用户名: 密码: 验证码:
全相位OFDM系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(Orthogonal Frequency Division Multiplexing , OFDM)是近年来备受关注的宽带无线传输技术。为进一步提高其效率和性能,本文将全相位FFT(All-Phase FFT, APFFT)技术引入到OFDM系统中,建立了全相位OFDM(All-Phase OFDM, APOFDM)系统。对于解决APOFDM系统的子载波间干扰(ICI)消除、同步、信道估计和峰均比(PAPR)降低等问题,以及有效的利用APOFDM系统特点实现系统性能改善,是本文解决的主要问题。根据APFFT的特点,本文设计了APOFDM系统的帧结构;分析了ICI对APOFDM系统的性能影响;并提出了符合全相位帧结构的同步算法;同时还进行了信道估计、PAPR降低和多维星座设计等方面的研究。
     第一,建立了APOFDM基带处理系统。APFFT能够较大的降低OFDM系统的ICI,并不会引入新的相位误差。在此基础上,得到了ICI引起APOFDM系统SNR下降的界,分析了ICI对系统SIR和BER的性能影响。研究结果表明:在APFFT处理下,OFDM系统的BER性能会得到很大的提高。
     第二,利用APOFDM系统的帧结构特点,建立了适于本系统的时域自相关频率估计算法。该算法不受载波相位偏移的影响,能够非常准确的得到频率偏移;同时也建立了最大自相关帧同步算法,该算法充分利用全相位数据在时域自我复制的特点,通过搜索相关峰值得到帧起始位置。该算法大大提高了系统对抗频率偏移的能力,在时变信道中能够稳健的实现同步保持。
     第三,根据系统在高密集热点地区对信道状态估计的要求,提出利用总最小二乘算法进行信道估计。该算法能够在快速时变信道中准确估计信道的变化,同时估计信道噪声对接收信号的影响,并利用最小范数得到最优解。仿真表明,本算法比较适合于多径衰落时变信道系统。
     第四,把DCT变换引入到OFDM系统,利用DCT具有线性变换和能量集中的特点,大大降低了OFDM系统的PAPR。该技术与传统的PAPR降低技术比具有运算量小、PAPR降低幅度大、不引入冗余及能保持系统BER恒定的优点。从理论上论证了多维星座设计在OFDM系统中能够大大降低终端的功耗,也提高了系统的误码性能,但其本身具有很大的运算复杂度。
Orthogonal Frequency Division Multiplexing (OFDM) is a major technology of broadband wireless transmission in recent years. In order to improve its efficiency and performance, all-phase FFT is introduced to OFDM systems and All-Phase OFDM system is established. However, there are many problems such as intercarrier interference (ICI) cancellation, synchronization of Carrier frequency, channel estimation and PAPR reducing that to be solved. How to using the characters of All-Phase OFDM system to realize the improvement of system performance is a challenge for receiver. Aiming at the problems mentioned above, the system frame structure is designed according to the feature of all phase FFT. ICI impacting on all-phase OFDM system is analyzed. Then the paper proposes the frame synchronization algorithm which conforms to the all phase frame structure. Finally, the channel estimation, PAPR reducing and the design of multidimensional constellation are studied.
     In this paper, all-phase OFDM system is established for the first time. ICI can be greatly reduced in all-phase OFDM system because of all phase FFT, and at the same time, the new phase error can not be introduced. The lower bound of SNR caused by ICI is obtained. We analyze SIR and BER performance with ICI. Finally, we get the conclusion that BER performance of system can be improved greatly with all- phase FFT.
     The correlation algorithm of frequency estimation in time domain is proposed in this paper. Making use of the frame structure of all-phase OFDM system, we obtain the accurate frequency offset and the estimator can not be affected by frequency phase offset. The maximum correlation frame timing algorithm is proposed, too. The copy of all phase OFDM data is used in this algorithm and the start of frame is attained with the peak of correlation. The algorithm greatly improves the system's ability resisting frequency offset and the healthy synchronization can be kept in time-varying channel.
     According to the requirement of channel state estimation in high-intensive user spots and high-speed mobile state which answer to the cooperation between base-band processing and antenna, the total least squares (TLS) channel estimation is proposed. This algorithm can accurately estimate the channel change in fast time-varying channel. And the channel noise can be estimated, too. The optimal solution of TLS can be received with minimum norm. The simulation results show that this algorithm is suitable for time-varying multi-path fading channel.
     DCT is introduced to reduce PAR of all-phase OFDM systems. With the application of the character of DCT energy concentration, the PAPR can be greatly reduced in all-phase OFDM system. Compared with the traditional algorithms of PAPR reduction, it has the advantages of small amount of computing and large reducting of amplitude. At the same time, it improves the BER performance of system.
