用户名: 密码: 验证码:
基于GreenLab原理的油松结构—功能模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构-功能模型,是指能明确表达由生理过程和环境因子调控的植物三维结构生长和变化的一类模型。林木结构-功能模型整合林木形态结构和生理生态功能特征,并考虑环境因子和树木生长发育的交互作用,输出树木生长和发育的三维动态信息,从而取得传统的经验模型、过程模型和形态结构模型难以达到的效果,可以作为林木生长预测、可视化和经营决策的重要支持工具。GreenLab模型作为通用性植物结构-功能模型已广泛应用于农作物,如玉米、番茄、黄瓜、向日葵等,在林业中上有一些应用,如油松、樟子松和山毛榉等,但是对于不同年龄阶段树木尤其是成熟树木的研究还较少,缺少功能与结构之间反馈机制的检验和林分层次的应用研究。因此,本研究的目的是应用GreenLab模型,构建油松的结构-功能模型,分析油松的生长和生理过程,检验GreenLab模型的假设,并将其扩展到树木群体层次,模拟采伐对生长和结构的影响。为GreenLab模型在森林生长和经营中的应用、揭示林木生长规律和生物学驱动的林木三维可视化提供方法。
     研究地点位于北京市昌平区十三陵林场苗圃、园艺奇苗圃和北京市西山试验林场,数据为1-5年生、10年生、13年生、18年生和41年生不同年龄阶段油松植株的生物量和形态结构、拓扑结构测量数据。
     模型参数求解方面,GreenLab模型的直接参数通过实验数据获得;隐含参数通过最小二乘法反求获得。利用实测数据和经验模型对模型进行了校准和验证。通过拟合生物量需求满足率与树木器官个数的反馈机制,标定了GreenLab反馈机制模型。通过建立生存面积竞争指数与模型隐含参数的关系,将GreenLab结构-功能模型的应用从单木层次扩展到林分层次。
     研究的主要内容和结论如下:
     1)异速生长模型是结构-功能模型的重要组成部分,是分析生物量分配和树木器官几何属性的工具。本文通过幂指数方程建立了10年生和13年生油松一级枝、二级枝、三级枝的当年生小枝的针叶单叶长和单叶生物量、节间生物量和节间长、节间生物量和针叶生物量、节间截面积和节间生物量及节间截面积和针叶生物量等的异速生长关系,并通过独立数据进行检验。结果表明观测值和预估值之间的相关系数除了节间截面积和针叶生物量外均大于0.85,说明上述异速生长关系的相关关系非常显著。小枝生物量和总针叶生物量之间存在显著的正相关关系,其权度关系明显小于1,表明较大的枝具有较低的叶生物量分配比例和较高的枝生物量分配比率。小枝的针叶总生物量和小枝的截面积呈等速生长关系,符合管道模型理论。
     2)根据植物学原理,运用植物构筑型中生理年龄的概念,对树木的拓扑结构进行了纯数字编码,解决了结构-功能模型应用中由于树木组件众多而使树木测量和数据处理、编程分析变得复杂和困难的系列问题。
     3)建立了油松幼树和大树的结构-功能模型。在构建油松大树结构-功能模型时,采用分层抽样的方法,将树枝级别和轮作为层,减少了油松形态和生物量测量的工作量;利用子结构方法大大减少了模型拟合所需要的基本单元个数,缩短了模型的计算时间。运用λ值将Pressler模型和全局分配模式结合起来,解决了年轮生长中分配模式的选择问题,发现油松的年轮生物量分配模式受年龄的影响较大。另外,本文参考发表的经验模型对GreenLab模型进行了验证,结果表明GreenLab模拟油松的总生量和经验模型的结果相关系数达0.98,总节间生物量相关系数达0.95,总叶生物量的相关系数为0.75,说明GreenLab模型模拟树木总生物量好于叶生物量。
     4)从研究林木个体之间的光竞争入手,分析光竞争对树木个体、器官的形态和生物量特征及模型隐含参数的影响。运用异速生长模型建立了隐含参数植株投影面积Sp、环境因子E与生存面积竞争指数Sd之间的关系,通过采伐引起的竞争指数的变化,模拟了采伐对于树木结构和生长的影响。
     结果表明:GreenLab结构-功能模型可以合理的表达油松的结构与功能之间的互反馈关系,从而输出具有生物学机理的树木的三维结构信息;在林分层次描述光竞争和模拟采伐效应方面有着巨大的潜力,在森林生长模拟和经营决策中有广阔的应用前景。下一步要加大样本量,扩展结构环境因子反馈机制关系的研究,深化树木生长规律的生物学解释,加强模型验证,并和林分层次的森林经营措施相结合,为森林经营提供决策支持工具。
Functional-structural plant models are models explicitly describing the development over time of the 3D architecture of plants as governed by physiological processes which, in turn, are driven by environmental factors. Functional-structural tree models (FSTMs) which combine trees’morphological and functional parts depict the true 3D presentation of trees for analyzing tree growth and interactions between trees and the environment. FSTMs can be as an important means of forest management and decision-making with more outputs expected than traditional empirical models, process-based models and morphological models. As a general plant functional-structural model, GreenLab model has been applied to crop simulation such as maize, tomato, cucumber and sunflower. There are some applications in forestry including Fagus Sylvatica, Pinus sylvestris and Salicaceae. But it is seldom applied to trees with different age class especially to adult trees. There it is never applied to trees at stand or tree population level with feedback mechanism. The goal of this paper was: 1) to construct functional-structural model of Chinese pine based on GreenLab model to analyze its growth process and development with different age class; 2) to test biological hypothesis behind GreenLab models; and 3) to extend the application of GreenLab model to stands or tree population level with light environmental effects. It is expected to provide the method for applying GreenLab model to forest growth and management and implementing biology-driven tree visualization.
