用户名: 密码: 验证码:
非制冷凝视热像仪成像理论以及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非制冷凝视红外技术是当今发展迅速的、军民两用的高科技技术之一,近年来西方发达国家在该技术的研究上取得了很大的进步,但是仍然存在着以下两方面的问题:一,非制冷凝视焦平面探测器没有完整的(自红外目标温度至焦平面探测器模拟输出)数学模型,因此在工程应用中存在着诸多不便;二,非制冷凝视焦平面探测器因材料、制作工艺以及红外光学系统衍射极限等的限制,输出的红外图像的温度分辨率和空间分辨率都不高。同时,由于国内该领域的研究工作起步较晚,以及国外对技术的长期封锁,我国现阶段的非制冷凝视成像技术的理论研究和制作工艺等与国外发达国家相比还有一定的差距,因此,从非制冷凝视红外焦平面探测器的理论出发,建立完整的数学模型,提出更好的技术和方案并最终研制出高性能的热像仪,对弥补非制冷凝视红外热像仪普遍存在的性能缺陷、提高我国红外成像电子学理论与工程水平、加快非制冷红外成像技术在我国国防建设和国民经济各领域的应用步伐都有着非常重要的意义。
     本论文从研究非制冷凝视红外焦平面探测器的各种热探测机理以及现有的读出电路出发,对ULIS公司微测辐射热计—320×240非制冷焦平面探测器的原理以及读出电路模型进行分析推导,最终建立了以红外目标温度为自变量、以焦平面探测器模拟输出电压为函数值的非制冷凝视红外焦平面探测器的数学模型。从微扫描技术的原理出发、经过严格的理论推导和实验仿真,验证了微扫描技术在提高红外图像空间分辨率上的重要作用;通过分析国内外主要的微扫描成像的技术方案以及各自的技术难点和优缺点,提出了用圆弧代替阿基米德螺旋线和类离散扫描的改进平板光学元件微扫描方案;根据平板光学元件的微扫描原理,建立了平板光学元件微扫描的锗片倾斜角度模型。从影响信号完整性的因素出发,以非制冷红外焦平面模型的相关结论为指导,提出了低噪声偏置电压以及高精度数字信号处理技术,该技术的理论推导和仿真结果均表明其能够有效抑制偏置电压噪声,保证信号的完整性和稳定性;为解决红外热像仪温度分辨率不高的问题,本论文提出了红外焦平面阵列自适应数字化技术和自适应偏置电压技术,并通过理论计算以及与直方图均衡等软件算法相比较的方法,证明了该技术对提高红外图像的温度分辨率的作用;针对红外图像信噪比不高的特点,提出了红外焦平面阵列多次采样滤波技术,理论分析表明,该技术能够在单帧条件下通过对同一像元点多次采样的方式降低红外图像的随机噪声和红外图像的NETD。在微扫描理论、方案以及锗片倾斜角度模型的指导下,从光学系统对微扫描的性能以及热像仪灵敏度的影响出发,选择了昆明北方光电公司生产的型号为KIR0742的红外镜头;从锗片制作成功率、安装角度不同的锗片与光学系统配合后给微扫描系统带来的总误差出发,确定了锗片厚度和最佳安装角度;为了降低微扫描器的转动惯量、提高其运行的稳定性以及尽量简化锗片的安装、增加其牢固性,对微扫描窗口尺寸以及锗片形状进行了优化;设计了微扫描器的支撑圆盘结构,并利用机械卡槽来保证微扫描器锗片的倾斜角度;为方便、准确地识别微扫描热像仪不同位置的子图像,设计了在微扫描器框架边缘留有不同长度的薄片并配合光藕进行识别的方案;根据微扫描器对驱动电机轴窜动量和扭转力矩的要求,选择了Faulhaber3863H024C无刷直流电机及其相关产品,理论计算出了该电机在进行“加速一减速一匀速”的微扫描运行方式时对微扫描热像仪像旋的降低幅度,并通过实验对微扫描器在驱动电机带动下运行的稳定性进行了测试,证明了微扫描器的设计和驱动电机的选择的合理性。
     本论文最后对非制冷凝视红外焦平面探测器的数学模型、高性能驱动电路技术、微扫描成像理论、方案、锗片倾斜角度模型和微扫描实现技术进行了效果验证和性能评估,通过对主观图像效果、客观NETD、MRTD、MTF参数的对比得出结论:1)当黑体温度在焦平面探测器衬底温度之上90K范围内时,测试数据和焦平面探测器模型推导出的数据能够较好吻合;当黑体温度高于这个范围并逐渐增大时,测试数据和模型推导出的数据之间的偏差也逐渐增大;2)低噪声偏置电压以及高精度数字信号处理技术、红外焦平面阵列自适应驱动技术、红外焦平面阵列多次采样滤波技术均能提高红外图像的温度分辨率;3)微扫描实现技术能够提高红外图像的空间分辨率。由此证明本论文的理论和关键技术的研究对提高红外图像性能有着重要意义。文章最后结合本论文研究的不足之处给出了今后的研究方向和研究展望。
The uncooled staring infrared technology is one of the high-techs which dual used for both military and civilian. Although it has been made great progress in recent years abroad, there are still two main problems left to be resolved:1. Uncooled staring focal plane detectors are inconvenience for using because of the absence of the complete mathematical model; 2.Because of the restrictions of materials, production processes, as well as diffraction limit of the infrared optical system, temperature resolution and spatial resolution of infrared image are not high. Meanwhile, due to the technology blockade and the late-start research in our country, the theoretical research and the production technology are relatively backward; there are still certain gaps between domestic and abroad in the technology of uncooled staring imaging. Therefore, we have to establish a complete mathematical model of the uncooled staring infrared focal plane array detector based on the theory, come up with a better technology and programs and eventually develop a high-performance thermal imager, which effectively resolve the common problems exist in the uncooled infrared detector, and improve the electronic theory of infrared imaging and the engineering level, and it also contains great significances in speeding up the uncooled infrared imaging technology in China's national defense building and the pace of national economy in various fields of application.
