用户名: 密码: 验证码:
多目标优化方法及其在高超声速试飞器系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高超声速推进理论的不断深入,用于验证高超飞行器空中工作性能的高超声速飞行试验日益成为世界各国大力发展的重点方向。而设计综合性能最优的高超声速试飞器系统是保证试验可靠性与成功率的关键因素,因此,系统分析与设计过程中的多目标优化问题得到了诸多研究人员的普遍关注。本文以高超声速试飞器系统为应用对象,在综合考虑多项性能指标的同时,系统开展了多目标优化方法及其应用研究,取得了相应的研究成果。
     (1)在综述多目标进化机制的基础上,分析比较了常用的MOEA算法,构造分析了不同类型的测试函数,研究了算法性能评价方法。
     (2)研究了MOPSO算法。混沌变异机制引入到PSO算法中,克服了进化过程中出现的早熟收敛现象,改进了PSO算法的全局寻优能力;并将混沌变异机制应用于MOPSO算法,结合无变异机制的MOPSO算法,提出了分组MOPSO算法,解决了优化计算易陷入局部最优区域的问题;针对分布性与收敛性相互冲突而难以达到最优的难题,采用角度坐标方法与辅助适应度策略,提出了IMOPSO算法,更适合于飞行器系统等复杂优化问题的求解计算。
     (3)对Pareto最优解进行了深入分析。首先,建立了不同设计准则下的偏好函数模型,根据优化目标的取值范围确定了偏好区间;接着,依据优化目标的灵敏度分析,提出了Pareto最优解改进计算方法,给系统设计人员提供了更多满足偏好要求的候选解;最后,将目标总损失量作为方案稳健性指标融入决策过程,提出了基于目标总损失量择优的多目标决策方法,具有较强的工程应用性。
     (4)对高超声速试飞器系统进行了多目标优化设计研究。首先,概述了高超声速试飞器系统及其功能,确定了技术指标及结构组成;然后,对系统进行了多目标优化分析,研究了进行多目标优化设计的方法与思路;最后,开展了多目标优化方法在高超声速试飞器系统中的应用研究,包括:在详细分析动力模型、空气动力学模型、质量与结构模型、弹道计算模型等学科设计模型的基础上,以起飞质量、高超声速动力飞行段射程为目标函数,进行了多目标优化设计与决策分析,验证了进行多目标优化设计的必要性和合理性。
     (5)结合工程实际情况,研究了不确定因素影响下高超声速试飞器系统的多目标优化设计问题。在不确定多目标优化理论的基础上,综合考虑各学科设计模型中的诸多不确定性因素,建立了试飞器系统不确定多目标优化模型,采用基于概率支配关系的UC-IMOPSO算法进行进化计算,获得了稳健可靠的最终设计方案;并针对无控飞行方式下由不确定因素引起的弹道参数偏差较大的问题,提出了高度修正算法,提高了高超飞行器在正常工作动压范围内飞行的概率。
     本文工作是多目标优化方法在航天领域的一个典型应用,为其他具有不同试验任务的飞行器系统的优化设计提供了分析方法与研究思路。
With the development of hypersonic air-breathing propulsion theory, hypersonic flight test is becoming an important direction for validating all kinds of hypersonic vehicles’performance indexes in complex flight atmosphere. Therefore, the design of hypersonic test vehicle with optimal performance indexes is commonly the key factor to maintain test reliability and success rate, so the multi-objective optimization problem in the process of system analysis and design has also been drawn attention by many researchers in aerospace design domain. This dissertation, focusing on the optimal design of hypersonic test vehicle based on various conflicting objectives, explores multi-objective optimization methods and their applications systematically and comprehensively. The results attainted are as followed.
     (1) On the basis of multi-objective evolutionary schemes and strategies, common MOEA algorithms and some kinds of test functions are expounded in detail, as well as their performance assessment methods of multi-objective optimizers.
     (2) Multi-Objective Particle Swarm Optimization algorithm (MOPSO) is studied thoroughly. Aiming to solve out the pre-mature convergence phenomenon, the chaos mutation is introduced into PSO for improving global optimal ability. Then, taking advantage of MOPSO algorithm with chaos mutation and no mutation, a kind of grouped MOPSO algorithm is proposed to tackle the problem of converging to local optimal region in the process of evolutionary calculation. For lessening their conflicts between diversity and convergence, a new improved MOPSO algorithm based on angle coordinate parameters and auxiliary fitness value is studied to maintain convergence indexes in the premise of good diversity for Pareto solutions.
