用户名: 密码: 验证码:
人参皂苷诱导人神经干细胞增殖、分化的机制研究以及在缺血缺氧和蛛网膜下腔出血诱导的脑损伤中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     神经干细胞因具有自我更新和多向分化的生物学特征,已成为组织细胞工程研究的基础模型和移植治疗神经系统多种疾病的种子细胞,也为以往认为不可能治愈的神经系统退行性疾病的治疗带来了新的希望。神经干细胞的研究已成为当今生物学领域最热门、最前沿、最具活力的课题之一。各国政府都在投入更大的人力、物力和财力,希望在此领域中获得突破,掌握先机,为全球社会的经济发展和人民的健康做出巨大贡献。
     迄今为止,增殖和定向诱导分化仍然是神经干细胞研究的核心内容之一。而国内外的研究大多集中于细胞因子对NSCs的影响上,利用传统中药诱导NSCs的增殖分化研究甚少。人参是我国传统名贵中药,具有“补气生血”的强大功效,人参皂苷Rgl是人参的主要药效成分。药理学研究表明,人参皂苷Rgl具有抗衰老、减少神经细胞损伤、促进脑功能恢复、促进脑内蛋白质的合成、增加突触数目、增强记忆等功效,但对NSCs诱导分化的研究较少,特别是利用基因芯片技术筛选出人参皂苷Rg1促进NSCs分化的主要分子靶点,通过分化细胞的电生理特性,研究其功能分化水平,更是未见报道。
     我们研究NSCs就是利用它结构与功能的可塑性去治疗神经系统损伤及疾病。新生儿缺氧缺血性脑病患病率高达4‰,是导致脑永久性损伤,脑性瘫痪的重要原因,是临床上难治性疾病。我们将人参皂苷Rg1诱导的NSCs应用在缺血缺氧性新生模型鼠中,以进一步从体内实验证明人参皂苷Rg1诱导的NSCs功能分化的效果以及应用潜力。
     人参皂苷Rb1是人参另一重要活性成分。现已证实Rb1在心脑血管系统的疾病治疗中有重要的作用。例如阻滞心肌细胞的钙超载,减轻缺血和/或缺氧诱导的神经细胞死亡,增加神经元的可塑性等。蛛网膜下腔出血是一种老年人常见疾病,常伴有脑组织广泛严重损伤和高死亡率、高致残率,虽然全世界进行了广泛的研发,以寻找新的药物和治疗手段,但疗效仍然远远不如人意。因此,我们也探讨了人参皂苷Rb1对出血性脑损伤的治疗作用,期望在更大程度上挖掘人参这一“百草之王”的重大药用价值,为临床治疗新生儿缺氧缺血性脑病和蛛网膜下腔出血提供新的理论与实验资料。
     方法:
     1.从7~12w流产人胚胎大脑皮层中分离NSCs,采用悬浮细胞培养方法反复传代培养,纯化NSCs;经光学显微镜观察形态和免疫细胞化学对其鉴定;并观察不同浓度的Rgl对NSCs增殖、分化的影响。
     2.通过基因芯片技术,观察Rg1诱导人NSCs向神经元分化7d时靶基因表达情况,通过图形比对分析、Pathway分析、数据演算最终筛选出Rg1促进NSCs分化的最主要的目的基因和信号转导途径,再采用western blot和免疫组化的方法对筛选出的ERK靶基因进行验证。
     3.采用全细胞膜片钳技术分析人参皂苷Rg1诱导人胚胎神经干细胞分化7d时,神经元样细胞的膜特性以及钠、钾离子通道的功能表达,通过电生理特性证实检测细胞的功能成熟水平,以证实人参皂苷Rg1能促进NSCs功能分化成熟。
     4.将人参皂苷Rg1诱导的神经干细胞移植入缺血缺氧的新生鼠模型侧脑室,采用TTC染色和行为学观察对模型进行评价。通过水迷宫、体感诱发电位观测其脑功能的恢复情况,免疫组化检测移植的神经干细胞生长、分化状况。
     5.将人参皂苷GRb1应用到蛛网膜下腔出血的大鼠模型中,通过统计死亡率,检测脑水含量、大脑基底动脉的血管壁厚度和管腔面积,血脑屏障通透性,电镜检测血管壁的损伤情况,以及神经功能学评分来客观评价Rb1的治疗效果。通过检测脑神经元凋亡情况和p53、caspase-3、Bax以及Bcl-2等关键性凋亡通路相关蛋白的表达来探讨GRb1作用的可能机理。
     结果:
     1.体外一定浓度的Rg1有明显的促进NSCs增殖和分化的功效。
     Rg1浓度为120μg/ml时,MTT的OD值最大,促增殖效果最好。
     Rg1浓度为10μg/ml时,NSE、GFAP和Gal-c的细胞阳性率开始升高,20μg/ml时,分化的细胞达到高峰,并比IL-1组效果略好。但继续再增加Rg1的浓度对提高分化细胞的阳性率没有帮助。
     2.基因芯片检测和数据分析可以筛选出人参皂苷Rg1促进NSCs增殖分化的主要靶基因和信号转导通路。
     基因芯片共检测到Rg1诱导NSCs分化过程中差异表达基因675个,其中显著上调的基因有255个,显著下调的基因有420个。
     基因种类主要有与细胞生物合成、细胞代谢、转录正向调控、中枢神经系统发育、细胞分化、离子通道活性等相关基因。分别占差异基因总数的21.6%、11.7%、6.4%、5.1%、3.4%和1.5%。其中与NSCs分化相关最主要的上调基因有:syntaxin 1基因,α-tubulin基因,下调基因有Wnt抑制因子-1。与调控离子通道相关的基因有:编码受体门控性阳离子通道(ROC)蛋白的基因,编码4型内向整流K+通道的基因和编码TRPm2通道蛋白的基因。
     通过Pathway分析发现, MAPK(丝裂原活化蛋白激酶)通路中的ERK(细胞外信号调节蛋白激酶)在Rg1诱导NSCs分化过程中扮演重要角色。而CAMP(环磷酸腺苷)-PKA(蛋白激酶A)和PI3K(磷脂酰肌醇-3激酶)-AKT信号传导通路在Rg1促增殖过程中发挥重要作用。