     In this dissertation, by researching various thermal detection mechanisms of the uncooled staring infrared focal plane array detector and the variety of existing ROIC, I finally established a mathematical model of uncooled staring IRFPA which sets the infrared temperature as the variable, and the FPA analog output voltage of the detector as function value through the derivation of the uncooled FPA theory and the model of ROIC of the ULIS's 320×240 microbolometer. I also proved that microscanning technology played a crucial role in enhancing the spatial resolution of IR images based on the theory of microscanning technology and the simulation results. By studying the major advantages and disadvantages along with the difficulties in microscanning imaging technology between domestic and international programs, I brought up an idea of taking place of the lieu of Archimedes spiral with circular lines and the discrete scanning mode to improve scanning program of the flat-panel elements. Due to the research on the microscanning principle of flat-panel optical components, I established a model of microscanning tilt angle of flat-panel optical components. Under the guidance of the relevant conclusions of uncooled infrared focal plane model, I put forward a low-noise bias voltage and high-precision digital signal processing technology with the concern of the affections on signal integrity. The theory derivation and the simulation results showed that this technology can inhibit the noise of bias voltage and ensure the integrity as well as the stability of the signal. From the characteristic that IR imager has low temperature resolution and high NETD, I raised the IRFPA adaptive digital technology and the adaptive bias voltage technology and IRFPA multi-sampling filtering technique, and proved that this technology really improved the temperature resolution of infrared image through the method of comparing the theoretical calculations and software algorithms such as histogram equalization, meanwhile, the IRFPA multi-sampling filtering technique can reduce random noise of infrared image and infrared images'NETD through the way of multiple sampling the same pixel points under the single-frame condition. Considering the two aspects of either the affection to the microscanning performance or the sensitivity of IR imager, I chose the KIR0472 IR lens manufactured by Kunming North optic-electric co., ascertained the thickness and the best installation angle of Germanium chip from the success rate of production, installation angle and total error brought by the optical system to the microscanning system under the guidance of microscanning theory, scheme as well as the model. Meanwhile, by optimizing the microscanning window size and the shape of microscanning germanium chip, I studied and optimized the design of disc supporting structure of the micro-scanner, and eventually used the slot machine to determine the structure of installation angle of micro-scanner germanium-chip from the consideration of the reduce of the micro-scanner's moment of inertia, conveniently and solidly installed the germanium chip, and stably run the micro-scanner. I put forward a recognition method which suggested that there should be different thin slices with different lengths around the framework's edge of micro-scanners and matched the optical-couple from the convenient and accurate identification of microscanning sub-image starting at different positions. The Faulhaber 3863H024C BLDCM and relevant productions were selected referring to the requirements of the drive motor shaft string momentum and reversing the torque of the micro-scanner. Through the theoretical calculation of the motor's speed up-slow down-uniform microscanning operation mode of microscanning thermal imager was likely to reduce the degree of image rotation, and through the test of the micro-scanner's stability under the driving motor, the rationality of the design of micro-scanner and the choose of driving motor has been established.
     I did specific verification and assessment about the entire mathematical model, high-performance driving technology, microscanning imaging theory and the realization mentioned in this dissertation. Through the compare of the subjective image and the objective NETD, MRTD, MTF parameters, I concluded that:1) When the black body temperature is 90K above the temperature of the substrate's focal plane, the test figures were anatomized to the theory model; while the temperature went high, the deviation got stronger.2)The low-noise bias voltage and high-precision digital signal processing technology, IRFPA adaptive driving technology, IRFPA multi-sampling filtering technique can increase the temperature resolution of infrared images.3) Microscanning technology can improve the spatial resolution of infrared images. So all the theories and the key techniques will significantly enhance the performance of IR image. At the end of the dissertation, I offered the inadequacies during my research and the prospection of the research in IR imaging.