     (3) Pareto Solutions and relative boundary are analyzed. Firstly, the preference function model is established with various design rules. Then, an improved method based on Pareto sensitivity analysis is proposed to increase the number of candidate set. Finally, the multi-objective decision making method based on multi-object-value loss is proposed with robust design analysis by the index of objective-value-loss, validating its rightness and effectiveness by the example of satellite appendix control system.
     (4) Some researches on hypersonic test vehicle’s multi-objective optimization design are carried out. Firstly, the overall design plan of low-cost hypersonic test flight is established, including the system function, indexes and configuration components. Secondly, the multi-objective optimization problem of hypersonic test vehicle is analyzed including the necessity and solving methods for multi-objective evolution. Lastly, the minimum takeoff mass and the maximum range of hypersonic free-flight period is considered as objective functions to carry out multi-objective evolutionary calculation on the basis of multidisciplinary knowledge such as propulsion model, aerodynamic calculation, ballistic calculation, structure and mass model. And the multi-objective optimization design and decision analysis to hypersonic test vehicle is carried out deeply, improving its necessity and reasonability for multi-objective optimization design.
     (5) In the light of engineering practical problem, the uncertain multi-objective optimization design for hypersonic test vehicle is investigated in this dissertation. Based on uncertain multi-objective optimization theory, the multi-objective optimization model of hypersonic test vehicle in the presence of uncertainty is established when considering all kinds of uncertain factors in multidisciplinary knowledge. And the robust ultimate design plan is ascertained by means of UC-IMOPSO algorithm with probability dominating relationship. Moreover, for the purpose of larger ballistic parameter deviations deriving from unguided flight motion, a new altitude-correction algorithm is proposed, which has increased hypersonic vehicle flight probability in the range of nominal working dynamic pressure.
     The research of this dissertation is a typically application of multi-objective optimization problem, which could provide some relative analysis and demonstrating methods for other aerospace vehicle systems with different flight mission.
引文
[1]周义,王永良,王自焰.高超声速武器的特点及发展现状[J]. 2004, 12: 38~40.
    [2] Russell R B, Sullivan G, Allan P. The HyShot Scramjet Flight Experiment - Flight Data and CFD Calculations Compared [C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, 2003, 9: 1~8.
    [3] Thomas Neuenhahn, Herbert Olivier, Allan Paull. Development of the HyShot Stability Demonstrator [C]. 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, California, 2006, 6: 1~17.
    [4] Foelsche R O, Beckel S A, Bette A A. Flight Results from a Program to Develop a Freeflight Atmospheric Scramjet Test Technique [C]. AIAA/AHI 14th Internation Space Plances and Hypersonic Systems and Technologies Conference, 2006.
    [5] Foelsche R O, Leylegian J C, Bette A A. Progress on Development of a Freeflight Atmospheric Scramjet Test Technique [C]. AIAA/CIRA 13th Internation Space Plances and Hypersonic Systems and Technologies Conference, 2005.
    [6] Goldberg D E. Genetic Algorithms for Search, Optimization, and Machine Learning [M]. Reading, MA: Addson-Wesley, 1989.
    [7] Zitzler E. Evolutionary Algorithms for Multi-objective Optimization: Methods and Applications [D]. Swiss Federal Institute of Technology, Switzerland, 1999, 11.
    [8] Zitzler E, Thiele L. Multi-objective Optimization Using Evolutionary Algorithms - A Comparative Study [J]. In Parallel Problem Solving from Nature V, Amsterdam, Springer, 1998: 292~301.
    [9]姚望舒.多目标进化算法及其应用的研究[D].南京:南京大学, 2005.
    [10]王鲁.基于遗传算法的多目标优化算法研究[D].武汉:武汉理工大学, 2006, 3.
    [11]关志华.面向多目标优化问题的遗传算法的理论应用研究[D].天津:天津大学, 2002.
    [12] Syswerda G, Palmucci J. The Application of Genetic Algorithm to Resource Scheduling [J]. In R.K. Belew and L.B. Brooker Eds., Proc. of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, 1991: 502~508.