     经western blot和免疫组化检测,Rg1诱导NSCs分化过程中,ERK1/2蛋白明显上调,并且其磷酸化可以被Rg1激活,30min时达到高峰,60min时消失。在使用ERK阻断剂PD98059后,NSCs的分化率明显下降。得到与基因芯片相同的结果。
     3.全细胞膜片钳检测证实,人参皂苷Rg1能促进NSCs电生理特性的表达和功能分化成熟。
     人参皂苷Rg1(20μg/ml)诱导NSCs分化7天时神经元样细胞的膜静息电位:45.70±2.63 mv;膜电容:26.89±1.91 pf;膜输入阻抗:877.51±20.44 M?;均较对照组有明显差异(P<0.05)。显示了更为成熟的神经元细胞膜特性。
     记录到电压依赖性的快速激活、快速失活的内向Na+电流,并可被TTX阻断,其平均峰值为711.48±158.03 pA,检出率50%,对照组267.24±71.15 pA,检出率22%,均有统计学意义。
     记录到电压依赖性的外向K +电流(经鉴定为快速激活的瞬时外向型K+电流和延迟整流型的外向K +电流),平均峰值1070.42±177.18 pA,对照组:798.11±100.02 pA,(P<0.05)。
     4.移植Rg1诱导后的NSCs,可以在治疗新生大鼠缺血缺氧性脑损伤中发挥较好的作用。
     移植Rg1诱导的人NSCs到的缺血缺氧模型大鼠体内1月后:水迷宫实验潜伏期:60.38±13.5 s,游泳路程:686.52±142.75 cm,较对照组明显缩短;目标象限探索时间:40.72±6.14 s,较对照组明显延长(P<0.05)。
     体感诱发电位实验潜伏期18.42±1.79 ms,较对照组明显缩短;振幅:227.28±19.38μv,较对照组明显增大(P<0.05)。
     抗人NSE抗体免疫组化染色显示:移植组的脑切片中,分化的神经元样细胞在皮层呈散在表达,而在海马区域呈集中表达并围绕缺血损伤区域生长。
     5.人参皂苷Rb1对蛛网膜下腔出血(SAH)的脑损伤有积极的治疗和保护作用。
     20mg/kg Rb1治疗SAH模型大鼠后:
     死亡率15.15%;假手术组6.67%,生理盐水组24.32%。
     自发活动评分提高;
     脑水肿明显降低;血脑屏障通透降低;
     血管内皮细胞电镜及光镜组织病理学明显改善;大脑基底动脉管腔面积明显增大而管壁厚度明显降低;
     神经元凋亡指数明显减少。
     促凋亡蛋白p53,以及由p53激活的Bax蛋白和caspase-3蛋白的表达明显下调,抗凋亡蛋白Bcl-2明显上调。
     结论:
     1.一定浓度的Rg1有明显的促进NSCs增殖和分化的功效。
     2.通过基因芯片检测可以筛选出Rg1促NSCs增殖、分化过程中的重要靶基因。其中与分化相关的主要基因是:syntaxin 1基因,α-tubulin基因,WIF-1基因等;与离子通道调控相关的靶基因主要是:ROC基因,TRPm2基因,4型内向整流K+通道基因等。而数据分析得出人参皂苷Rg1促进NSCs增殖、分化的机制与CAMP-PKA、PI3K-AKT、ERK信号通路的激活有关。
     3.人参皂苷Rg1能促进NSCs电生理特性的表达和功能分化成熟。
     4.移植Rg1诱导后的NSCs,可以在治疗新生大鼠缺血缺氧性脑损伤中发挥较好的作用。
     5.人参皂苷Rb1对蛛网膜下腔出血(SAH)诱发的脑损伤有积极的治疗和保护作用。
Objective
     Neural stem cells has become the basis model in the research of tissue engineering and seed cells in transplantation treatment for a variety of diseases nervous system because of self renewal and differentiation of biological characteristics, but also bring a new hope for the neurodegenerative diseases that can not be cured in the past. Neural stem cells biology research has become one of the most popular, cutting-edge and active issue. Governments are putting more human, material and financial resources, hoping to get a breakthrough in this field, to master the initiative, and make a significant contribution for the economic development of the global community and the health of the people.