引文
[1]蒋一明,王克勇,郑链,等.坦克目标的红外成像建模与仿真.红外技术,2008,30(1):39~42
    [2]何伟,焦斌斌,薛惠琼,等.非冷红外焦平面阵列进展.电子工业专业设备,2008,37(5):18~23
    [3]范晋祥,张渊.新概念军用红外成像系统的发展.红外与激光工程,2008,37(3):386~390
    [4]KEITH L. Challenges in the evolution of advanced imaging systems. Proceedings of SPIE.,2007,6714:1-7
    [5]陈丽菊,刘巍.近红外光谱分析技术及发展前景.现代物理知识,2006,18(2):10~11
    [6]孙大君,杨发文.红外线与我们的生活.物理教学,2004,26(4):46~47
    [7]姜振寰.关于物理学史的分期.哈尔滨工业大学学报,2006,8(1):6-10
    [8]张鸣平,张敬贤,李玉丹编著.夜视系统.北京:北京理工大学出版社,1993
    [9]陆明,李良玉,吴健.一种远距离高分辨率的红外成像监控系统的设计.西南民族大学学报(自然科学版),2005,31(4):565~569
    [10]Peter.LM,高国龙.主动红外成像系统综述(上).红外,1991,10:7-12
    [11]Peter.LM,高国龙.主动红外成像系统综述(下).红外,1991,11:29~34
    [12]焦国力,董长军主编.侦查监视与夜视技术.郑州:大象出版社,2000
    [13]陈庆佑.微光夜视技术进展简介.真空电子技术,2001,1:32~35
    [14]王永仲.现代军用光学技术,北京:科学出版社,2003
    [15]彭喜东,苏敬.被动红外探测器的原理与技术.工科物理,1994,2:40-43
    [16]苏君红,郑为建.红外线200年.红外技术,2001,23(1):1-2
    [17]吴宗凡,柳美琳等。红外与微光技术,北京:国防工业出版社,1998
    [18]R. D. Hudson. Infrared System Engineering.北京:国防工业出版社,1975
    [19]J. M. Leoyd. Thermal Imaging System.北京:国防工业出版社,1981
    [20]孙志君.红外焦平面阵列技术的军用市场展望.传感器技术,1999,5(5):1-8
    [21]蔡毅.对第三代热成像技术的思考,展望2010年中国夜视技术.中国兵工学会第四界夜视技术专业委员会主办,广西北海,2003.11
    [22]郑为建.从伊拉克战争看我国夜视技术的发展策略,展望2010年中国夜视技术.中国兵工学会第四届夜视技术专业委员会主办,广西北海,2003.11
    [23]吴宗凡.红外热像仪的原理和技术发展.现代科学仪器,1997,2:28~30
    [24]蔡毅,汤锦亚.对红外热成像技术发展的几点看法.红外技术,2000,22(2):2-6
    [25]Marshall R.Weathersby. Infrared Image Processing and Enhancement. Proceedings of SPIE.,1987,781:A88-44529~A88-44548
    [26]Irving J.Spiro, Infrared Technology XVI. Proceedings of SPIE.,1990,1341:11~13
    [27]吴宗凡,柳美琳,等.红外与微光技术.北京:国防工业出版社,1998
    [28]陈伯良.红外焦平面成像器件发展现状.红外与激光工程,2005,34(1):1-7
    [29]Scribner D A, et al. Infrared focal plane array technology. Proceedings of SPIE.,1991, 79(1):66~85
    [30]F. Rosell, et al. The fundamentals of thermal imaging system, Report AD-A073763, 1979
    [31]王春勇.红外系统中的扫描型和凝视型FPA.红外技术,2000,25(1):1-6
    [32]顾聚兴.第三代红外成像器(上).红外,2002,8:30~32
    [33]陈伯良,陆微,王正官.64×64元InSb光伏红外探测器阵列性能表征.红外与毫米波学报.2000,19(2):89~92
    [34]梁平治,江美玲,张学敏.64×64元InSb红外焦平面阵列读出电路的研制进展.红外与激光工程.2002,31(5):424~427
    [35]盛翠霞,唐和景,李田泽.基于FPGA的非制冷焦平面阵列驱动电路设计.长春理工大学学报(自然科学版),2008,31(3):62~64
    [36]张俊举,孙恋君,常本康,等.多工作温度非制冷热成像系统的研制.兵工学报,2008,29(8):920~924
    [37]邢素霞,张君举,常本康,等.非制冷红外热成像技术的发展与现状.红外与激光工程,2004,33(5):441~444
    [38]Jean-Luc Tissot, Jean-Pierre Chatard, Bruno Fieque, et al. High-performance and low-thermal time constant amorphous silicon-based 320 X 240 uncooled microbolometer IRFPA. Proceedings of SPIE.,2004(5640):94~99
    [39]Richard Blackwell, Steven Geldart, Margaret Kohin, et al, Recent technology advancements and applications of advanced uncooled imagers, Proceedings of SPIE., 2004,5406:422~427
    [40]蔡毅,潘顺臣.红外技术在未来军事技术中的地位和作用.红外技术,1999,21(3):1-6
    [41]吴诚,苏君红,潘顺臣,等.对中波与长波红外焦平面热成像的一些探讨.红外技术.2002,24(2):6-8
    [42]王娴雅.红外热成像测温系统关键技术和硬件实现.南京:南京理工大学硕士论文,2007