    [13] Wilson P B, Macleod M D. Low Implementation Cost IIR Digital Filter Design Using Genetic Algorithms [J]. In IEE/IEEE Workshop on Natural Algorithms in Signal Processing, 1993, 4: 1~8.
    [14] Kongar E, Gupta S M. Disassembly-to-order System Using Linear Physical Programming [C]. IEEE International Symposium on Electronics and the Environment, IEEE Computer Society, 2002: 312~317.
    [15] Messac A, Ismail-Yahaya A. Multi-objective Robust Design Using PhysicalProgramming [J]. Structural and Multidisciplinary Optimization, 2002, 23(5): 357~371.
    [16] Messac A, Sundararaj G J. Physical Programming's Ability to Generate a Well-distributed Set of Pareto Points [C]. AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conferece, 2000, 3: 1742~1754.
    [17] Messac A. Physical Programming: Effective Optimization for Computational Desgin. AIAA Journal, 1996, 34 (1): 149~158.
    [18] Messac A, Hattis P D. High Speed Civil Transport (HSCT) Plane Design Using Physical Programming[C]. AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conferece, 1995, 4, (3): 2018~2031.
    [19] Messac A, Martinez M P, Simpson T W. Effective Product Family Design Using Physical Programming. Engineering Optimization, 2002, 34 (3): 245~261.
    [20] Tappeta R V, Renaud J E, Messac A. Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multicriteria Optimization [J]. AIAA Journal, 2000, 38 (5): 917~926.
    [21]田志刚,黄洪钟,姚新胜.模糊物理规划及其在结构设计中的应用[J].中国机械工程, 2002, 24: 2131~2133.
    [22]黄洪钟,田志刚,关立文.基于神经网络的交互式物理规划及其在机械设计中的应用研究[J].机械工程学报, 2002, 38 (4): 51~57.
    [23] Tian Z G, Huang H Z, Guan L W. Fuzzy Physical Programming and Its Application in Optimization of Through Passenger Train Plan [J]. Proc. of the 3rd International Conference on Traffic and Transportation Studies, NewYork, 2002: 498~503.
    [24] Deb K. Multi-objective Optimization Using Evolutionary Algorithm [J]. New York: Wiley and sons, 2001.
    [25] Coello C A C, Van Veldhuizen David A, Lamont Gary B. Evolutionary Algorithm for Solving Multi-objective Problems [M]. New York: Kluwer Academic Publishers, 2002.
    [26] Coello C A C, Lamont G B, Van Veldhuizen David A. Evolutionary Algorithm for Solving Multi-objective Problems [M]. New York: Springer-Verlag, 2007.
    [27] Knowles J, Corne D, Deb K. Multiobjective Problem Solving From Nature [M]. New York: Springer-Verlag, 2008.
    [28] Tan K C, Khor E F, Lee T H. Multiobjective Evolutionary Algorithms and Applications [M]. London: Springer-Verlag, 2005.
    [29] Jin Y C. Multi-objective Machine Learning [M]. Berling: Springer-Verlag, 2006.
    [30] Rosenberg R S. Simulation of Genetic Population with Biochemical Properties [D]. University of Michigan, Ann Harbor, Michigan, 1967.
    [31] Schaffer J D. Multiple Objective Optimization with Vector Evaluated GeneticAlgorithms [J]. Proc. of the 1st International Conference on Genetic Algorithm, 1985, 93~100.
    [32] Fonseca C M, Fleming P J. Genetic Algorithms for Multi-objective Optimization: Formulation, Discusstion and Generation [J]. Proc. of the 5th International Conference on Genetic Algorithms, 1993, 416~423.
    [33] Srinivas N, Deb K. Multi-objective Optimization Using Non-dominated Sorting in Genetic Algorithms [J]. Evolutionary Computation, 1994, 2(3): 221~248.
    [34] Horn J, Nafpliotis N. Multi-objective Optimization Using the Niched Pareto Genetic Algorithm [D]. 1993.
    [35] Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multi-objective Optimization [J]. Proc. of 1st IEEE Conference on Evolutionary Computation, 1994, 1: 82~87.
    [36] Zitzler E, Thiele L. Multi-objective Evolutionary Algorithm: A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation, 1999, 3: 257~271.