     So far, induction of proliferation and directed differentiation is still one of the cores in neural stem cell research. Domestic and foreign research focused largely on the impact of cytokines on the NSCs, but the use of traditional Chinese medicine induced proliferation and differentiation of NSCs is very little. Ginseng is a traditional precious medicine in China with the powerful effect of“Supplement Qi and Engendering Blood”, Ginsenoside Rgl is the major components of ginseng. Pharmacology studies have shown that ginsenoside Rgl has the effect of anti-aging, reducing nerve cell injury, promoting recovery of brain function and brain protein synthesis, increasing the number of synapses, enhancing memory and other effects. But the research on induced differentiation of NSCs is very less. Especially, using gene chip technology to select major molecular target of ginsenoside Rg1-induced NSCs differentiation, and investigate the level of functional differentiation by the electrophysiological characteristics of differentiated cells are not reported.
     Our research on induced NSCs is to use its structure and function of plasticity solving very difficult nervous system injury and degenerative disease in clinical. Currently, the prevalence of neonatal hypoxic ischemic encephalopathy is 4‰, and the disease will cause permanent brain damage. It’s an important factor leading to cerebral palsy. In response to this disease, we will apply the Rg1-induced NSCs to make exploratory study.
     In addition, Ginsenoside Rb1 is one of the main active ingredients in the ginseng, and the research for its pharmacological effects has been studied for many years. In the past decade, Rb1 has been demonstrated in heart and brain systems played an important role, such as blocking calcium overload in myocardial cells, reducing ischemia and/or hypoxia-induced neurons death, increasing the neuronal plasticity and so on. In recent years, the research of subarachnoid hemorrhage (SAH) is in full swing. The professional association for this study is extensively seeking drugs and advanced treatment methods for easing the serious consequences caused by bleeding around the world, but progress is very limited. In view of broad and strong pharmacological effect in the central nervous system, we will focus on examining the role of Rb1 in the treatment of hemorrhagic brain injury(SAH), and look forward to digging significant medicinal value of "King of Herbs" in greater extent. We will provide new theoretical and experimental data for the treatment of neonatal hypoxic ischemic encephalopathy and subarachnoid hemorrhage.
     Methods
     1. We isolated NSCs from 7~12w human embryo cortex, and purified NSCs by using the suspensory cell culture. We observed the shape of NSCs by optical microscopy, identified by immunocytochemistry. And we investigated the effects of different concentrations of Rgl on NSCs proliferation and differentiation.
     2. By gene chip technology to observe the target gene expression in Rg1 induced NSCs differentiate into neurons at 7d. Through the graphical comparative analysis, Pathway analysis and data calculations, the main purpose genes and signal transduction pathway were selested in differentiationed NSCs. Finally, using western blot and immunohistochemical methods the ERK target genes were verified.
     3. Using whole cell patch clamp, differentiated neuron-like cells were assayed for the membrane properties as well as sodium, potassium channel functional expression at 7d. Through the electrophysiological properties to confirm the cell function level of maturity and confirm that ginsenoside Rg1 can promote the differentiation and maturation of NSCs function.
     4. Transplanted ginsenoside Rg1-induced NSCs into the neonatal rat model of hypoxic ischemic by lateral ventricle injection, and evaluated the model by using TTC staining and behavioral observation. Through the water maze and somatosensory evoked potential observed recovery of brain function and through the immunohistochemical detected growth and differentiation status about transplanted NSCs.
     5. Ginsenoside GRb1 was applied to rat model of subarachnoid hemorrhage. Through the statistics of mortality, measurement of brain water content, basilar artery wall thickness and luminal area, blood-brain barrier permeability, electron microscopy detection of vascular wall damage, and nerve function score the therapeutic effect of Rb1 was evaluated, And then, the possible mechanisms of GRb1 were explored by detecting the neuronal apoptosis and the key proteins of apoptosis pathway related such as p53, caspase - 3, Bax and Bcl - 2 .
     Results
     1. Rg1 significantly promoted NSCs proliferation and differentiation in vitro.
     ●Rg1(120μg/ml) had the maximum MTT OD value and the best effect for NSCs proliferation.
     ●When Rg1 concentration was 10μg/ml, the positive rate of NSE, GFAP, and Gal-c began to increase. When the concentration reached 20μg/ml, the differentiation of cells reached a peak. And the effect was slightly better than IL-1 group. But continued to increase the concentration of Rg1 did not help to promote the positive rate of differentiated cells.
     2. Gene chip detection and data analysis could select main purpose genes and signal transduction pathway in Rg1 induced NSCs proliferation and differentiation.
     ●Gene chips detected that the differentially expressed genes number are the 675 in Rg1 induced NSCs differentiation. The significantly increased genes were 255, and significantly reduced genes were 420.