引文
[1]尹长川,多载波宽带无线通信技术[M].北京,北京邮电大学出版社,2004
    [2]袁东风,张海霞.宽带移动通信中的先进信道编码技术.北京,北京邮电大学出版社,2004
    [3]W. W. Lu. Broadband Wireless Mobile: 3G and Beyond. New York: John Wiley and Sons, 2002
    [4] Franziskus Bauer, Arnaud Gueguan, Sylvie Mayrargue et al. Synthesis Report on wordwide research on 4G systems. European Commission IST-2001-32620 MATRICE Deliverable D1.4
    [5]S. Hara, R.Prasad. Multicarrier techniques for 4G mobile communication. Boston, Mass: Artech House, 2003
    [6]G. R. Cooper, R. W. Netteton. A spread spectrum technique for high capacity mobile communications. IEEE Trans.on Veh, Technol, 1978,(27):264-275
    [7] S. B. Weinstein, P M. Ebert, "Data Transmission by Frequency-division Multiplexing Using the Discrete Fourier Transform," IEEE Transactions on Communication Technology, Oct.19 71,19 :628-634
    [8] A. Peled and A Ruiz, "Frequency domain data transmission using reduced computational complexity algorithms," IEEE International Conference on Acoustics ,Speech and Signal Processing, Apr.19 80,5: 964-96
    [9] L Kofman and V Roamn, "Broad wireless access solutions based on OFDM access in IE EE8 02.16,"IE EE Commun. Mag., A pr.2002, pp .96 -103
    [102] H. Sari and G Karam, "Orthogonal frequency division multiple access and its application to C ATV networks," Eur; Trans. Telecommun., Nov-Dec.,1998,9( 6): 507- 516
    [11]张建华,蔡鹅,OFDM-4G核心的物理传输技术,2005(2):89-9
    [12]王文博,郑侃.宽带无线通信OFDM技术,北京:人民邮电出版社,2003.1
    [13] T. Polet,, M.Van, Bladel, M .Moeneclaey, "BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise," IEEE Transactions on Communications, Fe b./Mar./Apr,1995,vo .l43,no .2/3/4,pp .19 1-193
    [14] L. Wei, C. Schlegel, "Synchronization requirements for multi-user OFDM on satellite mobile and two path Rayleigh fading channels," IEEE Transactions on Communications, Feb/Mar/Apr.,19 95,vo l.43,no .213/4,pp .887-895
    [15]王兆华, H. Amiri,用二维重叠数字滤波器再生亚Nyquist取样信号,天津大学学报, 1983(1):pp 47-64
    [16]侯正信,三种二维重叠数字滤波器的构造,天津大学学报, 1985 13(6):29-49
    [17]王兆华,曹继华,韩萍,FOUREIER重叠数字滤波器,信号处理,2001,17(2):189-191
    [18]侯正信,全相位列率滤波器的设计和实现,信号处理,2001增刊,vol(17):132-135
    [19]侯正信,王兆华,杨喜,全相位DFT数字滤波器是设计与实现,电子学报,2003,31(4):539-543
    [20]苏飞,王兆华,一种新结构频率域重叠数字滤波器,电路和系统学报,2004,9(1):46-49
    [21]黄翔东,全相位数字信号处理,天津大学博士论文,2006.12.1
    [22]王兆华,侯征信.全相位FFT频谱分析装置,实用新型发明专利,200420028959.8,
    [23]侯征信,王兆华,杨喜,全相位DFT数字滤波器的设计和实现.电子学报,2003,31(4):529-543
    [24]王兆华,侯征信,苏飞.全相位数字滤波器.信号处理,2003,Vol(19):1-4增刊。
    [25]孙山林,侯春萍.全相位OFDM系统的最大自相关帧同步计算机工程与应用,2009,45(4):23-25
    [26]苏飞,王兆华. DFT域全相位FIR滤波器设计和实现.信号处理,2004,20(4):231-235
    [27]侯征信,杨喜.全相位DFT数字滤波器的一种新结构设计和实现.信号处理,2004,20(4):272-276
    [28]苏飞,王兆华.基于变换域全相位FIR自适应滤波算法.电子学报,2004,32(11):1859-1864
    [29]侯征信,郭旭静,杨喜.基于全相位IDCT滤波器的内插重采样分层编码技术.电子与信息学报,2005,27(6):865-869
    [30]S. Kasturia, J. Cioffi. Vector coding for partial-response channel. IEEE Trans. Inform. Theory, July 1990, 36(4): 741-762
    [31] M. A. Tzannes, M. C. Tzannes, J. Proakis etc. DMT systems, DWMT systems and digital filter banks. Proc. ICC. 1994
    [32] S. D. Sandberg, M. A. Tzannes. Overlapped discrete multi-tone modulation forhigh speed copper writer communications. IEEE Journal of Select. Areas in Commun. Dec. 1995, 13(9):1571-1585
    [33] G. Cherubini, E. Eleftheriou, S. Olcer. Filtered multi-tone modulation for VDSL. Proc. IEEE Globecom’99, Brazil, Dec. 1999:1139-1144
    [34] G. Cherubini, E. Eleftheriou, S. Olcer. Filtered multi-tone modulation for Very High-Speed Digital Subscriber Lines. IEEE Journal of Select. Areas in Commun, June. 2003, 20:1016-1028