     Experimental sites were located in nursery of Shisanling forest farm, Yuanyiqi nursery and Xishan forest farm in Beijing. Detailed data including tree geometry, tree topology and biomass measurements were collected for 1-5 years old, 10 years old, 13 years old, 18 years old and 41 years old trees. With experiment data, direct parameters of the model were calculated including organ sink parameters and allometric parameters and target files were created. Hidden parameters were acquired by the nonlinear least square method inversely. At the same time, GL3 model which is called feedback model were calibrated by fitting demand satisfaction rate. By the relationship between tree Voronoi area which is called area potentially available index(APA) and hidden parameters, we extended GreenLab model to stand or tree population level and simulated the variation of trees biomass and topological structure with different competition index APA after cutting. Main contents and results are listed as follows:
     1) Organ allometry is one of important components in functional-structural models. It is essential to analyze the biomass allocation and organ geometry attributes. In this thesis allometric rules between internode biomass and internode length, between internode biomass and needle biomass, between internode sectional area and internode biomass, and between internode sectional area and needle biomass of current year twigs on 1 level branches, 2 level branches and 3 level branches of 4 trees with 10 years old and 13 years old were analyzed by power exponent equation, Independent data were used to test the allometric models. The results showed that the correlation coefficient between predicted and observed values is more than 0.85 except the case between sectional area and needle biomass, and the correlation is statistically significant. The size scale between internode biomass and needle biomass is less than 1 which means that biomass allocation rate is higher for internode biomass than for needle biomass. The size scale between sectional area and needle biomass is close to 1 which means that it is symmetry between these two attributes and accord with pipe model.
     2)Based on botany rules and the concept of physiological age of architecture, we developed topological code by numerical way. It overcomed the difficulties in dealing with hundreds and thousands components of trees. It is convenient to be used in measurement, data process and programming.
     3) Functional-structural model of young and adult Chinese pine trees are constructed based on GreenLab methodology. Stratified random sampling was used to measure adult Chinese pine trees. Stratifies were whorl and branching orders. Substructure algorithm was used to fill target file to overcome the difficulties in dealing with thousands and millions of units and saved computation time. The thesis introducedλto combine the Pressler pattern and common pool patter for analyzing the ring growth. It is effective and flexible to apply to trees with different ages and different environment factors. By referring to published empirical models, we tested the accumulated biomass of whole trees, internodes and needles. The results showed that the correlation coefficient is 0.98 for total biomass, 0.95 for total internode biomass and 0.75 for total needle biomass. More samples applied to GreenLab model will be helpful to improve the estimation accuracy.
