用户名: 密码: 验证码:
表面等离子体共振(SPR)传感技术及在介质复折射率测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SPR传感技术因其灵敏度高、待测物无需纯化、可实现免标记、实时和无损伤检测等独特优点,在临床诊断、生化制药及环境检测等方面有广泛的应用前景。本论文以提高SPR传感的灵敏度和分辨率及拓展SPR技术的应用范围为目的,在理论和实验上对SPR耦合结构、探测光束主要参数对SPR传感器性能的影响及SPR技术在吸收介质测量方面的应用等作了较为系统深入的研究,论文取得的创新性成果主要有:
     对比分析了四种棱镜耦合结构(传统SPR结构、长程SPR结构、耦合等离子体波导共振结构和波导耦合SPR结构)SPR传感器的性能及适用性条件,通过详实的数值模拟,重点分析了在角度调制、波长调制和强度调制方式下,不同结构SPR传感器直接检测样品折射率变化和检测传感层折射率或厚度变化时的灵敏度、分辨率及线性测量范围,对SPR传感器耦合结构的优化设计有重要参考价值。
     探讨了探测光束准直度、谱线宽度和偏振度对SPR传感器的影响,发现三者中探测光束准直度的影响最为显著。准直度的下降不仅使SPR传感器分辨率降低,还会造成基于强度检测的SPR成像传感器各探测点间反射率和灵敏度差异。上述结果对SPR传感器中光源的设计有一定的指导意义。
     提出了利用SPR相位差法测量吸收介质复折射率的方法。在分析了生物组织的光学特性后,利用该方法实验测量得到了Intralipid溶液(仿生物组织)和兔血的复折射率,模拟得到实部和虚部的测量不确定度均可达10-4量级。此外,以吸收介质复折射率的lorentz模型为基础,研究了SPR技术在检测吸收介质样品折射率实部和虚部变化方面的应用。这些研究拓宽了SPR技术的应用范围,并为混浊介质复折射率的高精度测量提供了一个可能的方法。
     研究了二维亚波长周期SPR结构的传输特性并将其应用于折射率传感,分析了各参数对透射增强峰的影响并给出了理论解释和定性分析。结果表明,在二维周期金属膜结构上,既有由周期引起的表面等离子体共振,还有其它共振模式;通过调整结构可以得到比棱镜耦合SPR的共振峰细锐得多的共振峰,应用于折射率传感时可以获得更高的抗噪声性能和分辨率。该研究可应用于新型SPR传感器的设计制作。
The technology of Surface Plasmon Resonance (SPR) has wide prospect in clinical diagnosis, biochemical pharmaceutics, environmental detection, etc, as a result of its particular advantages of high sensitivity, non-purification of sample, and the detection with free label, real time as well as non-traumatic. In order to enhance the sensitivity and resolution of the SPR sensor, and extend the application of SPR technology, the systemic and profound researches are implemented theoretically and experimentally on the SPR coupling configuration, the influence of the probe beam's parameters on the performance of the SPR sensor and the application of SPR technology on the absorbing medium detection and so on. In a word, the innovative achievements are listed as follows:
     By comparison, the performance and applicability of four prism coupling configurations (including the conventional SPR, Longe Range SPR, Coupled Plasmon Waveguide Resonance and Waveguide Coupled SPR) of SPR sensors are analyzed. Based on the numerical simulation, the sensitivity, resolution and linearity measurement range of the different SPR sensors are researched in detail under the angle, wavelength and intensity modulations respectively, when they are used to detect the sample's refractive index variation and the sensing layer's variation of the refractive index or thickness. As expected, all the results are valuable for the configuration design of SPR sensors.
     The influence of the probe beam's collimated degree, breadth of spectrum line and polarization degree on the SPR sensor is discussed. The results show that the collimated degree is the most notable factor among the three parameters. Concretely speaking, the drop of the collimated degree will not only decrease the resolution but also induce the non-uniformity of reflectivity and sensitivity differences among the probe spots for the imaging SPR sensor based on the intensity detection. Therefore, these results can supply some significant guidance for the source design of the SPR sensor.
     A new method which determines the complex refractive index of absorbing medium with SPR phase detection is proposed. The complex refractive index of Intralipid solutions (imitating the biological tissues) and leporine blood are experimentally measured by the new proposed method, on the basis of analyzing the biological tissues'optical characters. The simulated results indicate that the measurement uncertainty of the complex refractive index's real and imaginary parts can reach to 10-4. Furthermore, the application of SPR technology in detecting the variation of complex refractive index for absorbing medium is studied based on the Lorentz model. Hence, these researches extend the application range of SPR technology, and provide a possible method that has high-precision in the measurement of the complex refractive index for turbid medium.