    [43]陆红红.基于PXA270的红外热成像测温系统.南京:南京理工大学硕士论文, 2008
    [44]王海鹰.基于FPGA+DSP的模块化红外图像实时处理系统的研制.南京:南京理工大学硕士论文,2008
    [45]Jiazheng Shi, Stephen E. Reichenbach, James D. Howe. Cubic Convolution for Super-Resolution from Microscanned Images. Proceedings of SPIE.,2005,5817: 13~24
    [46]曹聚亮.图像超分辨率处理、成像及其相关技术研究.长沙:国防科学技术大学博士论文,2004
    [47]John Lester Miller, Dr. John Wiltse. Benefits of microscan for staring infrared imagers. Proceedings of SPIE.,2004,5407:127~138
    [48]徐超,金伟其,王霞,等.基于凝视成像探测器的平板调制式微扫描器设计.红外与激光工程,2007,36(1):27~31
    [49]徐超,金伟其,李雅琼,等.光学微扫描器技术及其实现方式.红外技术,2006,28(6):338~342
    [50]窦建云,浦恩昌.一维扫描型热成像系统扫描器的结构设计.红外技术,2006,28(11):625~628
    [51]张天序,时岩,曹治国.红外焦平面非均匀性噪声的空间频率特性及空间自适应非均匀性校正方法改进.红外与毫米波学报,2005,24(4):255~260
    [52]周衍国.焦平面探测器阵列响应率非均匀性补偿.长春理工大学学报,2006,29(2):28~30
    [53]Bowen AN, Junbo GAO, Guozhong WANG. Spatial transform in non-conventional ultra-high resolution image-carrying fiber bundle. Proceedings of SPIE.,2008,7000: 7001B1~7001B8
    [54]Bingjian Wang, Shangqian Liu, Qing Li, et al. Blind-pixel correction algorithm for an infrared focal plane array based on moving-scene analysis. Optical Engineering,2006, 45(3):036401-1~036401-4
    [55]顾国华,陈钱,王利平.灰度冗余均衡与受限空域锐化的图像增强技术.激光与红外,2006,36(4):318~320
    [56]冯冬竹,阎杰.基于灰关联分析的红外图像边缘检测算法.红外技术,2006,28(3):161~164
    [57]张建奇,方小平.红外物理.西安:西安电子科技大学出版社,2004
    [58]吴宗凡,柳美琳,张绍举,等编著.红外与微光技术.北京:国防工业出版社,1998
    [59]张敬贤,李玉丹,金伟其编著.微光与红外热成像技术.北京:北京理工大学出 版社,1995
    [60]陈玻若编著.红外系统.北京:兵器工业出版社,1995
    [61]白长城,张海兴,方湖宝编著.红外物理.北京:电子工业出版社,1989
    [62]屈惠明.红外成像电子学理论及其关键技术研究.南京理工大学博士论文,2007
    [63]胡家升著.光学工程导论.大连:大连理工大学出版社,2005
    [64]冯克成,刘景生主编.红外光学系统.北京:兵器工业出版社,1994
    [65]徐之海,李奇编著.现代成像系统.北京:国防工业出版社,2001
    [66]刘世才编.光辐射测量技术.北京:国防工业出版社,1989
    [67]李振国,魏青主编,杨臣铸主审.光辐射测量原理与技术.北京:中国建材工业出版社,1998
    [68]李晓彤编著.几何光学和光学设计.杭州:浙江大学出版社,1997
    [69]陈继述,胡燮荣,徐平茂编著.红外探测器.北京:国防工业出版社,1986
    [70]王义玉,叶文,王彬编著.红外探测器.北京:兵器工业出版社,1974
    [71]邵式平编著.热释电效应及其应用.北京:兵器工业出版社,1994
    [72]Charles M. Hanson, Hybrid Pyroelectric-Ferroelectric Bolometer Arrays. Semiconductors and semimetals,1996,47:123~173
    [73]A.Wood, Monolithic Silicon Microbolometer Arrays, Semiconductors and Semimetals, 1996,47:45~120
    [74]常本康,蔡毅编著.红外成像阵列与系统.北京:科学出版社,2006
    [75]邢素霞.非制冷红外热成像系统研究,南京理工大学博士论文,2005
    [76]王清正,胡渝,林崇杰.光电探测技术.北京:电子工业出版社,1994
    [77]Woo-Bin Song, Joseph J. Talghader. Fabrication of adaptive microbolometers. Proceedings of SPIE.,2004,5406:566~576
    [78]杨正兴,谈新权,尚小名.基于场景的红外图像非均匀性校正方法综述,光电子技术,2003,23(2):135~138
    [79]汪贵华.光电子器件.南京:南京理工大学,2005
    [80]A.F.Miton,F.R.Barone, M.R.Kruer, Influence of nonuniformity on infrared focal plane array performance, Optical Enginering,1985,24(5):855~862
    [81]李颖文.非致冷凝视红外成像技术的研究,华中科技大学博士论文,2003
    [82]王享田,宋建伟,吴志明,等.微测辐射热计FPA的热学分析,半导体光电,2005,26(supplement):37~39
    [83]方丹.红外焦平面阵列读出电路技术分析.红外技术,2004,26(2):23~28