     4) The thesis introduced Voronoi area as density of tree group. By comparing the attributes two patterns with different Voronoi areas, the effects on organ biomass and organ dimension of light competition was analyzed. Hidden parameters were also compared after fitting models. By allometric models, the relationship between Voronoi area and hidden parameters which indicate the light competition were established. According to this relationship, we simulated the tree topology and biomass after cutting.
     The study proved that functional-structural GreenLab model could reasonably describe the feedback between tree structure and functions of Chinese pine, and produced 3D architecture information with biological mechanism. The model has potentials in explaining light competition and simulating cutting effects at stand level, and expected to be broadly applied in forest growth simulation and management decision-making in future. The next research will include linking FSTMs to mechanism of botany and ecology, extending the feedback between tree structure and environmental factors, strengthening model validation, integrating the model with management practice, and optimization of parameter fitting. We hope the model could provide more supports for forest management and decision making.
引文
H Sinoquet, S Thanisawanyangkura, H Mabrouk, et al. Characterization of the Light Environment in Canopies Using 3d Digitizing and Image Processing[J]. Annals of Botany, 1998, 82:203-212
    J M Ottorini, N Le Goff and C Cluzeau. Relationships between Crown Dimensions and Stem Development in Fraxinus Excelsior[J]. Canadian Journal of Forest Research, 1996, 26: 394-40.
    A Bosc. EMILION, a Tree Functional-Structural Model: Presentation and First Application to the Analysis of Branch Carbon Balance[J]. Annals of Forest Science, 2000, 57(5/6): 555-570.
    A Lacointe. Carbon Allocation among Tree Organs: a Review of Basic Processes and Representation in Functional-Structural Tree Models [J]. Annals of Forest Science, 2000, 57: 521–533
    A Lindenmayer. Mathematical Models for Cellular Interaction in Development I. Filaments with One-Sided Inputs [J]. Journal of Theoretical Biology, 1968, 18:280-289
    A Mathieu, Ph Cournède, D Barthélémy, et al. Rhythms and Alternating Patterns in Plants as Emergent Properties of a Model of Interactions between Development and Functioning[J]. Annals of Botany, 2008, 101: 1233-1242
    A Mathieu, Ph Cournède, D Barthélémy,et al. Conditions for the Generation of Rhythms in a Discrete Dynamic System. Case of a Functional Structural Plant Growth Model[C]. in PMA06: T Fourcaud, XP Zhang (Eds) Plant Growth Model, Simulation, Visualization and their Application. IEEE Computer Society, Los Alamitos, California: 2007, 26-33
    A Takenaka. A Simulation Model of Tree Architecture Development Based on Growth Response to Local Light Environment [J]. Plant Research, 1994, 107: 321-330.
    B G Hu, P De Reffye, X Zhao, et al. GreenLab: A new Methodology towards Plant Functional-structure Model-Structural Aspect[C]. Plant Growth Modeling and Application. Beijing: Tsinghua University Press,2003 21-35
    C Bmuat, M Gibemau, L Amselem, D MeKey.Comer’s rules revisited:ontogenetic and interspecie patterns in leaf-stem allometry.New Phytologist,1998, 139,459—470.
    C Deleuze and F Houllier. A flexible radial increment taper equation derived from a process-based carbon partitioning model[J]. Annals of Forest Science, 2002, 59: 141-154.
    C Deleuze and F Houllier. A Transport Model of Tree Ring Width [J]. Silva Fennica, 1997, 31(3): 239–250.
    C Godin and H Sinoquet. Functional-Structural Plant Modeling [J]. The New Phytologist, 2005, 166(3):705-708
    C Godin and Y Caraglio. A Multiscale Model of Plant Topological Structures [J]. Journal of Theoretical Biology, 1998, 191, 1-46
    C Godin, E Costes and H Sinoquet. A Method for Describing Plant Architecture which Integrates Topology and Geometry [J]. Annals of Botany, 1999, 84(3): 343-357.
    C Godin, Y Guedon, E Costes, et al. Measuring and Analyzing Plants with the Amapmod Software[C]. in:Michalewicz M T,Eds. Plants to Ecosystems-Advances in Computational Life Sciences. Melbourne: Csiro Australia, 1997, 53~ 8
    C Godin. Representing and Encoding Plant Architecture: A Review [J]. Annals of Forest Science, 2000, 57(5/6): 413–438.