    [35] Bing-Leung Patrick Cheung. Simulation of Adaptive Array Algorithms for OFDM and Adaptive Vector OFDM Systems. Blacksburg, Virginia, 2002.9
    [36] E ric Phillip LAWREY BE (Hons). Adaptive Techniques for Multiuser OFDM, December 2001
    [37] Merwise Khalwati, and M. R. Soleymani, Enhanced Uplink Frequency Synchronization Algorithm for OFDMA Systems in a Multi-path Fading EnSIRonment. IEEE Canadian Conference on ECE, Ottawa 2006
    [38] Xiaodong Li, L J Cimini. Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters, 1998, 2(5):131-133
    [39] Nikookar H, Lidsheim K.S. Random phase undating algorithm for OFDM transmission with low PAPR. IEEE Transactions on Broadcasting , 2002, 48(2): 123-128
    [40] Richard van Nee, Ramjee Prasad. OFDM Wireless Multi-media Communications. Artech House, 2000
    [41] Seaton K A, ARMStrong J. Polynominal cancellation coding and finite difference. IEEE Trans. Information Theory. 2000, 46(1): 311-313
    [42] K. S. Athaudage C R N. Qiu B. A novel ICI cancellation scheme to reduce both frequency offset and IQ imbalance effects in OFDM. Proceedings of Proc. IEEE 9TH International Symposium on Computers and Communications. Alexandria, Egypt, 2004:708-713
    [43] Shentu J, Panta K. ARMStrong J. Effects of phase noise on performance of OFDM systems using an ICI cancellation scheme. IEEE Trans. Broadcast., 2003, 49(2):221-224
    [44] Zhang J, Rohling H, Zhang P. Analysis of ICI cancellation scheme in OFDM systems with phase noise. IEEE Trans. Broadcast. 2004, 50(2):97-106
    [45] Zhao Y, Haggman S. G. Interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans. Commun., 2001, 49(7):1185-1191
    [46] Guillermo Acosta-Marum. Measurement, Modeling, and OFDM Synchronization for the Wideband Mobile-to-Mobile Channel. School of Electrical and Computer Engineering Georgia Institute of Technology. May 2007
    [47] P. H. Moose,“A technique for orthogonal frequency division multiplexing frequency offset correction,”IEEE Trans. Commun., vol. 42, pp. 2908-2914, Oct. 1994.
    [48] Alireza Seyedi and Gary J. Saulnier. General ICI Self-Cancellation Scheme for OFDM Systems. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 1, JANUARY 2005, pp: 198-210
    [49] E. Y. Ho, Y. S. Yeh:“A new approach for evaluating the error probability in the presence of inter-symbol interference and additive Gaussian noise.”BSTJ, Vol.49, November 1970, pp2249-2265.
    [50] W. Y. Zou and Y. Wu,“COFDM: an overview,”IEEE Trans. on Broadcasting, vol. 41, no.1, pp. 1-8, Mar. 1995.
    [51] Digital Broadcasting Systems for Television, Sound and Data Services; Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, European Telecommunication Standard ETS 300 744, 1996.
    [52] DRAFT Suplement to STANDARD for Information Technology Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part II Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band, IEEE P802.11a/D7.0, July 1999.
    [53] S. Mohamed, Y.Wu, and L. Házy,“OFDM uplink for interactive broadband wireless: analysis and simulation in the presence of carrier, clock and timing errors,”IEEE Trans. on Broadcasting, vol.47, no.1, pp. 3-19, Mar. 2001.
    [54] X. B.Wang, T. T. Tjhung, Y.Wu, and B. Caron,“SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,”IEEE Trans. on Broadcasting, vol. 49, no.2, pp. 170-177, June 2003.
    [55] A. Peled and A. Ruiz,“Frequency domain data transmission using reduced computational complexity algorithms,”in Proc. IEEE International Conference: Acoustic, Speech and Signal Processing, ICASSP/80, vol. 5, Denver, CO, Apr. 1980, pp.964-967.