    [84]D.A.Scribner, M.R.Kruer, J.M.Killiany. Infrared Focal Plane Array Technology. Proceedings of the IEEE,1991,79(1):66~85
    [85]白委宁.红外焦平面探测器CMOS读出临近电路的研究,南京理工大学硕士论文,2004
    [86]张智.红外焦平面阵列新结构高性能CMOS读出电路研究.重庆大学博士论文,2003
    [87]郭华东,等著.感知天地一信息获取与处理技术.北京:科学出版社.2000
    [88][日]米本和也著.陈榕庭,彭美桂译.CCD/CMOS图像传感器基础与应用.北京:科学出版社.2006
    [89]李兵.红外焦平面阵列读出电路及视频信号预处理技术研究.重庆大学博士论文,2000
    [90]E Motin, P Pantigny, R Boch. An improved architecture of IRFPA readout circuits. Proceedings of SPIE.,1996,2894(Supplement):37~46
    [91]甘文祥.红外焦平面器件读出电路技术,红外,2003,9:1-8
    [92]Chih-Cheng Hsieh, Chung-yu Wu. A New Cryogenic CMOS Readout Structure for Infrared Focal Plane Array. IEEE. Solid-state Circuit.1997,32(8):1192~1199
    [93]Chih-Cheng Hsieh, Chung-Yu Wu. Fling-Performance CMOS Bufferered Gate Modulation Input (BGMI) Readout Circuits for IRFPA. IEEE. Solid-state Circuit.1998, 33(8):1188~1197
    [94]罗凤武,蒋亚东,吴志明.基于测辐射热计型非制冷IRFPA读出电路设计,激光与红外,2006,36(10):953~956
    [95]孟丽娅,袁祥辉,吕果林,等.CTIA读出方式的微测辐射热计,光电工程,2005,32(8):81~84
    [96]John W. Cairns, Louise Buckle, Graham J. Pryce, et al. Integrated Infrared Detectors and Readout Circuits, Proceedings of SPIE.,2006,6206:620614-1-620614-9
    [97]Michael A. Dem'yanenko. Improved bias equalization method for suppression temperature-induced errors in microbolometer FPA over 20 K substrate temperature change, Proceedings of SPIE.,2007,6542:654222-1-654222-9
    [98]320×240 LWIR UNCOOLED MICROBOLOMETER DETECTOR TECHNICAL SPECIFICATION, ID ML073-V3, France:SOFRADIR CO.LTD datasheet,2002
    [99]王仕瑶.信息光学理论与应用,北京:北京邮电大学出版社,2004
    [100]隋修宝,陈钱,陆红红.红外图像空间分辨率提高方法研究,红外与毫米波学报,2007,26(5):377~379
    [101]E. Watson, R. Muse, F. Blomme. Aliasing and blurring in microscanned imagery. Proceedings of SPIE.,1992(1689):242~250
    [102]J. Fortin, P. Chevrette, R. Plante. Evaluation of the microscanning process. Proceedings of SPIE.,1994(2269):271~279
    [103]张保民编著.成像系统分析导论,北京:国防工业出版社,1992
    [104]徐之海,李奇编著.现代成像系统,北京:国防工业出版社,2001
    [105]左月萍,张建奇.一种提高系统分辨率、改善图像质量的技术一微扫描,红外技术,2001,23(4):15~21
    [106]彭富伦,冯卓祥.微扫描对空间分辨率的影响,应用光学,2006,27(5):394~399
    [107]徐超,金伟其,李雅琼.光学微扫描器技术及其实现方式,红外技术,2006,28(6):338~342
    [108]Kai M. Hock. Effect of oversampling in pixel arrays, OPTICAL ENGINEERING, 1995, 34(5):1281~1288
    [109]J.D.加斯基尔.线性系统·傅里叶变换·光学,北京:人民教育出版社,1981
    [110]范世贵编.信号与系统,西安:西北工业大学出版社,2005
    [111]许庆山,张志文,刘荣济编.信号与系统,北京:航空工业出版社,1992
    [112]Rijk Schutz, Klaus Dorschel, Gerhard J. Muller. Confocal Microscanner Technique for Endoscopic Vision, Proceedings of SPIE.,1997(3197):223~233
    [113]曲艳玲.红外凝视系统中的微扫描技术.中国科学院长春光学精密机械与物理研究所硕士论文,2004
    [114]朱建.红外图像超分辨率重建的仿真研究.南京理工大学硕士论文,2005
    [115]曲艳玲,芦永军,宋敏.红外凝视系统中的微扫描技术,半导体光电,2005,26(supplement):146~148
    [116]王晓蕊,胡方明,张建奇.基于微扫描的焦平面阵列成像特性研究,西安电子科技大学学报(自然科学版),2005,32(3):392~395
    [117]左月萍,张建奇.几种工作模式的微扫描成像系统的理论建模和仿真,红外与毫米波学报,2003,22(2):145~148
    [118]张楠,金伟其,苏秉华,等.高分辨力红外热图像重建算法的进展及研究,兵工学报,2005,26(2):173~176