    D A White. Relationships between Foliar Number and the Cross-Sectional Areas of Sapwood and Annual Rings in Red Oak (Quercus Rubra) Crowns[J]. Canadian Journal of Forest Research, 1992 (23),: 1245-1251.
    D Barthelemy and Y Caraglio. Plant Architecture: a Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny[J].Annals of Botany, 2007, 99(3): 375-407.
    D I Warton, I J Wright,D S Falster et al., Bivariate line fitting methods for allometry[J], Biological Reviews, 2006,81:259-291
    D S Falster,D I Warton,I J Wright.Smatr:Stan.Dardised Major Axis Tests& Routines.Version 2.0.Copyright 2006. Http://Www.Bio.Mq.Edu.Au/Ecology/Smatr/Index.Htm1.Cited 10 Oct.2007
    D W Whitehead, R N Edwards and P G Jarvis. Conducting Sapwood Area, Foliage Area, and Permeability in Mature Trees of Picea Sitchensis and Pinus Contorta[J]. Canadian Journal of Forest Research, 1984, 14:940-947
    D X Liu, M Z Kang, V Letort, et al. Preliminary Functional-Structural Modeling on Poplar (Salicaceae)[C]. In: PMA09 (The Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications). Beijing, China,2010,49-52
    E D Schulze, M I Fuchs and M Fuchs. Spatial distribution of photosynthetic capacity and performance in amoutain spruce forest of Northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers[J]. Oecologia, 1977,29:43-61
    E J G Pitman. A Note on Normal Correlation[J].Biometrika, 1939, 3l,9-12..
    E J H Comer.The Durian Theory or the Origin of The Modem Tree[J].Annals of Botany, 1949,13, 367-414.
    E Münch. Die Stoffbewegungen in Der Pflanze[M], Gustav Fischer,1930 Jena. Germany
    F Hallè, RAA Oldman , P B Tomlinson.Tropical Trees and Forests : an Architectural Analysis. Springer-Verlay,Berlin,Hei—delberg,New York.1978
    F Houllier, J M Leban and F Colin. Linking Growth Modelling to Timber Quality Assessment for Norway Spruce[J]. Forest Ecology and Management, 1995, 74: 91-102.
    F Wang, Y Guo, Q Lu, X F Bai, H Han, B G Li. Modelling Three-Dimensional Architecture of Pine Tree (Pinus Sylvestris Linn. Var. Mongolica Litv.) in Semiarid Area[J]. New Zealand Journal of Agricultural Research. 2007, 50: 903-909.
    G B Bonan. The size structure of theoretical plant populations: spatial patterns and neighbourhood effects[J]. Ecology,1988, 69: 1721–1730.
    G D Farquhar, S Von Caemmerer, J A Berry. A Biochemical Model of Photosynthetic Co2 Assimilation in Leaves of C3 Species[J]. Planta, 1980, 149: 78-90.
    G S Brown.Point density in stems per acre[J].New Zealand Forest Research Notes,1965,38:11.
    H Guo, V Letort, L X Hong, et al. Adaptation of the Greenlab Model for Analyzing Sink-Source Relationships in Chinese Pine Saplings[C]. in: Plant Growth Modeling and Applications: Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Application, Beijing, China, November 13-17, 2006 :236-243
    H M Rauscher, J G Isebrands, G E Host, et al. Ecophys: an Ecophysiological Growth Process Model for Juvenile Poplar [J]. Tree Physiology, 1990, 7 :255-281.
    H P Yan, M Z Kang, Ph De Reffye , et al. A Dynamic, Architectural Plant Model Simulating Resource-Dependent Growth [J]. Annals of Botany. 2004, 93(5): 591-602.
    I E Bella. A New Competition Models for Individual Trees[J]. Forest Science, 1971,17: 364–372.
    J Drouet, L Page`ès. GRAAL: a model of GRrowth Architecture and cCarbon Allocation during the Vegetative Phase of the Whole Maize Plant, Model Description and Parameterisation[J]. Ecological Modelling,2003, 165: 147–173.
    J H M Thornley. A Balanced Quantitative Model for Root:Shoot Ratios in Vegetative Plants. Annals of Botany [J], 1972, 36 : 431-441
    J N Woodman. Variation of net photosynthesis within the crown of a large forest grown conifer[J]. Photosynthetica, 1971,5:50-54
    J Perttunen, E Nikinmaa, M J Lechowicz, et al. Application of the Functional-Structural Tree Model Lignum to Sugar Maple Saplings (Acer Saccharum Marsh) Growing in Forest Gaps[J]. Annals of Botany, 2001, 88 (3), 471–481.