    [56] J. J. Van de Beek, M. Sandelland, and P. O. B?rjesson,“ML estimation of timeand frequency offset in OFDM systems,”IEEE Trans. on Signal Processing, vol.45, no.7, pp.1800-1805, July 1997.
    [57] D. Landstr?m, S. K. Wilson, J. J. Van de Beek, P. Odling, and P. O. B?rjesson,“Symbol time offset estimation in coherent OFDM systems,”in Proc. Int. Conf. On Communications, vol.1, Vancouver, BC, Canada, June 1999, pp.500-505.
    [58] T. M. Schmidl and D. C. Cox,“Robust frequency and timing synchronization for OFDM,”IEEE Trans. on Commun., vol. 45, no. 12, pp. 1613-1621, Dec.1997.
    [59] B. Ai, J. H. Ge, and Y. Wang,“Symbol timing technique in OFDM systems,”IEEE Transactions on Broadcasting, vol.50, no.1, pp. 56-62, Mar. 2004.
    [60] X. B.Wang, Y.Wu, and B. Caron,“Transmitter identification using embedded pseudo random sequences,”IEEE Trans. on Broadcasting, vol. 50, no. 3, pp.244-252, Sept.2004.
    [61] Z.W. Zheng, Z. X. Yang, C. Y. Pan, and Y. S. Zhu,“Novel synchronization for TDS-OFDM-based digital television terrestrial broadcast systems,”IEEE Trans. on Broadcasting, vol.50, no.2, pp.148-153, June 2004.
    [62] J.Wang, Z. X. Yang, C. Y. Pan, M. Han, and L. Yang,“A combined code acquisition and symbol timing recovery method for TDS-OFDM,”IEEE Trans. on Broadcasting, vol.49, no.3, pp.304-308, Sept.2003.
    [63]“Terrestrial Digital Multimedia/Television Broadcasting System,”P.R.China Patent 00 123 597.4, Mar.2001.
    [64] K. S. Kim, K. H. Chang, S. W. Kim, and Y. S. Cho,“A preamble-based cell searching technique forOFDMcellular systems,”in IEEE 58th VTC, 2003-Fall, vol.4, Oct. 1995, pp. 2471-2475.
    [65] Y. Ouyang and C. L. Wang,“A new symbol time estimator for orthogonal frequency division multiplexing systems,”in IEEE Global Telecommunications Conference, GLOBECOM’03, vol.4, Dec. 2003, pp. 2300-2304.
    [66] D. K. Kim, S. H. Do, H. Cho, H. J. Chol, and K. B. Kim,“A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM systems,”IEEE Trans. on Consumer Electronics, vol. 44, no.3, pp. 1142-1149, Aug. 1998.
    [67] Y. Wang, J. H. Ge, and B. Ai,“A novel scheme for symbol timing in OFDM WLAN systems,”in IEEE Int. Symposium on Communications and Information Technologies 2004, ISCIT’04, Sapporo, Japan, Oct. 2004.
    [68] N. Chayat,“Tentative criteria for comparison of modulation methods”, IEEE P802.11-97-96, Sept. 1999.
    [69] B. G. Yang, K. B. Letaief, and S. Roger,“Timing recovery for OFDM Transmission,”IEEE Journal on Selected Areas in Communications, vol. 18, no. 22, pp. 2278-2291, Nov. 2000.
    [70] T. Pollet, M. Van Bladel, and M. Moeneclaey,“BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,”IEEE Trans. on Commun., vol. 43, no. (2/3/4), pp. 191–193, Feb./Mar./Apr. 1995.
    [71] J. ARMStrong,“Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM,”IEEE Trans. on Commun, vol. 47, no. 3, pp. 365–369, Mar. 1999.
    [72] K. A. Seaton and J. ARMStrong,“Polynomial cancellation coding and finite differences,”IEEE Trans on Information Theory, vol.46, no.1, pp. 31-313, Jan. 2000.
    [73] Z. S. Zhang, K. P. Long, and Y. A. Liu,“Complex efficient carrier frequency offset estimation algorithm in OFDM systems,”IEEE Trans. On Broadcasting, vol.50, no.2, pp. 159-164, June 2004.
    [74] W. D. Warner and C. Leung,“OFDM/FM frame synchronization for mobile radio data communication,”IEEE Trans. on Vehic. Tech., vol. 42, no. 3, pp. 302-313, Aug. 1997.
    [75] U. Lambrette, M. Speth, and H. Meyr,“OFDM burst frequency synchronization by single carrier training data,”IEEE Communications Letters, vol. 1, pp. 46-48, Mar. 1997.