     The transmission character of a two-dimensional and sub-wavelength SPR structure which will be applied to the refractive index sensor is studied. The effect of each parameter on the transmission peak is analyzed and explained theoretically. The results manifest that not only SPR which caused by the period but also the other resonance modes exist in the two-dimensional periodic metal film at the same time. As a matter of fact, a resonant peak which is much sharper than that of the prism coupling SPR can be obtained by adjusting the periodic configuration. Based on which a sensor with better noise-resistance and higher resolving power can be gained. In short, this study can be used in the design of novel SPR sensors.
引文
[1]张三慧.大学物理学(第三册)电磁学,北京:清华大学出版社,1999.
    [2]Tonks L, Langmuir I. Oscillations in Ionized Gases. Physical Review,1929,33:195~ 210.
    [3]吴英才,袁一方,徐艳平.表面等离子体共振传感器的研究进展.传感器技术,2004,23(5):1~5.
    [4]Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine,1902,4:396~402.
    [5]Fano U J. The theory of anomalous diffraction of Quasi-Stationary waves on metallic surfaces (Sommerfeld's waves). Journal of the Optical Society of America,1941,31:213~ 219.
    [6]Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review,1957,106: 874~881.
    [7]Powell C J, Swan J B. Origin of the Characteristic Electron Energy Losses in Aluminum. Physical Review,1959,115:869~875.
    [8]Stem E A, Ferrel R A. Surface Plasma Oscillations of a Degenerate Electron Gas. Physical Review,1960,120:130~136.
    [9]Raether H. Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Berlin Heidelberg:Springer-Verlag,1988.
    [10]Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Physik,1968,216:398~410.
    [11]Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited by light. Naturforsch,1968,23A:2135~2136.
    [12]刘国华,常露,张维,et al.SPR传感技术的发展与应用.仪表技术与传感器,2005,11:1-5.
    [13]赵杰,王景田,韩泾鸿.SPR生物化学量检测系统.仪表技术与传感器,1996,3:36-39.
    [14]Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Applied Optics,1988,27:1160~1163.
    [15]Liedberg B, Lundstrom I, Stenberg E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B,1993,11:63~72.
    [16]崔大付,周力夫.表面等离子体谐振测试仪.中国专利,专利号:98102366.5
    [17]Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B,1993,12:213~220.
    [18]Zhang L M, Uttamchandani D. Optical chemical sensing employing surface plasmon resonance. Electronics Letters,1988,23:1469~1470.
    [19]Vukusic P S, Bryan-Brown G P, Sambles J R. Surface plasmon resonance on grating as novel means for gas sensing. Sensors and Actuators B,1992,8:155~160.
    [20]Vidal M M B, Lopez R, Aleggret S, et al. Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sensors and Actuators B,1993,11:455~459.
    [21]Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmons resonance. Sensors and Actuators,1982,3:79~88.
    [22]Liedberg B, Nylander C, Lundstrom I. Surface plasmons resonance for gas detection and biosensing. Sensors and Actuators,1983,4:299~304.
    [23]Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors:review. Sensors and Actuators B,1999,54:3~15.
    [24]Ho H P, Law W W. Application of differential phase measurement technique to surface plasmon resonance sensors. Sensors and Actuators B,2003, (96):554~559.
    [25]Wu C, Jian Z, Joe S. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B,2003, (92):133~136.
    [26]Wu C M, Jian Z C, Joe S F. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B,2003,92:133~136.
    [27]Yu X L, Zhao L Q, Jiang H. Immunosensor based on optical heterodyne phase detection. Sensors and Actuators B,2001,76:199~202.
    [28]Shen S, Liu T, Guo J. Optical Phase-Shift Detection of Surface Plasmon Resonance. Applied Optics,1998,37:1747~1751.
    [29]Yu X L, Wang D, Wei X. A surface plasmon resonance imaging interferometry for protein micro-array detection. Sensors and Actuators B,2005,108:761~771.
    [30]余兴龙,刘俊峰,定翔.基于SPR相位检测的蛋白质芯片信号获取与处理研究.生命科学仪器,2005,3:20~24.