    J Perttunen, R Siev?nen, E Nikinmaa, et al. Lignum: a Tree Model Based on Simple Structural Units[J], Annals of Botany, 1996, 77: 87-89
    J S, Sperry, F RAdler, G S Campbell, et al. Limitation of Plant Water Use by Rhizosphere and Xylem Conductance: Results from a Model [J]. Plant Cell and Environment, 1998, 21: 347-360.
    J Vos and E Heuvelink. Concepts to Model Growth and Development of Plants[C]. in: Plant Growth Modeling and Applications: Second International Symposium on Plant Growth Modeling, Simulation, Visualisation and Application[C], Beijing, China, November 13-17, 2007. - Los Alamitos : IEEE, 3 - 10. J W Wilson. Analysis of Light Interception by Single Plants[J]. Annals of Botany, 1981, 48: 501-505.
    J W .Wilson. Ecological Data Oon Dry Matter Production Bby Plants Aand Plant Communities, Bradley, E.F., and Denmead, O.T.,interscience publishers, New York Edition, 1967, 77–123.
    K A Preston,D D Ackedy.Hydraulic Architecture and the Evolution of Shoot Allometry in Contrasting Climates[J].Amercan Journal of Botany,2003,90,1502—1512.
    K D Coates, C D Canham, M Beaudet, et al. Use of a Spatially Explicit Individual-Tree Model (Sortie/Bc) to Explore the Implications of Patchiness in Structurally Complex Forests[J]. Forest Ecology and Management, 2003, 186:297-310.
    K J Mitchell. Dynamics and Simulated Yield of Douglas-Fir. Forest Science Mono Graph, 1975, 21(4): 39.
    K Shinozaki, K Yoda, K Hozumi, et al. A Quantitative Analysis of Plant Form-The Pipe Model Theory. I. Basic Analysis [J]. Japan Journal of Ecology, 2006, 14: 97–105.
    L F M Marcelis, E Heuvelink, Baan Hofman-Eijer Lr, et al.Flower and Fruit Abortion in Sweet Pepper Inrelation to Source and Sink Strength[J]. J Exp Bot 2004, 55: 2261-2268
    L F M Marcelis.The Dynamics of Growth and Dry Matter Distribution in Cucumber[J]. Annals of Botany, 1992, 69: 487-492
    L Maillette. Structure dynamics of sliver birchⅡ: a matrix model of the bud population.J.Appl.Ecol.1982,19:218 - 238
    M C Feller. Gerneralized versus site-specific biomass regression equations for Pseudotsuga menziesii var. menziesii and Thuji plicata in coastal British Columbia[J]. Bioresource Techonology,1992,39:9-16
    M Jaeger and Ph De Reffye. Basic Concepts of Computer Simulation of Plant Growth[J],. Journal of Biosciences, 1992, 17: 275-291.
    M Monsi and T Saeki. Uber Den Lichtfaktor In Den Pflanzengesellschaften Und Seine Bedeutung Fur Die Stoffproduktion [J]. Japanese Journal of Botany, 1953,14:22-52
    M Renton, J Hanan and K Burrage. Using the Canonical Modeling Approach to Simplify the Simulation of Function in Functional-Structural Plant Models [J]. New Phytologist, 2005, 166: 845-857
    M Suzuki. Size Structure of Current-Year Shoots in Mature Crowns. Annals of Botany,2003, 92:339-347
    M T Allen, P Prusinkiewicz and T M Dejong. Using L-Systems for Modeling Source-Sink Interactions, Architecture and Physiology of Growing Trees: The L-Peach Model [J]. New Phytologist, 2005, 166 (3), 869-880.
    M Westoby,I J Wright.Leaf Size-Twig Size Spectrumand its Relationship to other Important Spectra of Variation among Species[J].Oecologia, 2003, 135: 621–628 .