    [76] M. Luise and R. Reggiannini,“Carrier frequency acquisition and tracking for OFDM systems,”IEEE Trans. on Communications, vol.44, no.11, pp. 1590-1598, Nov.1996.
    [77]“Carrier frequency recovery in All-digital modems for burst-mode transmissions,”IEEE Trans. on Communications., vol. 43, no.(2/3/4), pp. 1169-1180, Feb./Mar./Apr. 1995.
    [78] M. Sliskovic,“Carrier and sampling frequency offset estimation and correction in multicarrier systems,”in IEEE GLOBECOM’01.2001, vol.1, Nov.2001, pp. 285-289.
    [79] H. Zou, B. Mcnair, and B. Daneshrad,“An integrated OFDM receiver for high-speed mobile data communications,”in IEEE GLOBECOM’01, vol. 5, Nov.2001, pp. 3090-3094.
    [80] F. Daffara and O. Adami,“A new frequency detector for orthogonal multi-carriertransmission techniques,”in Proc. IEEE Vehic. Tech. Conf., vol. 2, Chicago, IL, July 1995, pp. 804-809.
    [81] H. K. Sang, Y. H. You, and J. H. Paik,“Frequency offset synchronization and channel estimation for OFDM-based transmission,”IEEE Communications Letters, vol.4, no.3, pp. 95-97, Mar. 2000.
    [82] T. Wakutsuand and M. Serizawa,“A novel carrier frequency offset estimation scheme for OFDM systems utilizing correlation with a pilot symbol without sub-carrier.,”in Proc. of IEEE 49th Vehicular Technology Conference, VTC’99, vol. 1, Houston, Texas, USA, May 1999, pp. 113-117.
    [83] F. Daffara and A. Chouly,“Maximum-likelihood frequency detectors for orthogonal multi-carrier systems,”in IEEE. Int. Conference on Communications, ICC’93, vol. 2, Geneva, Switzerland, May 1993, pp. 766-771.
    [84] J. J. Van de Beek, M. Sandell, M. Isaksson, and P. O. B?rjesson,“Lowcomplex frame synchronization in OFDM systems,”in Proc. Int. Conf. Universal Personal Communications Record, Tokyo, Japan, Nov. 1995, pp. 982-986.
    [85] K.W. Kang, J. Ann, and H. S. Lee,“Decision-directed maximum-likelihood estimation of OFDM frame synchronization offset,”Electron Letters, vol. 30, no. 25, pp. 2153–2154, Dec. 1994.
    [86] M. Sandell, J. J. Van de Beek, and P. O. B?rjesson,“Timing and frequency synchronization in OFDM systems using the cyclic prefix,”in Int. Symposium Synchronization, Essen, Germany, 1995, pp. 16-19.
    [87] J. S. Oh, Y. M. Chung, and S. U. Lee,“A carrier synchronization technique for OFDM on the frequency-selective fading environment,”in VTC Conference Record, vol. 3, Apr./May 1996, pp. 1574-1578.
    [88] K. Braman,“Maximum likelihood clock and carrier recovery in a direct sequence spectrum communication system,”in Proc. of IEEE Int. Conf. on Personal Wireless Communications ICPWC’02, New Delhi, India, Dec. 2002, pp. 322-325.
    [89] M. Morelli, A. Andrea, and U. Mengali,“Feedback frequency synchronization for OFDM applications,”IEEE Communications Letters, vol.5, no.1, pp. 28-30, Jan. 2001.
    [90] U. Tureli, H. Lui, and M. O. Zoltowski,“OFDM blind carrier offset estimation: ESPRIT,”IEEE Trans. on Communications, vol.48, no.9, pp. 1459-1461, Sept. 2000.
    [91] U. Tureli and H. Liu,“Blind carrier synchronization and channel identification for OFDM communications,”in Proc. of IEEE ICASSP’98, vol. 6, Seattle, WA, May 1998, pp. 3509-3512.
    [92] M. Luise, M. Marselli, and R. Reggiannini,“Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels,”IEEE Trans. on Communications, vol.50, no.7, pp. 1182-1188, July 2002.
    [93] M. H. Hsieh and C. H. Wei,“A Low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels,”IEEE Trans. on Vehicular Technology, vol. 48, no.5, pp. 1596-1609, Sept. 1999.
    [94] M. Morelli, A. N. D’Andrea, and U. Mengali,“Frequency ambiguity resolution in OFDM system,”IEEE Commun. Letters, vol. 4, no. 4, pp. 134-136, Apr. 2000.
    [95] M. Morelli and U. Mengali,“An improved frequency offset estimator for OFDM applications,”IEEE Communications Letters, vol. 3, no. 3, pp. 75-77, Mar. 1999.