     ●Gene types are mainly associated with cell biology synthesis, cell metabolism, positive regulation of transcription, central nervous system development, cell differentiation, ion channel activity, respectively, 21.6%, 11.7%, 6.4%, 5.1%, 3.4% and 1.5%. The most related upregulation genes in NSCs differentiation were syntaxin 1 gene,α-tubulin gene, and the downregulation gene was Wnt inhibitory factor -1. Associated with the regulation of ion channel genes were encoding receptor-gated cation channel (ROC) protein gene and TRPm2 channel proteins gene.
     ●Through Pathway analysis, the ERK (extracellular signal-regulated protein kinase) /MAPK(mitogen-activated protein kinase) pathway played an important role in Rg1 induced NSCs differentiation. However the CAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) and PI3K (phosphatidylinositol-3 kinase)-AKT signaling pathway played an important role in Rg1 induced NSCs proliferation.
     ●Through the western blot and immunohistochemistry analysis, ERK1/2 protein was significantly increased during Rg1 induced NSCs differentiation, and its phosphorylation could be activated by Rg1, reached its peak in 30min, disappeared in 60min. After using the PD98059 of ERK inhibitor, NSCs differentiation rate decreased significantly. So we got the same results with the gene chip.
     3. The whole cell patch clamp test confirmed that ginsenoside Rg1 can promote the expression of NSC electrophysiological properties and functional differentiation.
     Ginsenoside Rg1 (20μg/ml) induced differentiation of NSCs at 7 days
     ●The resting membrane potential of neuron-like cells: 45.70±2.63 mv; membrane capacitance: 26.89±1.91 pf, membrane input impedance;877.51±20.44 M?; these data were significantly different compared with the control group (P <0.05), and shows a more mature neurons membrane properties.
     ●Recorded voltage dependence inward Na+ currents of fast activation, fast inactivation, and could be blocked by TTX, the average peak value of 711.48±158.03 pA , the detection rate of 50%. However in the control group, the average peak value was 267.24±71.15 pA and the detection rate was 22%. There were significant differences compared with the control group(P <0.05).
     ●Voltage-dependent outward K+ current (identified as rapidly activating transient outward K+ current and delayed rectifier outward K+ current) was recorded. The average peak value was 1070.42±177.18 pA and the value was 798.11±100.02 pA in control group ( P <0.05).
     4. Transplantation of NSCs induced by Rg1 could play a better role in the treatment of HIE neonatal rats with brain injury.
     Transplanted NSCs induced by Rg1 into the rats of ischemia and hypoxia after 1 month:
     ●Water maze test: The latency was 60.38±13.5 s, and the swimming distance was 686.52±142.75 cm, significantly shorter than the control group. Target quadrant exploration time was 40.72±6.14 s, significantly longer than the control group (P <0.05).
     ●Somatosensory evoked potentials: The latency was 18.42±1.79 ms, significantly shorter than the control group. The amplitude was 227.28±19.38μv, significantly increased compared with the control group (P <0.05).
     ●Anti-human NSE antibody staining showed that: neuron-like cells were scattered in the cortex, but the expression was concentrated in the hippocampus and grew around the ischemic injury area in transplantation group.
     5. Ginsenoside Rb1 had active therapeutic and protective effect on subarachnoid hemorrhage (SAH) induced brain injury. 20mg/kg Rb1 treatmented rats after SAH:
     ●15.15% Mortality in 20mg/kg Rb1 group; 6.67% in sham operation group, 24.32% in vehicle group;
     ●Spontaneous activity score was increased;
     ●Brain edema and blood-brain barrier permeability were significantly reduced;
     ●Vascular endothelial cells histopathology were significantly improved by electron microscopy and light microscopy; Cerebral basilar artery lumen was increased and the wall thickness was decreased significantly;
     ●Neuronal apoptosis was significantly reduced.
     ●The expression of pro-apoptotic protein p53, the Bax and caspase-3 protein activated by p53 were significantly reduced, however anti-apoptotic protein Bcl-2 were increased.
     Conclusion
     1. A certain concentration of Rg1 significantly promoted NSCs proliferation and differentiation in vitro.
     2. Gene chip detection could select main purpose genes. The most related upregulation genes in NSCs differentiation were syntaxin 1 gene,α-tubulin gene, and the downregulation gene was Wnt inhibitory factor -1. Associated with the regulation of ion channel genes were encoding receptor-gated cation channel (ROC) protein gene and TRPm2 channel proteins gene. Through Pathway analysis, the ERK /MAPK pathway played an important role in Rg1-induced NSCs differentiation. However the CAMP-PKA and PI3K-AKT signaling pathway played an important role in Rg1-induced NSCs proliferation.
     3. Ginsenoside Rg1 can promote the expression of NSC electrophysiological properties and functional differentiation.
     4. Transplantation of NSCs induced by Rg1 could play a better role in the treatment of HIE neonatal rats with brain injury.
     5. Ginsenoside Rb1 had a active therapeutic and protective effect on subarachnoid hemorrhage (SAH) induced brain injury.
引文
[1] Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders[J].Nat Neurosci 2000;3(6):537-44
    [2] Ferdinando Rossi and Elena Cattaneo. Neural stem cell therapy forneurological diseases:dreams and reality 2002;3:402
    [3]李君庆,张香阁,张均田.人参皂苷Rg1抗神经细胞凋亡作用机制的研究[J].药学学报,1997,32(6):406-410.