    M Z Kang, E Heuvelink, and Ph De Reffye. Building Virtual Chrysanthemum Based on Sink-Source Relationships: Preliminary Results[J]. Acta Hortic,2006, 718: 129–136
    M Z Kang, P H Cournède, P De Reffye, P., et al. Analytical Study of A Stochastic Plant Growth Model: Application To The Greenlab Model. Mathematics and Computers In Simulation, 2008, 78(1): 57-75
    P B Reich,M B walters,D S Elswoith.Leaflifespan in relation to leaf plant, and stand characteristics among diverseecosystems[J].Ecological Monographs,1992,62: 65-392.
    P-H Cournède, A Mathieu, F Houllier, et al. Computing Competition for Light in the Greenlab Model of Plant Growth: a Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development [J]. Annals of Botany, 2008, 101(8):1207-1219
    P-H Cournède, M Z Kang, A Mathieu, et al. Structural Factorization of Plants to Compute their Functional and Architectural Growth [J]. Simulation, 2006, 82(7): 427–438.
    P M Room, L Maillette and J S Hanan, Module and Metamer Dynamics and Virtual Plants[J]. Advances in Ecological Research, 1994, 25:105-157.
    P S White.Corner’s Rules in Eastern Deciduous Trees:Allometry and its Implications for the Adaptive Architecture of Trees[J].Bulletin of the Torrey Botanical Ctub, 1983, 1(10): 203—2 12.
    P W West. Model of Above-Ground Assimilate Partitioning and Growth of Individual Trees in Even Aged Forest Monoculture [J]. Journal of Theoretical Biology, 1993, 161:33
    Ph De Reffye and F Houllier Modeling Plant Growth and Architecture: Some Recent Advances and Applications to Agronomy and Forestry. Current Science [J], 1997, 73(11): 984-92
    Ph De Reffye, C Edelin, J Franqon, et al. Plant Models Faithful to Botanical Structure and Development[J]. Computer Graphics, 1988, 22(4): 151~ 158
    Ph De Reffye, F Blaise. et al. Calibration of a Hydraulic Architecture-Based Growth Model of Cotton Plants[J]. Agronomie, 1999,19:265-280
    Ph De Reffye, M Goursat, J P Quadrat, et al. The Dynamic Equations of the Tree Morphogenesis: Greenlab Model[C], in: B G Hu, M Jaeger. Plant Growth Modeling and Applications, 2003’International Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications. Beijing. Tsinghua University Press, 2003, 108-117.
    Q X Dong, Y M Wang, J F Barczi, et al.Tomato growth modeling based on interaction of its structure-function in Pma’03:Plant Growth Modeling and Applications[C], Beijing, China, Tsinghua University Press And Springer, 2003, Page 250-262
    R C Dewar. A Root-Shoot Partitioning Model Based On Carbon-Nitrogen-Water Interactions and Münch Phloem Flow [J]. Functional Ecology, 1993, 7(33): 356-368
    R M Lanner. On the Insensivity of Height Growth to Spacing. Forest Ecology and Management [J], 1985, 13: 143-148.
    R Qi, V Letort, M Z Kang, et al. Application of the Greenlab Model to Simulate and Optimize Wood Production and Tree Stability: a Theoretical Study [J]. Silva Fennica, 2009,43(3):465-487
    R Siev?nen, E Nikinmaa, P Nygren, et al. Components of Functional–Structural Tree Models[J]. Annals Science, 2000, 57: 399-412.
    R Siev?nen, J Perttunen, E Nikinmaa, et al. Toward Extension of a Single Tree Functional–Structural Model of Scots Pine to Stand Level: Effect of the Canopy of Randomly Distributed, Identical Trees on Development of Tree Structure [J]. Functional Plant Biology, 2008, 35(9/10): 964-975
    R Siev?nen., E Nikinmaa, J Perttunen. Evaluation of Importance of Sapwood Senescence on Tree GrowthUsing the Model LIGNUM [J]. Silva Fennica, 1997, 31(3): 329-340
    S C Thomas and J Weiner.Growth, Death and Size Distribution Change in an Impatiens Population [J].Journal of Ecology, 1989, 77:524—-536.
    S J Maynard,R Burian,S Kaufman,et al. Developmental Constraints and Evdution[J].The Quarterly Review of Biology, 1985, 60:265-287.
    S Le Dizès, P Cruiziat, A Lacointe, et al. A Model for Simulating Structure-Function Relationships in Walnut Tree Growth Processes [J]. Silva Fennica.1997, 31 :313-328.