    [96] P. H. Moose. A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction. IEEE Transactions on Communications, vol.42, n.0 10, pp. 2908-2913, Oct.1994
    [97] B. Ai, J. H. Ge, Y. Wang, S. Y. Yang, P. Liu, and G. Liu,“Frequency offset estimation for OFDM in wireless communications,”IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 73-77, Mar. 2004.
    [98] B. Ai, J. H. Ge, Y. Wang, S. Y. Yang, and P. Liu,“Decimal frequency offset estimation in COFDM wireless communications,”IEEE Transactions on Broadcasting, vol. 50, no. 2, pp. 154-158, June 2004.
    [99] B. Ai, J. H. Ge, D. F. Zhang, J. Liu, Y. Wang, and Z. Lu,“Carrier frequency recovery technique in OFDM systems,”Wireless Personal Communications, vol. 32, no. 2, pp. 177-188, May 2005.
    [100] P. D. Bot, B. L. Floch, and V. Mignone,“An overview of the modulation and channel coding schemes developed for digital terrestrial television broadcasting within the dTTb project,”in Int. Broadcasting Conf., Sept. 1994, pp. 569-576.
    [101] T. Pollet, P. Spruyt, and M. Moeneclaey,“The BER performance of OFDM systems using nonsynchronized sampling,”in Proc. IEEE Globecom’94, vol. 1, San Francisco, Dec. 1994, pp. 253-257.
    [102] B. G. Yang, K. B. Letaief, R. S. Cheng, and Z. G. Cao,“An improved combined symbol and sampling clock synchronization method for OFDM systems,”inProc. of 1999 IEEE Wireless Communications and Networking Conference, WCNC’99, vol. 3, Sept. 1999, pp. 1153-1157.
    [103] B. G. Yang, Z. X. Ma, and Z. G. Cao,“ML-oriented DA sampling clock synchronization for OFDM systems,”in Proc. of International Conference on Communication Technology, WCC-ICCT 2000, vol. 1, Aug. 2000, pp. 781-784.
    [104] J. Kim, E. J. Powers, and Y. Cho,“A nonsynchronized sampling scheme,”in The 36th Asilomar Conference on Signals, Systems and Computers, vol. 2, Nov. 2002, pp. 1900-1904.
    [105] M. Rice,“Loop control architectures for symbol timing synchronization in sampled data receivers,”in Proc. of MILCOM 2002, vol. 2, Oct. 2002, pp. 987-991.
    [106] F. M. Gardner,“Interpolation in digital modems—part I: fundamentals,”IEEE Transactions on Communications, vol. 41, no. 3, pp. 501-507, Mar. 1993.
    [107] L. Erup, F. M. Gardner, and R. A. Harris,“Interpolation in digital modems-part II: implementation and performance,”IEEE Transactions on Communications, vol. 41, no. 6, pp. 998-1008, June 1993.
    [108] W. G. Cowley and L. P. Sabel,“The performance of two symbol timing recovery algorithm for PSK demodulators,”IEEE Transactions on Communications, vol. 42, no. 6, pp. 2345-2355, June 1994.
    [109] A. N. D’Andrea and M. Luise,“Optimization of symbol timing recovery for QAM data demodulators,”IEEE Transactions on Communications, vol. 44, no. 3, pp. 399-406, Mar. 1996.
    [110] D.W. Paranchych and N. C. Beaulieu,“Performance of a digital symbol synchronizer in co-channel interference and noise,”IEEE Transactions on Communications, vol. 48, no. 11, pp. 1945-1954, Nov. 2000.
    [111] F. J. Harris and M. Rice,“Multirate digital filters for symbol timing synchronization in software defined radios,”IEEE Journal on Selected Areas in Communications, vol. 19, no. 12, pp. 2346-2357, Dec. 2001.
    [112] K. Bucket and M. Moeneclaey,“Tracking performance analysis of feedback timing synchronizers operating on interpolated signals,”in Proc. Of the IEEE Globecom’96: The Key to Global Prosperity, Nov. 1996, pp. 67-71.
    [113] P. Y. Tsai, H. Y. Kang, and T. D. Chiueh,“Joint weighted least squares estimation of frequency and timing offset forOFDMsystems over fading channels,”in The 57th IEEE Semiannual Vehicular Technology Conference,VTC-2003-Spring, vol. 4, Apr. 2003, pp. 2543-2547.
    [114] T. J. Lv and J. Chen,“ML estimation of timing and frequency offset using multiple OFDM symbols in OFDM systems,”in IEEE Global Telecommunications Conference, vol. 4, Dec. 2003, pp. 2280-2284.