    [37] Zitzler E. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization [J]. European 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2001: 95~100.
    [38] Knowles J D, Corne D. Approximating the Nondominated Front Using the Pareto Archived Evolutionary Strategy [J]. Evolutionary Computation, 2000, 8: 149~172.
    [39] Corne D W. The Pareto Envelope-based Selection Algorithm for Multi-objective Optimization [J]. In Lecture Notes in Computer Science. Eds. Proc. Parallel Problem Solving for Nature-PPSN IV, 2000, 1917: 839~848.
    [40] Corne D W. PESA-2: Region-based Selection in Evolutionary Multi-objective Optimization [J]. Proc. of the Genetic and Evolutionary Computation Conference, 2001: 283~290.
    [41] Erickson M, Mayer A, Horn J. The Niched Pareto Genetic Algorithms 2 Applied to the Design of Groundwater Remediation System [J]. Proc. of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, 2001: 681~695.
    [42] Coello C A C, Pulido G T. A Micro-genetic Algorithm for Multi-objective Optimization [J]. Proc. of the Genetic and Evolutionary Computation Conf., San Francisco: Morgan Kaufmann Publishers, 2001: 274~282.
    [43] Deb K, Pratap A, Agarwal S. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA2 [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182~197.
    [44] Laumanns M, Thiele L, Deb K. Combining Convergence and Diversity in Evolutinoary Multi-objective Optimization [J]. Evolutionary Computation, theMassachusetts Institute of Technology, 2002, 10 (3): 1~21.
    [45] Brockoff D, Zitzler E. Are All Objective Necessary on Dimensionality Reduction in Evolutionary Multi-Objective Optimization? [J]. Parallel Problem Solving from Nature - PPSN IX, LNCS, Berlin: Springer-Verlag, 2006: 533~542.
    [46] Hernandez-Diaz A G, Santana-Quintero L V. Pareto Adaptiveε-dominance [J]. Evolutionary Computation, 2007, 15 (4): 493~517.
    [47] Deb K, Saxena D K. On Finding Pareto-optimal Solutions through Dimensionality Reduction for Certain Large-dimensional Multi-objective Optimization Problems [R]. Technical Report, India Institute of Technology Kanpur, 2005.
    [48] Saxena D K, Deb K. Non-linear Dimensionality Reduction Procedure for Certain Large-dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Variance Unfolding [J]. Proc. of the 4th International Conference on Evolutionary Multi-criterion Optimization, 2007: 772~787.
    [49] Coello C A C, Pulido G T, Lechuga M S. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 256~279.
    [50] Gong M G, Jiao L C, Du H F. Multi-objective Immune Algorithm with Non-dominated Neighbor-based Selection [J]. Evolutionary Computation, 2008, 16 (2): 225~255.
    [51] Beume Nicola, Naujoks Boris, Emmerich Michael. SMS-EMOA: Multi-objective Selection based on Dominated Hypervolume [J]. European Journal of Operational Research, 2007, 181: 1653~1669.
    [52] Zhang Q F, Zhou A M. A Regularity Model based Multi-objective Estimation of Distribution Algorithm [J]. IEEE Transactions on Evolutionary Computation, 2007, 12 (1): 41~63.
    [53] Zhou A M, Zhang Q F, Jin Y C. Global Multi-objective Optimization via Estimation of Distribution Algorithm with Biased Initializtion and Crossover [J]. Proc. of the Genetic and Evolutionary Computation Conf., NewYork: ACM Press, 2007: 617~622.
    [54] Zhang Q, Li H. A Multi-objective Evolutionary Algorithm based on Decomposition [R]. Technical Report CSM-450, Department of Computer Science, University of Essex, 2006, 5.
    [55]郑金华.多目标进化算法及其应用[M].北京:科学出版社, 2007, 2.
    [56]陈良军,郑金华.基于自适应ε支配多目标遗传算法的研究[D].湘潭:湘潭大学, 2006, 5.
    [57]蒋浩,郑金华.基于多目标优化的粒子群算法研究[D].湘潭:湘潭大学, 2006, 5.
    [58]邝达,郑金华.多目标遗传算法中解集分布度保持策略的研究[D].湘潭:湘潭大学, 2006, 5.