    [119]李庆辉.提高红外成像空间分辨率的方法探讨,航天返回与遥感,2003,24(2):25~28
    [120]John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan, Optical Engineering,44(5):056401-1~9
    [121]ZHANGJianQi, ZUO YuePing. Model of image generation in microscanning systems, Proceedings of SPIE.,2001(4548):39~43
    [122]Fred P Blommel, Dr Peter N J Dennis, Dr Derek J Bradley. THE EFFECTS OF MICROSCAN OPERATION ON STARING INFRARED SENSOR IMAGERY, Proceedings of SPIE.,1991(1540):653~664
    [123]W. Cabanski, R. Breiter, K-H. Mauk, et al. Miniaturized High Performance Starring Thermal Imaging System, Proceedings of SPIE.,2000(4028):208~219
    [124]K.J. Barnard, E.A. Watson, P. F. McManamon. Non mechanical microscanning using optical space-fed phased arrays. Proceedings of SPIE.,1994(2224):168~179
    [125]张毅.焦平面阵列成像像质分析理论与优化技术研究,南京理工大学博士论文,2005
    [126]K.Awamoto, Y.Ito, H.Ishizaki, et al. Resolution improvement for HgCdTe IRCCD, Proceedings of SPIE.,1992(1685):213~220
    [127]F.P. Blommel, P.N.J. Dennis, Bradley and Derek. The Effects of microscan operation on staring infrared sensor imagery, Proceedings of SPIE.,1991(1540):653~664
    [128]吴新社,蔡毅.红外凝视成像系统中的光学微扫描技术,红外与毫米波学报,2007,26(1):10~14
    [129]Jean Fortin, Paul Chevrette. Realization of a fast microscanning device for infrared focal plane arrays. Proceedings of SPIE.,1996(2743):185~196
    [130]F.P. Blommel, P.N.J. Dennis, Bradley, Derek, Effects of microscan operation on staring infrared sensor imagery, Proceedings of SPIE.,1991(1540):653~664
    [131]K. Awamoto, Y. Ito, H. Ishizaki, Y. Yoshida, Resolution improvement for HgCdTe IRCCD, Proceedings of SPIE.,1992(1685):213~220
    [132]George R. Armstrong, Paul D. Packard. CMT and PtSi FLIR Systems for EUCLID RTP 8.1, Proceedings of SPIE.,1996(2774):257~266
    [133]屈惠明,陈钱.红外焦平面阵列微扫描成像方案比较,激光与红外,2006,36(3):161-164
    [134]吴新社,范乃华,李龙,等.铁电型非制冷红外焦平面探测器的调制器设计,红外技术,2007,29(6):333~336
    [135]何玉青,金伟其,高稚允,等.热释电型非制冷焦平面热像仪调制斩波器的分析-斩波器的曝光效率,红外与毫米波学报,2004,23(4):246~250
    [136]何玉青,金伟其,高稚允,等.热释电型非制冷焦平面热像仪调制斩波器的分析-斩波器与信号读出模式,红外与毫米波学报,2003,22(6):423~427
    [137]何玉青,金伟其,刘广荣,等.热释电型热成像系统的调制斩波器技术,红外技术,2002,24(5):5-10
    [138]XIU-bao SUI, QIAN CHEN, GUO-hua GU, et al. Research on Critical Technique of Microscan Thermal Imager, Journal of information & computational science,2008, 5(3):1103~1110
    [139]沈永欢,梁在中,等著.实用数学手册,北京:科学出版社,1992
    [140]吴新社.非制冷红外焦平面探测器的调制型微扫描器的设计与实现,昆明物理研究所博士论文,2008
    [141]X. R. Wang, J. Q. Zhang, Z. X. Feng. Relationship between microscaned image quality and fill factor of detectors, APPLIED OPTICS,2005,44(21)
    [142]Rober K. McEwen. Imaging System Using Focal Plane Array. United State Patent, PN: 5291327
    [143]LION-Lightweight Infrared Observation Nightsight. www.thales grouo-optronics. Tom. 2005
    [144][苏]E.M.沃伦科娃,ь.H.格列楚什尼科夫等著.红外光学材料手册,北京:玻璃研究所技术情报组,1974
    [145]查立豫,郑武城,顾秀明,等.光学材料与辅料,北京:兵器工业出版社,1995