    [115] J. G. Proakis, Digital Communications, McGraw-Hill, New York, 1995
    [116]Scholtz R A. Frame synchronization techniques [J]. IEEE Trans. Commun., 1980, 28:1204-1212.
    [117]唐世刚,时域同步块传输系统的同步与信道估计,清华大学博士论文,2008.4
    [118] M. Luise, R. Reggiannini, and G. M. Vitetta, Blind equalization/detection for OFDM signals over frequency-selective channels, IEEE J. Select. Areas Commun. vol.16, pp:1568-1578, Oct. 1998
    [119] Radio broadcasting system: digital audio broadcasting (DAB) to mobile, portable, and fixed receivers, ETSI-European, Telecommunication Standarda Institute, Valbonne, France, Feb. 1995
    [120] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson etc. On channel estimation in OFDM systems. Proc. VTC, Chicago IL, July 1995, pp:815-819
    [121] O. Edfors, M.Sandell, J. J. van de Beek, S.K.Wilson etc, OFDM channel estimation by singular value decomposition. IEEE Trans. On Commun., vol.46, pp. 931-939, July 1998
    [122] Y. Li, L. J. Cimini, and N. R. Sollenberger, Robust channel estimation for OFDM systems with rapid dispersive fading channel, IEEE Trans. Commun., vol.46, pp.902-915, July 1998
    [123] Y. Li, Pilot-symbol-aided channel estimation for OFDM wireless systems, IEEE Trans. On Vechicular Tech., vol.49, no.4, July 2000
    [124] X. Wang and K. J. R. Liu, Channel estimation for multicarrier modulation systems using a time-frequency polynomial model, IEEE Trans. On Commun., vol.50, no.7, July2002
    [125] M. X. Chang and Y. T. Su, Model-based channel estimation for OFDM signal in Ralyeigh fading, IEEE Trans. On Commun., vol 50, no.4, pp540-544, Apr.2002
    [126] R. W. Heath and G. B. Giannakis, Expoiting input cyclostationarity for blind channel identification in OFDM systems. IEEE Trans. Signal Processing, vol.47, no.3, pp.848-856, Mar.1999
    [127] B. Muquet, M. de Courville, P. Duhamel, and V. Buenac, A subspace basedblind and semi-blind channel identification method for OFDM systems. In Proc. SPAWC, Annapolis, MD, May 1999, pp.170-173
    [128] S. Zhou and G. B. Giannakis, Finite-Alphabet based channel estimation for OFDM and related multicarrier systems. IEEE Trans. Commun., vol.49, no.8, pp.1402-1414, Aug.2001
    [129] Z. Yang and X. Wang, A sequential monte carlo blind receiver for OFDM systems in frequency-selective fading channels, IEEE Trans. Signal Processing, vol.50, pp.271-280, July2002
    [130] A.Petropulu, R.Zhang and R.Lin, Blind OFDM channel estimation through simple linear precoding, IEEE Trans. On Wireless Commun., vol.3, no.2, pp.647-655, March 2004
    [131]W.Chen and R. Zhang, An SVD method for blind channel estimation in OFDM systems with linear precoder, Proc. CISS, Baltimore, MD, Mar. 2003.
    [132] T. Y. Al-Naffouri, A. Bahai and A. Pauiraj, Semi-blind channel identification and equalization in OFDM: an expection-maximization approach, IEEE Proc. VTC’02, VOL.1, NO.1, PP.24-28, sep.2002
    [133] T. A. Thomas, F.W.Vook and K.L.Baum, Semi-blind channel identification in OFDM, IEEE 55th Vehicular Technology Conference, VTV Spring’02, vol.4, pp.1747-1750, May 2002
    [134] S.M.Kay, Fundamentals of statistical signal processing: estimation theory, Prentice-Hall, NJ, 1993
    [135] M.Morelli and U.Mengali. A comparison of pilot aided channel estimation methods for OFDM systems, IEEE Trans. On Signal Process., vol.49, no.12, Dec2001
    [136] L.L.Scharf, Statistical signal processing: Detection, Estimation, and Time Series Analysis. Reading, MA: Addison-Wesley, 1991
    [137] E.W.Chency, Introduction to approximation theory. New York: McGraw-Hill, 1966
    [138] D.K.Borah and B.D.Hart. A robust receiver structure for time-varying, frequency-flat Rayleigh fading channels, IEEE Trans. Commun., vol.47, pp.360-364, Mar. 1999
    [139] D.K.Borah and B.T.Hart, Frequency-selective fading channel estimation with a polynomial time-varying channel model, IEEE Trans. Commun., vol.47, pp.826-873,June 1999
    [140] M.Luise, R.Reggiannini, and G.M.Vitetta. Blind equalization/detection for OFDM signals over frequency-selective channels. IEEE J. Select.Area Commun. Vol.16, pp.1568-1578, Otc.1998