    [4]姜正林,陈益人,周纯.人参皂苷抗缺氧缺血性脑损伤的谷氨酸相关机制[J].中国应用生理学杂志,2001,17(2):105-108.
    [5]杨迎,张均田,石成璋,等.人参皂苷Rb1和Rg1促智作用机制的探讨-对小鼠神经发育的影响[J].药学学报,1994,29(4),241-245.
    [6]陈滢,陈晓春.Bcl-2家族是人参皂甙Rg1抗黑质神经元凋亡的重要调控蛋白[J].解剖学报,2002,33(5):496-499.
    [7]潘树义,刘大庸,余磊等.人参皂甙对NGF引导的鼠胚脊髓神经节细胞轴突生长的影响[J].中国神经科学杂志,2000,16(4):345-348.
    [8]李英博,王莎莉,刘永刚等.人胚胎神经干细胞分离、培养、纯化及增殖潜能的特点[J].中国临床康复, 2006,10(45):21-23.
    [9] Akaneya Y,M Takahashi ,H Hatanaka. Interlukin-1 beta enhance surviveal and interlukin-6 protects against MPP+ neurotoxicity in the culture of fetal rat dopaminergic neurons.Exp Neurol.1995;136:43-52.
    [10]张建平,司银楚,朱培纯.人参皂苷Rg1诱导大鼠海马神经干细胞分化的实验研究[J].神经解剖学杂志,2009 ,3:335-338.
    [11]崔荣太,蒲传强,刘洁晓等.人参皂甙Rg1对体外培养大鼠神经干细胞的增殖作用[J].军医进修学院学报,2008,29(1):22
    [12] Ishida Torao, WANG Xiu-yun, CHAI Li-juan, et al. Effects of active extractions from Chinese medicines on the proliferation of neural stem cells cultured in vitro and related mechanisms study of proliferation[J].Chinese Medicine, Tianjin. 2009,26(2) :155-159
    [13]庄朋伟,张艳军,庞坦.人参皂苷Rg1促进体外培养神经干细胞增殖的研究[J].中国中药杂志,2009,34(04):443.
    [14]张建平,司银楚,胡煜辉等.人参皂苷Rg1对成年大鼠脑缺血海马区神经干细胞的影响[J].第四军医大学学报,2008, 29(24):2225-2228
    [15]杨赣军,张建平,李庆耀.人参皂苷Rg1对帕金森病模型小鼠室管膜下区神经干细胞的作用[J].四川生理科学杂志,2009; 31(1): 17-19
    [16]崔荣太,蒲传强,刘洁晓等.人参皂甙Rg1对大鼠局灶性脑缺血后侧脑室下区神经干细胞增殖分化的影响[J].中华老年心脑血管病杂志, 2007,9(10):707-709.
    [1]王明波.人参皂苷Rg1对神经保护作用机制的研究进展[J].中国保健营养:临床医学学刊,2008, 17(5):69-71.
    [2]张建平,司银楚,朱培纯.人参皂苷Rg1诱导大鼠海马神经干细胞分化的实验研究[J].神经解剖学杂志,2009 ,3:335-338.
    [3]崔荣太,蒲传强,刘洁晓等.人参皂甙Rg1对大鼠局灶性脑缺血后侧脑室下区神经干细胞增殖分化的影响[J].中华老年心脑血管病杂志, 2007,9(10):707-709.
    [4]周亚滨,王岩.基因芯片技术在中医药领域的应用现状[J].天津中医药,2010,(1):85-86
    [5]李敏红.生物芯片技术及应用进展概述[J].中国医学检验杂志,2009,(5):322-324
    [6]陈锐,刘娣,张济.神经干细胞的研究进展及基因芯片技术的应用[J].生命科学, 2005,17(3):256-260.
    [7] Ruiz-Montasell B, Aguado F, MajóG, et al. Differential distribution of syntaxin isoforms 1A and 1B in the rat central nervous system[J].Eur J Neurosci. 1996,8(12):2544-52.
    [8]夏源,谈伟君,李伯灵.缺氧海马神经元中KATP对p53下游基因α-tubulin表达的影响[J].广东医学院学报,2009,27(4):335-338.
    [9] Kuhl M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. Font Biosci, 2004, 9: 967-974.
    [10] Hu YA, Zhao CJ. Research progress of Wif1 in development of nervous system[J].Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010 ,39(1):93-6.
    [11] Cho SW, Yang JY, Sun HJ, et al. Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells[J].Bone. 2009,44(6):1069-77.
    [12]索占伟,于志强,韩博等.微血管内皮细胞膜上的离子通道及其功能穆祥[J].动物医学进展,2008,29(7): 97-100
    [13] Li SL, Wang XH, Wang HP, et al. Expression of TRPM and TRPV channel family mRNA in rat spermatogenic cells[J]. Nan Fang Yi Ke Da Xue Xue Bao.2008,28(12):2150-3.
    [1]朱奇,李小永,蒋星红.神经干细胞/前体细胞分化的功能学鉴定研究进展[J].生物化学与生物物理进展.2008 ,35(8):886-891.
    [2]艾平,郑建全膜片钳技术的新进展及其在药物高通量筛选中的应用[J].生理科学进展.2005,36(2):125-129.