    [146]袁旭沧主编.光学设计.北京:北京理工大学出版社,1988
    [147]萧泽新编著.工程光学设计.北京:电子工业出版社,2003
    [148]王仕璠,朱自强编著.现代光学原理.成都:电子科技大学出版社,1998
    [149]李正直编著.红外光学系统.北京:国防工业出版社,1986
    [150]姚启钧原著.光学教程.北京:高等教育出版社,2000
    [151]李颖文,易新建,何兆湘,等.320×240红外焦平面阵列驱动电路的小型化设计研究,红外与激光工程,2001,30(3):230~234
    [152]曾祥鸿,刘慧.320×240非制冷红外焦平面阵列驱动电路的设计,现代电子技术,10(20):40~46
    [153]石莎莉,陈大鹏,欧毅,等.非制冷红外FPA结构设计及物理特性有限元模拟,光电工程,2005,32(12):25~29
    [154]沈科,王红培,胡滨.CTIA型红外读出电路的数字控制电路结构研究,实验科学与技术,2006,增刊:29~30
    [155]LT1762 Series 150mA Low Noise LDO Micropower Regulators, USA:Linear CO.LTD datasheet,1999
    [156]LT1962 Series 300mA Low Noise LDO Micropower Regulators, USA:Linear CO.LTD datasheet,2000
    [157][美]]Eric Bogatin著,李玉山,李丽平,等译.信号完整性分析.北京:电子工业出版社.2005
    [158]Howard Johnson著,沈立,朱来文,等译.高速数字设计.北京:电子工业出版社,2005
    [159]隋修宝,陈钱.320×240红外焦平面探测器关键偏压噪声抑制技术,激光与红外,
    2007,39(2):130~133
    [160]赵凯华,陈熙谋 编.电磁学.北京:人民教育出版社,1979
    [161]张其第,李桂秋 编著.电磁学.济南:山东大学出版社,1999
    [162]丁士圻 编著.模拟滤波器.哈尔滨:哈尔滨工程大学出版社,2004
    [163]Miroslav D. Lutovac著,朱义胜,董辉,等译.信号处理滤波器设计.北京:电子工业出版社,2004
    [164]韩旭.320×240红外焦平面成像系统的电源研究及FPGA设计.南京理工大学硕士论文,2008
    [165]XO-53, Full Size Clock Oscillators TTL Compatible, USA:Vishay CO.LTD datasheet, 2005
    [166]谢金明 编著,谭博,王瑞林,等改编.高速数字电路设计与噪声控制技术.北京:电子工业出版社,2004
    [167]Printed Circuit Board Design Techniques for EMC Compliance, Taiwan:MITAC CO.LTD,2007
    [168]DL700C操作说明书.中国:浙江大立科技有限公司,2004
    [169]章霄,董艳雪,赵文娟,等编著.数字图像处理技术.北京:冶金工业出版社,2005
    [170]朱秀昌,刘峰,胡栋 编著.数字图像处理与图像通信.北京:北京邮电大学出版社,2002
    [171]夏德深,傅德胜 编著.现代图像处理技术与应用.南京:东南大学出版社,2001
    [172]王春平,孙国正,陈钱.基于灰度冗余的红外图像直方图处理技术,南京理工大学学报(自然科学版),2007,31(2):176~179
    [173]隋修宝,陈钱,陆红红.红外焦平面阵列自适应数字化技术,兵工学报,2008,29(5):50~53
    [174]Complete 14-Bit,10 MSPS Monolithic A/D Converter AD9240. USA:Analog Devices CO.LTD Datasheet, 1998
    [175]周慧鑫,殷世民,刘上乾,等.红外焦平面器件盲元检测及补偿算法,光子学报,2004,33(5):598~600
    [176]隋修宝,陈钱,顾国华,等.红外焦平面阵列盲元检测算法,光电工程,2008,35(8):107~111
    [177]李怀琼.红外成像电子学理论及其关键技术研究,南京理工大学博士论文,2006
    [178]李兵.红外焦平面阵列读出电路及视频信号预处理技术研究,重庆大学博士论文,2000。
    [179]刘志才,李志广.红外热像仪图像处理技术综述,红外技术,2000,22(6):27~32
    [180]张小军,赵亦工.红外焦平面阵列非均匀性校正的综合处理算法,红外技术,2003,3(25):34~38
    [181]杨吉.非制冷红外成像系统实时图像处理研究,南京理工大学硕士论文,2005
    [182]隋修宝,陈钱,顾国华.环境温度对红外图像非均匀性影响的研究,光子学报,2008,37(12):2572~2575
    [183]雷春,张保民.红外系统的2D—TDI方法及其增强处理,红外与毫米波学报,2000,19(6):445~448
    [184]钱进.红外热像仪整机关键技术研究,南京理工大学硕士论文,2004
    [185]陈钱,柏连发.微光图像实时模拟累加及其应用,南京理工大学学报,1997,21(6):548~551
    [186]Wang Y. Real-time video displaying technique for LLL digital image accumulation, Proceedings of SPIE.,1998.3530:199~202
    [187]王炳健,刘上乾,周慧鑫,等.基于平台直方图的红外图像自适应增强算法,光子学报,2005,34(2):299~301
    [188]14-Bit, 40 MSPS/65 MSPS A/D Converter AD9244. USA:Analog Devices CO.LTD Datasheet, 2005
    [189]麦绿波,金伟其,冯生荣.红外光学系统系列化方案.光学技术,2007,34(1):17~20
    [190]项建胜,潘国庆.一种紧凑型大相对孔径红外光学系统的设计.红外技术,2008,30(4):208~209
    [191]袁旭沧编著.现代光学设计方法.北京:北京理工大学出版社,1995