    [59]唐欢容,郑金华.基于ε支配的MOGA及其在求解MOKP中的应用[D].湘潭:湘潭大学, 2005, 4.
    [60]宋武,郑金华.解决多目标优化问题的粒子群算法研究[D].湘潭:湘潭大学, 2007, 5.
    [61]李栋,李智勇.量子衍生多目标进化算法及其应用研究[D].长沙:湖南大学, 2008, 4.
    [62]李哲,李智勇.多峰优化遗传算法及多目标优化进化算法研究[D].长沙:湖南大学, 2007, 7.
    [63]伍爱华,李智勇.多目标蚁群遗传算法及其在区域水资源配置问题中的应用[D].长沙:湖南大学, 2007, 12.
    [64]李锋,熊盛武.多目标演化算法及在优化问题中的应用[D].武汉:武汉理工大学, 2004, 6.
    [65]赵永翔,熊盛武.多目标差分演化算法的构造及其应用[D].武汉:武汉理工大学, 2007, 4.
    [66]曾三友,魏巍,康立山.基于正交设计的多目标演化算法[J].计算机学报, 2005, 28 (7): 1153~1162.
    [67] Parsopoulos K E, Vrahatis M N. Particle Swarm Optimizer in Noisy and Continuously Changing Environments [J]. Artificial Intelligence and Soft Computering, 2001: 289~294.
    [68] Parsopoulos K E, Vrahatis M N. Particle Swarm Optimization Method in Multi-objective Problems [J]. Proc. of the ACM Symposium on Applied Computing, Madrid, 2002: 603~607.
    [69] Hu X H, Eberhart R. Multi-objective Optimization Using Dynamic Neighborhood Particle Swarm Optimization [J]. Proc. of the 2002 Congress on Evolutionary Computation, 2002: 96~109.
    [70] Baumgartner U, Magele C, Renhart W. Pareto Optimality and Particle Swarm Optimization [J]. IEEE Transactions on Magnetics, 2004, 3, 40 (2): 1172~1175.
    [71] Mahfouf Mahdi, Chen Min-You, Linkens Derek Arturh. Adaptive Weighted Particle Swarm Optimization for Multi-objective Optimal Design of Alloy Steels [J]. In Parallel Problem Solving from Nature - PPSN VIII, Birmingham, UK, Springer-Verlag, Lecture Notes in Computer Science, 2004, 9, 3242: 762~771.
    [72] Srinivasan Dipti, Seow Tian Hou. Particle Swarm Inspired Evolutionary Algorithm (PS-EA) for Multiobjective Optimization Problem [J]. Proc. of the 2003 Congress on Evolutionary Computation, 2003, 12, 4: 2292~2297.
    [73] Chow Chi Kin, Tsui Hung Tat. Autonomous Agent Response Learning by a Multi-species Particle Swarm Optimization [J]. In 2004 Congress on Evolutionary Computation, Portland, Oregon, USA, 2004, 6, 1: 778~785.
    [74] Moore J, Chapman R. Application of Particle Swarm to Multi-objective Optimization [J]. Dept, Computer. Sci. Software Eng., Auburn University, 1999.
    [75] Coello C A C, Lechunga M S. MOPSO: a Proposal for Multiple Objective Particle Swarm Optimization [J]. Proc. of the 2002 Congress on Evolutionary Computation, 2002: 1051~1056.
    [76] Ray T, Liew K M. A Swarm Metaphor for Multi-objective Design Optimization [J]. Eng. Opt, 2002, 3, 34: 141~153.
    [77] Fieldsend J E, Singh S. A Multi-objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence [J]. Proc. of the 2002 U.K. Workshop on Computational Intelligence, Birminghan, UK, 2002: 37~44.
    [78] Li X. A Non-dominated Sorting Particle Swarm Optimizer for Multi-objective Optimization [J]. GECCO(2003) LNCS(2723), 2003: 37~48.
    [79] Bartz-Beielstein Thomas, Linbourg Philipp, Parsopoulos Konstantinos E. Particle Swarm Optimizer for Pareto Optimization with Enhanced Archiving Techniques [J]. Proc. of the 2003 Congress on Evolutionary Computation, 12, 3: 1780~1787.