    [31]Nitikin P.I, Belogzelov A A, Kochergin V E. Surface plasmon resonance interferometry for biological and chemical sensing. Sensors and Actuators B,1999,54:43~50.
    [32]Kochergin V E, Valeiko M V, Belogzelov A A. Visualization of the angular dependence of the reflected-radiation phase under conditions of a surface-plasmon resonance and its sensor application. Quantum Electronics,1998,28:835~839.
    [33]Nitikin P I, Grigorenko A N, Belogzelov A A. Surface plasmon resonance interferometry for micro-array biosensing. Sensors and Actuators B,2000,85:189~193.
    [34]Naraoka R, Kajikawa K. Phase detection of Surface Plasmon Resonance Using Rotating Analyzer Method. Sensors and Actuators B,2005,107:952~956.
    [35]Kruchinin A A, Vlasov Y G. Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sensors and Actuators B,1996,30:77~80.
    [36]Akimoto T, Sasaki S, Ikebukuro K, et al. Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy. Biosensors and Bioelectronics,2001,15:355~362.
    [37]Hanning A, Roeraade J, Delrow J J. Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution. Sensors and Actuators B,1999, (54):25~36.
    [38]Akimoto T, Sasaki S, Ikebukuro K. Estimation of sensitivity for refractive index and immunoreaction in a surface plasmon resonance sensor probe. Analytica Chimica ACTA, 2000,417:125~131.
    [39]Sharma A K, Gupta B D. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Optics Communications, 2005,245:159~169.
    [40]Homola J. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors and Actuators B,1997,41:207~211.
    [41]Homola J, Koudela I, Yee S S. Surface plasmon resonance sensor based on diffraction gratings and prism couplers:sensitivity comparison. Sensors and Actuators B,1999,54:16~ 24.
    [42]Bruijn H E, Kooyman R P H, Greve J. Choice of metal and wavelength for surface-plasmon resonance sensors:some considerations. Applied Optics,1992, (31):440~ 442.
    [43]Chiang H P, Wang Y C, Leung P T. Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy. Thin Solid Films,2003, (425):135~138.
    [44]Jonsson U, Fagerstaml, Ivarsson B. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques,1991,11:620~627.
    [45]曹振新,梁大开,郭明江.光纤表面等离子体波传感器的温度特性的研究.光谱学与光谱分析,2003,23:31-34.
    [46]Jorgenson R J, Yee S S. Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor. Sensors and Actuators A,1994, (43):44~48.
    [47]蔡浩原,崔大付,向四海,et al.等倾干涉条纹在SPR现象中的规律研究.仪表技术与传感器,2004,6:41-42.
    [48]王艳霞,曹振新,吴乐南.分布式棱镜SPR传感器.仪表技术与传感器,2004,5:1-3.
    [49]Karlsson R, Stahleberg R. Surface plasmon resonance detection and multispot sessing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Analytical Biochemistry,1995,228:274~280.
    [50]Pfeifer P, Aldinger U, Schwotzer G, et al. Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy. Sensors and Actuators B,1999,54: 166~175.
    [51]Nenninger G G, Tobisk P, Homola J. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors and Actuators B,2001,74:145~151.
    [52]Yu X L, Wang D X, Z Y. Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sensors and Actuators B,2003,91:285~290.
    [53]Miura N, Sasaki M, Gobi K V. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreation method. Biosensors and Bioelectronics,2003,18:953~959.
    [54]Piliarik M, Vaisocherova H, J H. A new surface plasmon resonance sensor for high-throughput screening applications. Biosensors and Bioelectronics,2005,20:2104~ 2110.
    [55]Boozer C, Yu Q M, Chen S F. Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. Sensors and Actuators B, 2003,90:22~30.
    [56]曹振新,吴乐南,梁大开.纵向分布式表面等离子体波传感器.中国专利,03113077.1.
    [57]Mannelli I, Courtois V, Lecaruyer P, et al. Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sensors and Actuators B,2006,119:583~591.
    [58]Yeatman E M, Ash E A. Surface plasmon scanning microscopy. Proceedings of SPIE, 1988,897:100~107.
    [59]Rothenhausler B, Knoll W. Surface-plasmon microscopy. Nature,1988,332:615~617.
    [60]Otsuki S, Tamada K, Wakida S. Wavelength-scanning surface plasmon resonance imaging. Applied Optics,2005,44:3468~3472.