    [3]郭再玉,姜晓丹,徐如祥.膜片钳技术在神经干细胞领域的研究现状及应用展望[J].神经解剖学杂志.2004;20(5):517~520
    [4] Biella G, Di Febo F, Goffredo D, et al. Differentiating embryonic stem-derived neural stem cells show a maturation-dependent pattern of voltage-gated sodium current expression and graded action potentials[J].Neuroscience. 2007,149(1):38-52.
    [5] Leng J, Jiang L, Chen H, et al. Brain-derived neurotrophic factor and electrophysiological properties of voltage-gated ion channels during neuronal stem cell development [J].Brain Res. 2009,1272:14-24.
    [6] Neusch C, Weishaupt JH, Bahr M. Kir channel in the CNS: emerging new role and implications for neurological diseases. Cell Tissue Res. 2003;311:131-138
    [7] Marcello D’Ascenzo, Roberto Piacentini et al. Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation[J].European Journal of Neuroscience. 2006,23:935–944.
    [8]冯锦丽,胡德辉,高天明. L-型钙通道对大鼠胚胎海马神经干细胞增殖和分化的调控[J]. Progress in Biochemistry and Biophysics.2007,34(3): 275~282
    [9] Reh TA. Neural stem cells: form and function[J].Nature Neuroscience.2002; 5: 392-394
    [10] Cho T,Bae JH,Choi HB et a1.Human stem cells:electrophysiological properties of voltage—gated ion channe1[J].Neuro Report.2002:13:1447-14528
    [11] Piper DR,Mujtaba T,Rao MS et a1.Immunocytochemical and physiological characterization of a population of cultured human neural precursors[J].Neurophysiol,2000;84:534-5482
    [12] Carpenter MK,Inokuma MS,Denam J et a1.Enrichment of neurons and neural precursors from human embryonic stem cells[J].Exp Neurol.2001;172:383-397
    [13] Wei Sun, Leonora Buzanska et al. Voltage-Sensitive and Ligand- Gated Channels inDifferentiating Neural Stem-Like Cells Derived from the Nonhematopoietic Fraction of Human Umbilical Cord Blood[J].Stem cells. 2005;23:931-945
    [1] Gieron-Korthals M, Colón J. Hypoxic-ischemic encephalopathy in infants: new a) challenges[J]. Fetal Pediatr Pathol. 2005, 24(2):105-20.
    [2]黄国盛.新生儿缺氧缺血性脑病治疗新进展[J].中国妇保健.2008,23(22):3194-3196
    [3]黄体龙,吴玉芹.新生儿缺氧缺血性脑病的治疗现状与进展[J].中国优生与遗传杂志.2008,16(3):137-138
    [4]黑明燕,旷寿金,殷萍.以TTC方法浅析SD大鼠及C57小鼠HIE模型脑损伤的异同[J].中国现代医学杂志, 2003,13(5):22~25.
    [5]郑小敏,范薇,汪昕.神经干细胞移植技术在脑卒中和颅脑损伤治疗中的应用[J].中国组织工程研究与临床康复. 2007,11(15):2964-2967.
    [6]陈陵.神经干细胞移植治疗小儿脑损伤的实验研究进展[J].滨州职业学院学报2006,3(4):66-69.
    [7] Li Y, Chen J, Chopp M. Cell proliferation and differentiation f rom ependymal, supependymal and choroid plexus cells in response to st roke in rats[J].J Neurol Sci,2002, 193 (2):137-146.
    [8] Park K I. Transplantation of neuralstem cells: cellular and gene therapy for hypoxic - ischemic brain injury[J].Yon sei Med J,2000,41 (6):825-835.
    [9] Nishino H, Borlongan C V. Restoration of function by neural t ransplantation in the ischemic brain [J].Prog Brain Res,2000,127:461-471.
    [10] Andsberg G, Kokzia Z , Bjorlund A,et al. Amelioration of ischaemia - induced neuronal death in the rats triatum by NGF - secreting neural stem cells[J]. Eur J Neurosci,2001,10 (6):2026- 2036.
    [11]栾佐,高宝勤,尹国才等.人神经干细胞移植到缺氧缺血性脑损伤新生大鼠脑内的存活及分布[J].中国组织工程研究与临床康复.2008,2(2):2201-2205.
    [12]栾佐,屈素清,尹国才等.新生鼠缺氧缺血性脑损伤后不同途径人神经干细胞移植的实验研究[J].中华小儿外科杂志,2006,27(9):497-500
    [13] Dive D, Giffroy X.Somatosensory evoked potentials: clinical applications in peripheral neuropathies [J].Rev Med Liege.2004,59(1):157-69.
    [1] Shibata S, Tanaka O, Shoji J, et al. Chemistry and pharmacology of panax. Econ Med Plant Res 1985; 1:217-84.
    [2] Zhang YG, Liu TP. Influences of ginsenosides Rb1 and Rg1 on reversible focal brain ischemia in rats. Zhongguo Yao Li Xue Bao 1996; 17(1):44-8.