    [141] M.Dong, L.Tong and B.M.Sadler. Optimal pilot placement for channel trackong in OFDM, pp.602-606, 2002
    [142] E.Moulins, P.Duhanel, J.-F.Cardoso etc. Subspace method for the blind idectification of multichannel FIR filters. IEEE Trans. Signal Processing, vol.43, pp.516-525,Feb.1995
    [143] A.Scaglione, G.B.Giannakis, and S.Barbarossa. Redundant filterback precoders and equalizer Part2: Blind channel estimation, synchronization, and direct estimation. IEEE Trans. Signal Processing, vol.47, pp.2007-2022, July 1999
    [144] G.Leus and M.Moonen. Semi-blind channel estimation for block transmission with non-zero padding, in Proc. Of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, Nov.2001
    [145] H.A.Cipran and M.K.Tsateanis. Stochastic maximum likehood methods for semi-blind channel estimation. IEEE Signal Processing Letters, vol.5, no.1, pp.21-24, Jan.1998
    [146] E.de Carvalho and D.T.M.Sloch. Cramer-Rao bounds for semi-blind, blind and training sequence based channel estimation. In Proc. SPAWC997 Conf. Paris, France, April1997
    [147] J.Ayadi, E.de Caralho and D.T.M. Slock. Blind and semi-blind maximum likelihood methods for FIR multichannel identification. IEEE Proc ICASSP98, vol.6, pp.3185-3188, May 1998
    [148] E. de Carvalho and D.T.M. Slock. Semi-blind maximum-likelihood multi- channel estimation with Gaussian prior for the symbols using soft decision. IEEE VTC’98. vol.2, pp.18-21, May1998
    [149] T.Y.Al-Naffouri, A.Bahai and A.Paulraj. Semi-blind channel identification and equalization in OFDM: an expection-maximization approach, IEEE Proc. VTC’02, vol.1, no.1, pp.22-28, Sep.2002
    [150] T.A.Thomas, F.W.Vook and K.L.Baum. Semi-blind channel identification in OFDM, ieee 55th Vehicular Technology Conference. VTC Spring’02, vol.4, pp.1747-1750, May2002
    [151] M.Patzold. Mobile Fading Channel. Hoboken. NJ:Joha Wiley &Sons. LTD. 2002
    [152] J.G.Proakis, Digital Communications, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall. 1995
    [153] X.Wang, T.T.Tjhung, C.S.Ng. Reducing of peak-to-average power ratio of OFDM system using a companding technique. IEEE Trans. On Broadcasting, Sept.1999, vol.45(3), pp.303-307
    [154] M.Pauli, H.P.Duchenbecker. minimization of the intermodulation distortion of a nonlinearly amplified OFDM signal, IEEE Wireless Communication, 1996(4), pp.93-101
    [155] C.Tellambura, comment on multicarrier transmission peak-to-average reduction of ausing simple block code, Electronics Letter, Aug.1998, vol.34(17), pp.17
    [156]C. Tellembura, use of m-sequence for OFDM peak-to-average power ratio reduction, Electronics Letters, Feb.1997: 33(15), pp.15-16
    [157] D.Wulich. Reduction of peak to mean ratio of multicarrier modulation using cyclic coding. Electronics Letters, Feb.1996:32(5): 432-433
    [158] X.Huang, J.Lu. Reduction of peak-to-average power ratio of OFDM signals with companding transform. Electrionics Letters, April.2001:37(8):506-507
    [159] M.Breiling, S.H.Muller. SLM peak power reduction without explicit side information. IEEE Commun. Letters. June. 2000:5(6):239-241
    [160] S.H.Muller, J.B.Huber. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electronics Letters. Feb. 1997: 33(5):5
    [161] L.J.Cimini, N.R.Sollenbergeer. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Commun. Letters. March.2000 vol.4(3), pp.86-89
    [162] S.H.Muller, J.B.Huber. Acomparsion of peak power reduction schemes for OFDM. IEEE Proc. of VTC1997:1-5
    [163] TNS 2005. Two-day batter life tops wish list for future all-in-one phone device.
    [164]曹祁生、梁德群,非正交多重调制的研究[J],电子学报, 2006,1:19-23
    [165] G. D. Forney, Jr.,“Multidimensional constellations-Part 11: Voronoi constellations,”IEEEJ. Select. Areas Commun., see this issue.
    [166] John G. Proakis, Digital Communications (fourth edition). ISBN 0-07-232111-3. Mc Graw-Hill Compamies. pp:276-279.-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700