    [61]Chandezon J, Dupuis M T, Cornet G. Multicoated gratings:a differential formalism applicable and the entire optical region. Journal of the Optical Society of America,1982,72: 839-846.
    [62]Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America A,1986,3:1780~1787.
    [63]Jory M J, Vukusic P S, Sambles J R. Development of a prototype gas sensor using surface plasmon resonance on gratings. Sensors and Actuators B,1994,17:1203~1209.
    [64]Cullen D C, Lowe C R. A direct surface plasmon-polariton immunosensor:preliminary investigation of the non-specific adsorption of serum components to the sensor interface. Sensors and Actuators B,1990,1:576~579.
    [65]Cullen D C, Brown R G, Lowe C R. Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors,1987,3:211~ 225.
    [66]Jory M J, Bradberry G W, Cann P S. A surface plasmon based optical sensor using acousto-optic. Measurement Science and Technology,1995,6:1193~1200.
    [67]Nikitin P I, Beloglazov A A. A multi-purpose sensor based on surface plasmon polariton resonance in a Schottky structure. Sensors and Actuators A,1994,41-42:547~552.
    [68]Thirstrup C, Zong W, Borre M. Diffractive optical coupling element for surface plasmon resonance sensors. Sensors and Actuators B,2004,100:298~308.
    [69]Abdelmalek F. Surface plasmon resonance based on Bragg gratings to test the durability of Au-Al films. Materials Letters,2002,57:213~218.
    [70]Homola J, Ctyroky J, Skalsky M, et al. A surface plasmon resonance based integrated optical sensor. Sensors and Actuators B,1997,286-290(38/39).
    [71]Harris R D, Luff B J, Wilkinson J S, et al. Integrated optical surface plasmon resonance immunoprobe for simazine detection, Biosens. Bioelectron. Biosensors and Bioelectronics, 1999,14:377-386.
    [72]Dostalek J, Ctyroky J, Homola J, et al. Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors and Actuators B,2001,76:8~12.
    [73]Ctyroky J, Homola J, Lambeck P V, et al. Theory and modeling of optical waveguide sensors utilizing surface plasmon resonance. Sensors and Actuators B,1999,54:66~73.
    [74]Harris R D, Wilkinson J S. Waveguide surface plasmon resonance sensors. Sensors and Actuators B,1995,29:261~267.
    [75]Levy R, Ruschin S. SPR waveguide sensor based on transition of modes at abrupt discontinuity. Sensors and Actuators B,2007,124:459~465.
    [76]Zheng Z, Wan Y, Zhao X, et al. Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors. Applied Optics, 2009,48:2491~2495.
    [77]Jorgenson R J. Surface plasmon resonance based bulk optic and fiber optic sensors:[PH.D学位论文].Washington:University of Washington,1993.
    [78]Trouillet A, Trioli C R, Veillas C. Chemical sensing by surface plasmon resonance in a multimode optical fiber. Journal of Optics A:Pure and Applied Optics,1996,5:227~237.
    [79]Trioli C R, Trouillet A, Veillas C. Monochromatic excitation of surface plasmon resonance in an optical-fiber refractive-index sensor. Sensors and Actuators B,1996,54: 589~593.
    [80]Homola J, Slavik R. Fibre-optic sensor based on surface plasmon resonance. Electronics Letters,1996,32:480~482.
    [81]Homola J. Optical fiber sensor based on surface plasmon excitation. Sensors and Actuators B,1995,29:401~405.
    [82]Slavik R, Homola J, Ctyroky J. Novel surface plasmon resonance sensor based on singlemode optical fiber. Proceedings of SPIE,1997,3105:325~331.
    [83]Liedberg B, Nylander C, Lundstrom I. Biosensing with surface plasmon resonance-how it all started. Biosensors Bioelectron,1995,10:1~9.
    [84]崔大付,李向明,蔡浩原.表面等离子体谐振(SPR)生化分析仪的研制.现代科学仪器,2001,6:34-38.
    [85]陈涛,郭继华.光激发表面等离子体波反射系数在复平面的轨迹.清华大学学报(自然科学版),2003,43:285-288.
    [86]定翔,刘芳芳,魏星,et al.空间相位调制表面等离子体共振检测蛋白质芯片.清华大学学报(自然科学版),2008,48:792~795.
    [87]余兴龙,蒋弘,王浩娟,et al.横向塞曼激光器在生物分子检测中的应用研究.激光技术,2001,25:97~100.