    S Pouderoux,S Pouderoux, J F Deleuze and C Dhote. Analysis of Crown Efficiency in a Common Beech Thinning Trial Using a Process-Based Model[J], Annals of Forest Science, 2001, 58(3): 261-27.
    T A Howell and J T Musick. Relationship of Dry Matter Production of Field Crops to Water Consumption[J]. Crop Water Requirements, 1985. 247-269.
    T Fcourcaud and X P Zhang. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models[J]. Annals of Botany, 2008, 101(8):1053-1063
    T G Gregoire. The Jackknife: An Introduction with Applications in Forestry Data Analysis[J]. Canadia[J].Journal of Forest Research, 1984,14: 493-497
    T Kubo and T Kohyama. Abies Population Dynamics Simulated Using a Functional-Structural Tree Model[J]. Ecology Research, 2005, 20: 255-269
    T Nilson. A Theoretical Analysis of the Frequency of Gaps in Plant Stands. Agricultural and Forest Meteorology,1971, 8: 25–38.
    T Oikawa and T Saeki. Light Regime in Relation to Plant Population Geometry. I. A Monte Carlo Simulation of Light Microclimates within a Random Distribution Foliage [J]. Plant Research, 1977, 90(1):1-10.
    T Speck,H C Spatz,and D Vogelehner. Contributions to the Biomechanics of Plants.I.Stabilities of Plant Stems with Strengthening Elements of Different Cross-Sections Against Weight and Wind Forces[J].Botanica Acta, 1990,103:111—122.
    U Niinemets, D S Ellsworth, A Lukjanova, et al.Site Fertility and the Morphological and Photosynthetic Acclimatation of Pinus Sylvestris Needles to Light[J]. Tree Physiology, 2001 (21): 1231-1244.
    V Letort, PH Cournède, A Mathieu, et al. Parametric Identification Of a Functional structural Tree Growth Model and Application to Beechtrees (Fagus Sylvatica), Functional Plant Biology, 2008b, 35, 951-963.
    V Letort. Adaptation of the Greenlab Growth Model to Plants with Complex Architectures and Multi-ScaleAnalysis of Source- Sink Relationships for Parametric. Ph.D. Dissertation, Ecole. Centrale Paris, 2008a.
    W Kurth. Morphological Models of Plant Growth: Possibilities and Ecological Relevance [J]. Ecological Modelling, 1994, 75-76: 299-308.
    X Le Roux, A Lacointe, A Escobar-Gutierrez, et al. Carbon-Based Models of Individual Growth: a Critical Appraisal [J]. Annals of Forest Science, 2001, 58:469-506.
    Y Caraglio and D Barthelemy. Revue Critique Des Termes Relatifs A La Croissance Et a La Ramification Des Tiges Des Végétaux Vasculaires. in : Modélisation Et Simulation De L’Architecture Des Végétaux. (Eds.) Bouchon, J.; De Reffye, Ph; Barthélémy, D. Inra Editions, Paris. 1997, 435.
    Y Guo, Ph de Reffye, Y H Song, et al.. Modeling of biomass acquisition and biomass partitioning in the architecture of sunflower. In: Baogang Hu and Marc Jaeger (eds.) Plant growth modeling and applications. Beijing : Tsinghua University Press & Springer, 2003, 271-284
    Y Guo, Y T Ma, Z G Zhan, et al. Parameters Optimization and Field Validation of the Functional-Structural Model Greenlab for Maize[J]. Annals of Botany, 2006, 97(2):217-230.
    Y L Grossman and T M Dejone. Peach: A Simulation Model of Reproductive and Vegetative Growth in Peach Trees [J]. Tree Physiology, 1994, 14: 329-345
    Y T Ma,Y Guo,Z G Zhan,et al. Evaluation of the Plant Growth Model Greenlab-Maize [J]. Acta Agronomica Sinica, 2006,32(7):956-963.
    Z G Zhan, Ph De Reffye, F Houllier, et al. Fitting a Structural Functional Model with Plant Architectural Data. in Pma’03:Plant Growth Modeling and Applications[C], 2003, Page 236-249, Beijing, China, Tsinghua University Press And Springer.
    陈灵芝.北京西山油松林群落学特性及生物量的研究[J].植物生态学与地植物学丛刊.1984,8(3):193-181.