    [192]张登臣,郁道银编著.实用光学设计方法与现代光学系统.北京:机械工业出版社,1995
    [193]非制冷红外镜头IR 0500.8320技术参数.新加坡:波长科技有限公司,2008
    [194]李荣刚,刘琳,张兴德,等.用于160×120元非制冷热像仪的红外连续变焦镜头.激光与红外,2006,36(4):275~277
    [195]苏吉儒,魏建华,庄继胜.赴向21世纪的非制冷热成像技术.红外与激光工程,1999,28(3):41~45
    [196]李荣刚,张兴德,贺谊亮.用于大相对孔径红外镜头的衍射光学元件.激光与红外,2004,34(6):464~466
    [197]邵武平.非制冷红外焦平面列阵进展.红外技术,1996,18(2):1-6
    [198]非制冷红外镜头KIR0742技术参数.中国:昆明北方红外科技有限公司,2008
    [199]周永溶编.半导体材料.北京:北京理工大学出版社,1992
    [200]叶式中,杨树人,康昌鹤编.半导体材料及其应用.北京:机械工业出版社,1986
    [201]GSK218M加工中心使用手册.中国:广州数控设备有限公司,2006
    [202]刘静安,谢水生编著.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004
    [203]邢淑仪,王世洪编.铝合金和钛合金.北京:机械工业出版社,1987
    [204]CJJ82-1光学结构胶.http://coatren.cn/technic/cementation/
    [205]西安微电机研究所编.微电机.北京:机械工业出版社,2002
    [206]唐介.控制微电机.北京:高等教育出版社,1987
    [207]于辉,曲铁平.实验测试转动惯量的方法与分析.沈阳工业学院学报,2003,22(3):78~80
    [208]姚建安.用三线摆测量转动惯量的研究.合肥工业大学学报(自然科学版),1991,14(4):74~79
    [209]于冶金.任意形状构件的惯性矩测定方法.计量与测试技术.1998,25(1):21~24
    [210]3863HC直流微电机.瑞士:FAULHABER公司,2005
    [211]IE2-512电磁式编码器.瑞士:FAULHABER公司,2005
    [212]MCDC 3003/06 S运动控制器.瑞士:FAULHABER公司,2006
    [213]吴健飞,李范鸣,庄良,等.弱目标检测系统中红外焦平面阵列非均匀性校正算法的研究,红外与毫米波学报,2006,25(5):372~376
    [214]冯林,刘爽,赵凯生,等.考虑红外焦平面器件非线性响应的一种非均匀性校正方法,红外与毫米波学报,2006,25(3):221~224
    [215]UL 03 04 1 384X288 LWIR UNCOOLED MICROBOLOMETER DETECTOR TECHNICAL SPECIFICATION, France:SOFRADIR CO.LTD datasheet,2007
    [216]康华光主编.电子技术基础模拟部分(第四版).北京:高等教育出版社,2003
    [217]TECHNICAL DATA PACKAGE Reference of the product:ID ML073-V3, France: SOFRADIR CO.LTD datasheet,2002
    [218]640 X 480 LW IRCMOS ID DCA TECHNICAL SPECIFICATION, France: SOFRADIR CO.LTD datasheet,2006
    [219]DP04000系列数字荧光示波器用户手册,美国:泰克公司用户手册,2006
    [220]李静,裘祖荣,齐永利.X90601C系列红外测温模块的原理及应用, 国外电子元器件,2005:47~50
    [221]范心田,卢振武,孙强.红外成像系统中MRTD测试方法的研究,红外与激光工程,2004,33(5):445~448
    [222]BURROUGHS S E, MOE G O, LESHER G W, et al. Automated MRTD using boundary contour system, custom feature extractors and fuzzy ARTMAP, Proceedings of SPIE.,1995,2470:274~287
    [223]SUN Jun-yue, MA Dong-mei. Intelligent MRTD testing for thermal imaging system using ANN, Proceedings of SPIE.,2005,6031:603111-1~603111-7
    [224]SOUSK S F, O'SHEA P D, HODGKIN V A. Uncertainties in the minimum resolvable temperature difference measurement, Proceedings of SPIE.,2004,5407:1-7
    [225]屈惠明,陈钱,顾国华,等.红外焦平面阵列成像动态仿真系统,红外与激光工程,2006,35(5):608~611
    [226]屈惠明,陈钱,顾国华,等.红外焦平面阵列性能参数测试系统,激光与红外,2006,36(10):950~952
    [227]马冬梅,胡明鹏,孙军月.凝视型红外光电成像系统主要参数的实验室测评分析,红外技术,2007,29(8):483~487
    [228]房红兵,等.凝视热成像系统MTF测试技术分析.红外与毫米波学报,1998,2(17):124~128
    [229]Jay Overbeck, Jim Shea. MTF Measurement Technique for GOES Imager.1998,3377: 155~164
    [230]张敬贤,李玉丹,金伟其编著.微光与红外成像技术.北京:北京理工大学出版社,1995
    [231]范宏波.第二代热像仪系统模型及仿真研究.昆明:昆明物理研究所博士论文
    [232]李旭东,惠渭生,胡铁力,等.红外热成像系统调制传递函数(MTF)测试研究.应用光学,2006,26(4):323~326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700