    [88]余兴龙,闫子波,王鼎新.基于相位检测SPR生物传感器的数值模拟.清华大学学报(自然科学版),2003,43:160-163.
    [89]Qiang L, Xiu H Y, De X H. High resolution surface plasmon interference resonance phase imaging. Proceedings of SPIE,2005,6020:738~745.
    [90]张雪姣.基于SPR传感技术的生物检测方法和实验研究:[硕士学位论文].浙江大学,2007.
    [91]张雪姣,王晓萍.表面等离子体共振的双光束差分研究和数值模拟.光电工程,2007.34:63~67.
    [92]Mart O, Bielefeldt H, Hecht B, et al. Near-field optical measurement of the surface plasmon field. Optics Communications,1993,96:225~228.
    [93]Fischer U C, Pohl D W. Observation of Single-Particle Plasmons by Near-Field Optical Microscopy. Physical Review Letters,1989,62:458~461.
    [94]Specht M, Pedarnig J D, Heckl W M, et al. Scanning Plasmon Near-Field Microscope. Physical Review Letters,1992,68:476~479.
    [95]Bozhevolnyi S I, Smolyaninov I I, Zayats A V. Near-field microscopy of surface-plasmon polaritons:Localization and internal interface imaging. Physical Review B, 1995,51:17916~17924.
    [96]Smolyaninov I I, Mazzoni D L. Experimental study of surface-plasmon scattering by individual surface defects. Physical Review B,1997,56:1601~1611.
    [97]Lu Y F, Mai Z H, Qiu G, et al. Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip. Applied Physics Letters,1999, 75:2359~2361.
    [98]Huang S M, Hong M H, Lu Y F, et al. Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. Journal of Applied Physics,2002,91:3268~ 3274.
    [99]Haefliger D, Stemmer A. Writing subwavelength-sized structures into aluminium films by thermo-chemical aperture-less near-field optical microscopy. Ultramicroscopy,2004,100: 457~464.
    [100]洪小刚,徐文东,李小刚,et al.数值模拟探针诱导表面等离子体共振耦合纳米光刻.物理学报,2008,57:6643-6648.
    [101]赵杰,崔大付,韩泾鸿.用表面等离子体谐振(SPR)测量物质的折射率.光电子.激光,1999,10:40~41.
    [102]Ding Y, Cao Z Q, Shen Q S. Improved SPR technique for determination of the thickness and optical constants of thin metal films. Optical and quantum electronics,2003,35: 1091~1097.
    [103]Tokunaga Y, Watanabe H, Minamide A, et al. Study on Estimation of Metal Film Thickness by Attenuated Total Reflection. Japanese Journal of Applied Physics,1997,36: 3162~3166.
    [104]Maruo S, Nakamura O, Kawata S. Evanescent-wave holography by use of surface-plasmon resonance. Applied Optics,1997,36:2343~2346.
    [105]Wang G P, Sugiura T, Kawata S. Holography with surface-plasmon-coupled waveguide modes. Applied Optics,2001,40:3649~3653.
    [106]唐永新,杨华,郭继华,et al.表面等离子体波(SPW)激光Q开关原理研究.光学学报,2001,21:866~868.
    [107]Wang Y. Surface plasmon tunable filter and flat panel display device. Proceedings Of SPIE,1999,3636:69~72.
    [108]朱彩莲,洋杨,王艳霞.基于Matlab的SPR等离子体显示器仿真的研究.液晶与显示,2007,22:182~185.
    [109]曹振新.基于表面等离子体共振效应的信息获取和显示:[博士学位论文].南京:东南大学,2005.
    [110]Lundstrom I. Real-time biospecific interaction analysis. Biosensors Bioelectron,1994,9: 725~736.
    [111]Alfthan K. Surface plasmon resonance biosensors as a tool in antibody engineering. Biosensors Bioelectron,1998,13:653~663.
    [112]Choi S H, Lee J W, Sim S J. Enhancement of the sensitivity of surface plasmon resonance (SPR) immunosensor for the detection of anti-GAD antibody by changing the pH for streptavidin immobilization. Enzyme and Microbial Technology,2004,35:683~687.
    [113]Butala H D, Tan Y Q, Sadana A. Analyte-receptor binding on surface plasmon resonance biosensors:a fractal analysis of Cre-loxP interactions and the influence of Cl, O, and S on drug-liposome interactions. Analytical Biochemistry,2004,332:10~22.
