation activated sludge.Water science and Technology.2000,42(3-4):211-217.
    [18]顾国维,何义亮.膜生物反应器[M].北京:化学工业出版社,2002
    [19]胡维超.印染废水的酸化水解-电解絮凝-MBR处理工艺[J].印染,2006,13:27-30
    [20]邹海燕,奚旦立.生物铁-SMBR法处理印染废水[J].印染,2005,23:9-12
    [21]祁佩时,丁霄,刘云芝.微氧水解酸化工艺处理高浓度抗生素废水[J].环境科学,2005,26(3):107-111
    [22]洪俊明,洪华生,熊小京,等.A/O膜生物反应器组合工艺处理活性染料废水的实验研究[J].厦门大学学报(自然科学版),2005,44(3):441-444
    [23]Pitter P.,Chudoba J.Biodegradability of organic substance in the aquatic environment[M].CRC Press,1990
    [24]冀世锋.生物铁.膜.生物反应器特性及膜污染机理研究:[东华大学博士学位论文].上海:东华大学,2005
    [25]赵春禄,张明明.铝絮凝剂对活性污泥中微生物活性影响研究[J].环境工程,2000,18(5):28-29,38
    [26]Gregory J.,Duan J.Hydmlyzing metal salts as coagulants[J].Pure and Applied Chemistry,2001,73:2017-2026
    [27]Licsko,Istvan,Realistic coagulation mechanisms in the use of aluminum and iron(Ⅲ)salts[J].Water Science and Technology,1997,36:103-110
    [28]张自杰,周帆.活性污泥生物学与反应动力学[M].第1版北京:中国环境科学出版社,1989.
    [29]金志刚.污染物生物降解[M].第1版.上海:华东理工大学出版社,1997.
    [30]Low E.W.,Chase H.A.The effect of maintenance energy requirements on biomass production during wastewater treatment[J].Wat.Res.,1999,33(3).847-853
    [31]桂萍等.膜-生物反应器运行条件对膜过滤特性的影响.环境科学,1999,20(3):38
    [32]顾夏声.废水生物处理数学模型[M].1993,第二版,清华大学出版社,北京:152-203
    [33]Fox P.,Suidan M.Anaerobic treatment of a biologically inhibitory wastewater[J].WPCF,1998,60(1):86-90
    [34]Yum K J.Biodegradation kinetics of chlorophenols in immobilized·cell reactors using a white-rot fungus on wood chips[J].War.Envir.Res.,1998,70(2):205-213
    [35]黄永辉.染料的生物降解性能及染料废水处理工艺研究[D].2001,东华大学:34-35
    [36]Haigler B E,Spain l C.Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways[J].Appl.Environ.Microbiol.,1991,57(11):3156-3162
    [37]裴义山,杨永哲,王磊,等.MBR 处理聚乙烯醇废水的试验研究[J].给水排水,2004,30(11):53-55
    [38]刘忠洲,续曙光,李锁定.微滤\超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193
    [39]刘锐,黄霞等.一体式膜-生物反应器长期运行中的膜污染控制[J].环境科学,2000,21(2):58-60
    [40]刘莱娥.超滤膜污染机理的研究及控制[J].水处理技术,1989,15(3):163-169
    [41]陈福泰,范正虹,汪城文,等.一体式MBR处理洗浴污水的长期运行效果[J].中国给水排水,2006,22(13):67-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700