    [80] Mostaghim S, Teich J R. Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization. Proc. of the IEEE Swarm Intelligence Symposium 2003, India, USA, 2003: 26~33.
    [81] Sierra M R, Coello C A C. Improving PSO-based Multi-objective Optimization Using Crowding, Mutation andε-dominance [C]. The 3rd International Conference, EMO, 2005, 3410: 505~519.
    [82] Salazar-Lechuga M, Rowe J E. Particle Swarm Optimization and Fitness Sharing to Solve Multi-objective Optimization Problems[C]. Congress on Evolutionary Computation, 2005, 2: 1204~1211.
    [83]王芳,高双林.乘波技术在高超声速飞行器中的应用[J].国际航空杂志, 2007, 4: 51~52.
    [84]周军,徐文.高超声速技术综述[J].飞航导弹, 2003, 4: 1~8.
    [85]温杰.美国海军的HyFly计划[J].飞航导弹, 2008, 12: 10~13.
    [86]从敏,张绍忠.波音公司完成HyFly高超声速导弹助推试验[J].飞航导弹, 2006, 4: 1~2.
    [87] Neal E Hass, Michael K. Flight Data Analysis of HyShot2 [C]. 13th AIAA/CIRA International Space Planes and Hypersonic Systems and Technologies, 2005.
    [88] Neville Mcmartin. Final Report of the Investigation into the Anomaly of the HyShot Rocket at Wommera, South Australia on 30 October 2001 [R]. Technial Report2002/080, 2002, 6: 1~45.
    [89]从敏.国外高超声速计划一瞥[J].飞航导弹, 2003, 3: 9~10.
    [90]刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望[J].中国工程科学, 2004, 9, 6: 1~8.
    [91]车竞,唐硕,何开锋.高超声速巡航飞行器机身多目标优化设计[J].实验流体力学, 2008, 3, 22: 55~59.
    [92]吁日新.多目标/多学科优化方法的研究[D].北京:北京航空航天大学, 2002, 3.
    [93]刘洪天.结构总体综合的多目标一体化健壮设计—飞机结构强度多目标健壮设计[D].北京:北京航空航天大学, 2002, 6.
    [94]李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报, 2006, 2, 21: 13~18.
    [95]李玥.基于多目标遗传算法的航空发动机多目标优化控制[D].南京:南京航空航天大学, 2007, 1.
    [96]徐志刚.基于模糊多目标遗传算法的飞行器模拟件结构参数优化[J].机械科学与技术, 2007, 4, 26: 417~419.
    [97]颜力.飞行器多学科设计优化若干关键技术的研究与应用[D].长沙:国防科学技术大学, 2006, 10.
    [98] Leonardo Versiani Cabral, Pedro Paglione. Multi-objective Design Optimization Framework for Concept Design of Families of Aircraft [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, 1: 1~12.
    [99] Rao C S, Ray T, Tsai H M. Aircraft Configuration Design using a Multidisciplinary Optimization Approach [C]. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004, 1: 1~15.
    [100] Takayasu K, Shinkye J, Shigeru O. Multidisciplinary Design Optimization of Wing Shape for a Small Jet Aircraft Using Kriging Model [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada, 2006, 1: 1~13.
    [101] Hu Y, Chen G, Wan Z M. Multi-Objective Pareto Collaborative Optimization And Its Applications[C]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, 2006: 1~6.
    [102] Brian K Bairstow, Olivier De Weck, Jaroslaw S S. Multiobjective Optimization of Two-Stage Rockets for Earth-To-Orbit Launch [C]. 47th AIAA Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 2006, 5: 1~16.
    [103] Howooong Namgoong, William A Crossley, Anastasios S Lyrintzis. Morphing Airfoil Design for Minimum Aerodynamic Drag and Actuation Energy Including Aerodynamic Work [C]. 47th AIAA Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 2006, 5: 1~15.
    [104] Anna Lubomirova Blumel. Robust Fuzzy Autopilot Design Using Multi-Objective Optimisation for a Highly Non-linear Missile [D]. Royal Military College of Science Shrivenham, 2000.
    [105] Mashiro Kanazaki, Kentaro Tanaka, Sinkyu Jeong. Multi-objective Aerodynamic Optimization of Elements' Setting for High-lift Airfoil Using Kriging Model [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, 1: 1~11.