    [3] Yoshikawa T, Akiyoshi Y, Susumu T, et al. Ginsenoside Rb1 reduces neurodegeneration in the peri-infarct area of a thromboembolic stroke model in non-human primates. J Pharmacol Sci 2008; 107(1):32-40.
    [4] Lim JH, Wen TC, Matsuda S, et al. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 1997; 28(3):191-200.
    [5] Sakanaka M, Zhu P, Zhang B, et al. Intravenous infusion of dihydroginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma 2007; 24(6):1037-54.
    [6] Tang H L, Su Q. The research development of calcium ion signal and cell apoptosis. Journal of Nanhua University (Medica Edition) 2006; 34(5):663-6.
    [7] Yuan QL, Yang CX, Xu P, et al. Neuroprotective effects of ginsenoside Rb1 on transient cerebral ischemia in rats. Brain Res 2007; 1167:1-12.
    [8] Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing hemeoxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol 2010; 242(1):18-28.
    [9] Yu J, EtoM, AkishitaM, et al. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells:a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007; 353(3):764-769.
    [10] Lee JY, Huang DL, Keep R, et al. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. Journal of Neuroscience Methods 2008; 168(2): 358-60.
    [11] Endo S, Branson BK, Alksne JF. Experimental model of symptomatic vasospasm in rabbits. Stroke 1988; 19(11):1420-5.
    [12] Mikawa S, Kinouchi H, Kamii H, et al. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenicmice. J Neurosurg 1996; 85(5):885-91.
    [13] Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol 2002; 283(6):2551-9.
    [14] Mao L, Shi JX, Zhang X, et al. Effect of large dose caspase-3 inhibitor at earlier stage on apoptosis of rabbits' cortical neuron after subarachnoid hemorrhage. Chinese Journal of Neuromedicine 2006; 5(6):576-8.
    [15] Park S,Yamaguchi M,Zhou C,et al. Neurovascul protection reduces early brain injury after subarachnoid hemorrhage. Stroke 2004; 35(10):2412-7.
    [16] Zhou C, Yamaguchi M, Colohan AR, et al. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2005; 25(5):572-82.
    [17] Wang SR. Intracerebral hemorrhage pathological mechanism of brain edema. J Apoplexy and Nervous Diseases 2006; 23(2):216-8.
    [18] Xie W , Fang J, Xia L H, et al. Inhibitory effect of ginsenoside Rb1 on busulfan-induced apoptosis in human umbilical vein endothelial cells. Journal of Clinical Hematology 2007; 3(11):162-4.
    [19] Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006; 26(11):1341-53.
    [20] Antonsson B. Bax and other pro-apoptotic Bcl-2 family“killer-proteins”and their victim the mitochondrion. Cell Tissue Res 2001; 306(3):347-61.
    [21] Gross A,McDonnell J.M,Korsmeyer S J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13(5):1899-911.
    [22] Perfettini J L, Reed JC, Isra?l N, et al. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect Immun 2002; 70(1):55-61.
    [23] Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 2003; 195(2):l58-67.
    [24] Danial NN, Gramm CF, Scorrano L, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003; 424(6951):896-7.
    [25] Distelhorst CW,McCormick TS. Bcl-2 acts subsequent to and independent of Ca2+ fluxes to inhibit apoptosis in thapsigargin- and glucocorticoid-treated mouse lymphoma cells. Cell Calcium 1996; 19(6):473-83.
    [26] He H, Lam M, McCormick TS, et al. Maintenance of calcium homestasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 1997; 138(6): 1219-28.
    [27] Scorrano L, Korsmeyer S. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304(3):437-44.
    [28] Wagner KR, Xi G, Hua Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. J Neorosurg 1996; 27(3):490-7.
    [29] Yang G, Betz A, Chenevert T, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 1994; 81(1):93-102.
    [1]张建平,司银楚,朱培纯.人参皂苷Rg1诱导大鼠海马神经干细胞分化的实验研究[J].神经解剖学杂志,2009 ,3:335-338.
    [2]崔荣太,蒲传强,刘洁晓等.人参皂甙Rg1对体外培养大鼠神经干细胞的增殖作用[J].军医进修学院学报,2008,29(1):22
    [3] Ishida Torao, WANG Xiu-yun, CHAI Li-juan, et al. Effects of active extractions from Chinese medicines on the proliferation of neural stem cells cultured in vitro and related mechanisms study of proliferation[J].Chinese Medicine, Tianjin. 2009,26(2) :155-159
    [4]庄朋伟,张艳军,庞坦.人参皂苷Rg1促进体外培养神经干细胞增殖的研究[J].中国中药杂志,2009,34(04):443.
    [5]张建平,司银楚,胡煜辉等.人参皂苷Rg1对成年大鼠脑缺血海马区神经干细胞的影响[J].第四军医大学学报,2008, 29(24):2225-2228
    [6]杨赣军,张建平,李庆耀.人参皂苷Rg1对帕金森病模型小鼠室管膜下区神经干细胞的作用[J].四川生理科学杂志,2009; 31(1): 17-19
    [7]崔荣太,蒲传强,刘洁晓等.人参皂甙Rg1对大鼠局灶性脑缺血后侧脑室下区神经干细胞增殖分化的影响[J].中华老年心脑血管病杂志, 2007,9(10):707-709.