    [114]Nakatani K, Kobori A, Kumasawa H. Highly sensitive detection of GG mismatched DNA by surfaces immobilized naphthyridine dimmer through poly(ethylene oxide) linkers. Bioorganic and Medicinal Chemistry Letters,2004,14:1105~1108.
    [115]N N A, B S C, D S S, et al. Airborne analyte detection with an aircraft-adapted surface plasmon resonance sensor system. Sensors and Actuators. B,2005,104:237~248.
    [116]Rella R, Rizzo A, Licciulli A. Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system. Materials Science and Engineering,2002,22:439~443.
    [117]Aguirre N M, Passian A, Perez L M. The use of the surface plasmons resonance sensor in the study of the influence of " Allotropic " cells on water. Sensors and Actuators B,2004, 99:149~155.
    [118]Yang Y, Li C, Yin J, et al. Determination of the crosslinking temperature of the thermally crosslinkable polyurethane by attenuated total reflection spectrum. Optics Communications,2007,272:383~386.
    [119]Ozdemir S K, Sayan T G. Temperature Effects on Surface Plasmon Resonance:Design Considerations for an Optical Temperature Sensor. Journal of light wave technology,2003, 21:805~814.
    [120]Weiss N M, Srivastava R, Groger H. Experimental investigation of a surface plasmon-based integrated-optic humidity sensor. Electronics Letters,1996,32:842~843.
    [121]郭继华,邓为民.基于表面等离子体波共振技术的精密角度传感器.清华大学学报(自然科学版),2000,40:12-14.
    [122]Margheri G, Mannoni A, Quercioli F. a new high-resolution displacement sensor based on surface plasmon resonance. Proceedings of SPIE,1997,2783:211~220.
    [123]Danelian E, Karlen A, Karlsson R, et al. SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface:correlation with fraction absorbed in humans. Journal of Medicinal Chemistry,2000,43:2083~2086.
    [124]Mello L D, Kubota L T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry,2002,77:237~256.
    [125]Patel P D. (Bio)sensors for measurement of analytes implicated in food safety:a review. TrAC Trends in Analytical Chemistry,2002,21:96~115.
    [126]Alexandre A K, Paul D G, Hans A S. Surface-Plasmon Resonance Spectrometry and Characterization of Absorbing Liquids. Applied Optics,2000,39:3314~3320.
    [127]Sharma A K, Gupt B D. Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sensors and Actuators B,2004,100:423~431.
    [128]Fujii E, Koike T, Nakamura K, et al. Application of an Absorption-Based Surface Plasmon Resonance Principle to the Development of SPR Ammonium Ion and Enzyme Sensors. Analytical Chemistry,2002,74:6106~6110.
    [129]Iwata T, Maeda S. Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry. Applied Optics,2007,46:1575~1582.
    [130]Kurihara K, Suzuki K. Theoretical Understanding of an Absorption-Based Surface Plasmon Resonance Sensor Based on Kretchmann's Theory. Analytical Chemistry,2002,74: 696~701.
    [131]玻恩,沃耳夫.光学原理,北京:电子工业出版社,2005.
    [132]Ordal M A, Bell R J, Alexander R W, et al. Optical properties of fourteen metals in the infrared and far infrared:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics,1985,24:4493~4499.
    [133]邱国斌,蔡定平.金属表面电浆简介.物理双月刊,2006,4:472-486.
    [134]吴民耀,刘威志.表面电浆子理论与模拟.物理双月刊,2006,4:486-496.
    [135]Gordon J G, Swalen J D. The effect of thin organic films on the surface plasma resonance on gold. Optics Communications,1977,22:374~376.
    [136]曹驻琪.波导光学中的转移矩阵方法,上海:上海交通大学出版社,2000.
    [137]Quail J C, Rako J G, Simon H J. Long-range surface-plasmon modes in silver and aluminum films. Optics Letters,1983,8:377~379.
    [138]Salamon Z, Macleod H A, Tollin G. Coupled plasmon-waveguide resonances:A new spectroscopic tool for probing proteolipid film structure and properties. Biophysical Journal, 1997,73:2791~2797.
    [139]Toyama S, Doumae N, Shoji A, et al. Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor. Sensors and Actuators B,2000,65:32~ 34.
    [140]Salamon Z, Tollin G. Optical anisotropy in lipid bilayer membranes:coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophysical Journal,2001,80:1557~1567.