    高红真,尤立权,王超.燕山山地人工油松林单株生物量与生产力研究[J].河北林业科技,2009, 4:7-9
    高照全,魏钦平王小伟张继祥.果树光合作用数学模拟的研究进展[J].果树学报,2003, 20(5):338-344 .
    郭存珍.油松林生长周期调查分析[J].陕西农业科学,2009,6:114-115
    郭焱,李保国.虚拟植物的研究进展[J].科学通报, 2001,46(4):273-280
    国红,雷相东,刁军.树木结构-功能模型研究综述[J].世界林业研究,2010,23(2):55-60
    国红,雷相东,Veronique Letort,陆元昌,Philippe de Reffy.基于GreenLab模型的油松虚拟生长模型研究[J],植物生态学报,2009,33(5):950-957;
    
    韩兴吉.油松树冠枝生长规律的探讨[J],北京林学院学报,1985,3:50-59
    胡包钢,赵星,严红平,等. 2001.植物生长建模与可视化—回顾与展望[J].自动化学报,27(6): 816-835
    康孟珍.基于子结构的植物功能结构随机模型.博士论文. 2003
    亢新刚,崔相慧.油松人工林生长过程表的编制[J].内蒙古林业调查设计,2001,24(2):34-35
    孔勇,璩柏青. L系统在植物形态模拟中的应用[J].农机化研究,2007,4:136-138
    雷相东,常敏,陆元昌,等.虚拟树木生长建模及可视化研究进展[J].林业科学, 2006, 42(11):123-131
    李大锦,用面向对象的L系统模拟树的生长,2007,2(24):183-186
    李亚男,杨冬梅,孙书存,等.杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响:异
    速生长分析[J].植物生态学报, 2008, 32(5): 1175–1183
    粱建萍,张变香,杨慧斌。等.油松人工林林木生物量的研究[J].山西农业大学学报.2000,20(40):339—341.
    马履一,王希群.生长空间竞争指数及其在油松、侧柏种内竞争中的应用研究[J].生态科学,2006,25(5):385-389.
    马韫韬,郭焱,展志岗,等.玉米生长虚拟模型GREENLAB-Maize的评估[J]. 2006, 32(7): 956-963
    邵国凡,赵士洞,舒噶特著.1996.森林动态模拟——兼论红松林的优化经营[M].北京:中国林业出版社.
    申元村.北京山区自然地环境的基本特征[J].山地研究. 1985.6.Vol. 3. No.2: 88-94.
    宋有洪,郭焱,李保国,Philippe de Reffye.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报2003a,23(12):2579-2586
    宋有洪,郭焱,李保国,Philippe de Reffye.基于植株拓扑结构的生物量分配的玉米虚拟模型生态学报[J] 2003b, 23(11):2333-2341
    汤孟平,陈永刚,施拥军,等基于Voronoi图的群落优势树种种内种间竞争[J].生态学报, 2007,27(11):4707-4716
    w丹尼尔,J.A.海勒姆斯,F.s.贝克,等(赵克绳,王业遽,宫连城,李德林译).1987.森林经营原理【M】.北京:中国林业出版社.
    王本泉.松科一宝—油松[J].中国木材.1999,4,45-46
    王峰.基GreenLab原理的樟子松生长的功能-结构建模与应用.中国农业大学博士学位论文. 2009,45-48
    王小平,陆元昌,Christoph Peisert等.北京近自然森林经营技术指南[M].2008.4, 165.
    温秀军,王振亮,马占山.油松针叶叶量的研究[J].林业科学,1990,28(2):101-109
    吴刚,冯宗炜.中国油松林群落特征及生物量研究[J].生态学报,1994,12(4):415-422.
    徐杨,朱林,常明.树木三维形态结构的计算机建模[J].计算机工程与应用,2001,37(21):141-143
    徐宗学,张玲,阮本清.北京地区降水量时空分布规律分析[J].干旱区地理. 2006, 29(2):4
    杨东,杨秀琴.甘肃武都五凤山林区油松人工林的生物量和生产力研究[J].西北师范大学学报(自然科学版) 2004.(1):70-73
    展志岗.植物生长的功能-结构模型GreenLab的标定问题研究.中科院自动化所.博士后工作报告2003
    赵星,de Reffye Philippe,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报.2006, 24(6):608-615

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700