    [8]李君庆,张香阁,张均田.人参皂苷Rg1抗神经细胞凋亡作用机制的研究[J].药学学报,1997,32(6):406-410.
    [9]陈滢,陈晓春.Bcl-2家族是人参皂甙Rg1抗黑质神经元凋亡的重要调控蛋白[J].解剖学报,2002,33(5):496-499.
    [10] Chen XC , Zhu YG, Wang XZ , et al. Possible mechanism of the protective effects of ginsenoside Rgl on apoptosis in PC12 cells[J].Acta Pharm Sinica.2001,36 (6):411-412
    [11]刘颖,李玺,袁海峰.人参皂甙Rg1促进学习记忆作用研究进展[J].中国中西医结合杂志,2006 ,26 (10) :956-960.
    [12] Chen LM ,Chen XC , Lin TY, et al. Ginsenoside Rg1 might attenuate apoptosis of neurons through CDK4-pRB-E2F1 pathway[J].Chin Pharmacol Bull 2002,18 (6):695-700
    [13]Fang F , Chen XC , Zhu YG. Possible mechanism of mitochondria on antiapoptoticeffect of ginsenoside Rg1 on MPP+2 induced cellular apoptosis[J].Chin J Clin Pharmacol Ther 2002,7 (5):412-416.
    [14]姜正林,陈益人,周纯.人参皂苷抗缺氧缺血性脑损伤的谷氨酸相关机制[J].中国应用生理学杂志,2001,17(2):105-108.
    [15]咸云淑,熊文,程刚.人参皂甙对兴奋毒损伤的保护作用的研究[J].中国实验诊断学,2003 ,7 (2) :132-134.
    [16]刘雨.人参皂苷Rg1抗衰老和促智作应及其机制研究[J].生理科学进展,1996,27(2):139-142.
    [17]王天芳,刘雁峰,张倩等.复合应激因素致大鼠疲劳模型海马氨基酸含量的变化及中药的调节作用[J].北京中医药大学学报,2000 ,23 (6) :24-26.
    [18]杨迎,张均田,石成璋等.人参皂苷Rb1和Rg1促智作用机制的探讨-对小鼠神经发育的影响[J].药学学报,1994,29(4),241-245.
    [19] Wang XY, Zhang J T. Effects of ginsenoside Rg1 on synaptic plasticity of freely moving rats and its mechanism of action[J].Acta Pharmacol Sin 2001,22 (7):657 -662.
    [20] Liu M. Studies on the anti-aging and nootropic effects of ginsenoside Rg1 and its mechanisms of actions[J].Prog Physiol Sci.1996 , 27 (2):139-142.
    [21]胡圣望,胡勇,胡旺平等.人参皂甙Rgl对慢性应激大鼠空间学习记忆能力的影响[J].四川中医,2004 ,22 (3) :14-16.
    [22]王晓英,陈霁,张均田.人参皂甙Rg1对β淀粉样肽(25-35)侧脑室注射所致小鼠学习记忆障碍的改善作用及其机制[J].药学学报,2001,36 (1):1-4.
    [23]张毅,娄艾琳.人参皂苷对大鼠海马齿状回神经元突触传递功效及记忆行为的影响[J].基础医学与临床,1993,13(5):32-37.
    [24] Nikolaev E , Werka T , Kaczmarek L. c-fos protooncogene expression in rat brain after long term training of two way active avoidance reaction[J].Behav Brain Res 1992,48:91-94.
    [25] Liu M , Zhang J T. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP levels in rat hippocampus[J]. Acta Pharmacol Sin. 1996,17 (2):171-174.
    [26] Zhao CH , Chen XC , Zhu YG, et al. Roles of telomere and telomerase in the process of ginsenoside Rg1 protection against tertbuty hydroperoxide induced senescence in WI-38 cells[J]. Chin Pharmacol Bull ,2005, 21 (1) :61—66
    [27] Shen LH , Zhang J T. Ginsenoside Rg1 increases the survival rate of hippocampal neural stem cells and improves learning and memory in gerbils suffered from transient global ischemia[J].Central South Pharmacy .2004,2 (1):6-9.
    [28] Li AH , Ke KF , Wu XM , et al. Effects of GS Rb1 , Rb3 ,Rg1 against ischemic injury of cultured cortical neurons and its mechanism[J]. J Apoplexy Nerv Dis 2004, 21 (3):231-234.
    [29]王中琳.人参皂苷治疗阿耳茨海默病作用机制探讨[J].中国全科医学,2003,9(6):786-787.
    [30]张丹参,张均田.人参皂苷β-淀粉样肽致小鼠记忆障碍的影响[J].中国药理学通报,2000,16(4):422-425.
    [31]魏翠柏,贾建平,王芬等.人参皂苷Rg1、Rb1对淀粉样前体蛋白分泌酶代谢途径的影响[J].中国中药信息杂志.2008,15(9):28-30
    [32]徐丽,刘黎星,陈文芳.人参皂苷Rg1对PD模型大鼠纹状体多巴胺含量的影响及其机制探讨[J].中国中药杂志.2008,33(15):1856-1859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700