    [141]Chyou J J, Chu C S, Shih Z H. High efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance. Proceedings of SPIE,2003,5211: 197~206.
    [142]Chien F C, Chen S J. Optical biosensors based on four different surface plasmon resonance modes:sensitivity comparison. Proceedings of SPIE,2004,5327:148~159.
    [143]Nenninger G G. High-resolution surface plasmon resonance biosensing:[Ph.D学位论文].Washington:University of Washington,2001.
    [144]Zayats A V, Smolyaninov I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons. Journal of Optics A:Pure and Applied Optics,2003,5:S16~ S50.
    [145]Choi K, Kim H. Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam. Optics Express,2005,13:8866~8874.
    [146]Hecht E,张存林.光学(第四版),北京:高等教育出版社,2005.
    [147]钟锡华.现代光学基础,北京:北京大学出版社,2003.
    [148]Meeten G H, North A N. Refractive index measurement of absorbing and turbid fluids by reflection near critical angle. Measurement Science and Technology,1995,6:214~221.
    [149]Jaaskelainen A J, Peiponen K E, Raty J A. On reflectometric measurement of a refractive index of milk. Journal of Dairy Science,2001,84:38~43.
    [150]Ding H F, Lu J Q, Kenneth J M, et al. Determination of refractive indices of porcine skin tissues and Intralipid at eight wavelengths between 325 and 1557nm. Journal of the Optical Society of America A,2005,22:1151~1157.
    [151]Niskanen I, Raty J. Complex refractive index of turbid liquids. Optics Letters,2007,32: 862~864.
    [152]Groenhuis R A J, Ferwerda H A, Bosch J J T. Scattering and absorption of turbid materials determined from reflection measurements.2:Measuring method and calibration. Applied Optics,1983,22:2463~2467.
    [153]Groenhuis R A J, Ferwerda H A, Bosch J J T. Scattering and absorption of turbid materials determined from reflection measurements.1:Theory . Applied Optics,1983,22:2456~2462.
    [154]Beck T J, Beyer W, Pongratz T, et al. Clinical Determination of Tissue Optical Properties in vivo by Spatially Resolved Reflectance Measurements. Proceedings of SPIE, 2003,5138:96~105.
    [155]Roland B, Georges W, Dimitri R, et al. Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry. Applied Optics,1996,35:1756~ 1766.
    [156]邹仲之.组织学与胚胎学,北京:人民卫生出版社,2002.
    [157]郑国锠.细胞生物学,北京:高等教育出版社,1992.
    [158]Mourant J R, Freyer J P, Andreas H. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Applied Optics,1998,37:3586~ 3593.
    [159]Barrera R G. Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach. Journal of the Optical Society of America A,2003,20: 296~311.
    [160]Jarkko J S, Peiponen K E. Simulation on Wavelength-Dependent Complex Refractive Index of Liquids Obtained by Phase Retrieval from Reflectance Dip due to Surface Plasmon Resonance. Applied Spectroscopy,2003,57:288~292.
    [161]Erik M V, Jarkko J S, Peiponen K E. Method for extracting the complex dielectric function of nanospheres in a water matrix from surface-plasmon resonance data. Journal of the Optical Society of America B,2005,22:1173~1178.
    [162]石波.生物组织折射率的表面等离子体测量术及椭圆偏振测量术:[硕士学位论文].南京:南京理工大学,2006.
    [163]Boer J W, Kroesen G W, Hoog F J. Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry:correction for depolarization by scattering. Applied Optics,1995,34:5708~5714.
    [164]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. NATURE,1998,391:667~669.
    [165]Lin L L, Li Z Y, Ho K M. Lattice symmetry applied in transfer-matrix methods for photonic crystals. Journal of Applied Physics,2003,94:811~821.
    [166]Li Z Y, Lin L L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E,2003,67:46607,1~11.
    [167]金建铭.电磁场有限元方法,西安:西安电子科技大学出版社,1998.
    [168]韩德专.表面等离子体激元在周期结构中的能带及传播性质:[博士学位论文].上海:复旦大学,2006.
    [169]Ghaemi H F, Thio T, Grupp.D E. Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B,1998,58:6779~6782.
    [170]Park T H, Mirin N, Lassiter J B, et al. Optical Properties of a Nanosized Hole in a ThinMetallic Film. Americian Chamical Society Nanotation,2008,2:25~32.
    [171]Molen K L, Koerkamp K J K, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes. Physical Review B,2005,72:45421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700