    [106] Saqlain Akhtar, He Linshu. An Efficient Evolutionary Multi-Objective Approach for Robust Design of Multi-Stage Space Launch Vehicle [C]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, 2006, 9: 1~12.
    [107]方卫国,师瑞峰.飞机方案多目标优化的Pareto遗传算法[J].北京航空航天大学学报, 2003, 8, 29: 668~672.
    [108]李海明.二维双学科(气动/隐身)优化方法的研究[D].北京:北京航空航天大学, 2000.
    [109]夏露.导弹外形气动与隐身一体化优化设计研究[D].西安:西北工业大学, 2001.
    [110]夏露.飞行器外形气动、隐身综合优化设计方法研究[D].西安:西北工业大学, 2004.
    [111]夏露,高正红,李天.飞行器外形多目标多学科综合优化设计方法研究[J].空气动力学学报, 2003, 9, 21: 275~281.
    [112]夏露,高正红.基于Pareto的系统分解法及其在飞行器外形优化设计中的应用[J].西北工业大学学报, 2006, 2, 24: 89~93.
    [113]张海洋,单长胜.多目标优化技术在尾翼稳定脱壳穿甲弹系统设计中的应用[J].弹箭与制导学报, 2002, 22(2): 38~41.
    [114]刘金辉.考虑弹性变形的机翼气动—结构多学科优化设计[D].西安:西北工业大学, 2005.
    [115]王允良.飞行器总体参数优化的进化算法及其应用研究[D].西安:西北工业大学, 2006, 2.
    [116]杨青,邱菀华,汪亮.固体火箭发动机成本与性能双目标优化设计[J].北京航空航天大学学报, 2005, 5, 31: 574~577.
    [117]杨涛,方丁酉,唐乾刚.火箭发动机燃烧原理[M].长沙:国防科技大学出版社, 2008, 9.
    [118] Laumanns M, Zitzler E, Thiele L. A Unified Model for Multi-objective Evolutionary Algorithms with Elitist [J]. In Congress on Evolutionary Computer, Piscataway, NJ, 2000: 46~53.
    [119] Laumanns M, Zitzler E, Thiele L. On the Effect of Archiving, Elistism, and Density based Selection in Evolutionary Multi-objective Optimization [J]. Proc. of 1st IEEE Conference on Evolutionary Multi-Criterion Optimization, Berlin, 2001: 181~196.
    [120] Everson R M, Fieldsend J E, Singh S. Full Elite Sets for Multi-objective Optimisation [J]. In I.C. Parmee, editor, Adaptive Computing in Design and Manufacture V, 2002: 343~354.
    [121] Laumanns M, Thiele L, Deb K. On the Convergence and Diversity-preservation Properties of Multi-objective Evolutionary Algorithms [R]. TIK-Report, 2001, 6: 1~21.
    [122] Knowles J D. The Pareto Archived Evolutionary Strategy: A New Baseline Algorithm for Pareto Multi-Ojbective Optimisation [J]. Proc. of the Congress on Evolutionary Computation, 1999: 98~105.
    [123]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社, 2006, 6.
    [124]闫震宇.演化多目标优化:理论、方法及应用[D].武汉:武汉大学, 2003, 4.
    [125]邓国强.基于参考点的演化多目标优化算法及性能评价研究[D].武汉:武汉理工大学, 2007, 11.
    [126] Whitley D, Mathias K, Rana S. Evaluating Evolutionary Algorithms [J]. Artificial Intelligence, 1996, 85: 245~276.
    [127] Whitley D. Evaluating Evolutionary Algorithms [J]. Artificial Intelligence, 1996, 85: 245~276.
    [128] Deb K. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems [J]. Evolutionary Computation, 1999, 7: 205~230.
    [129] Zitzler E, Deb K, Thiele L. Comparision of Multi-objective Evolutionary Algorithm: Empirical Results [J]. Evolutionary Computation, 2000, 8: 173~195.
    [130] Deb K, Thiele L, Laumanns M. Scalable Test Problems for Evolutionary Multi-objective Optimization [R]. TIK-Technical Report No.112, 2001, 7.
    [131] Deb K, Thiele L, Laumanns M. Scalable Test Problems for Evolutionary Multi-objective Optimization [J]. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, In Ajith Abraham, Lakhmi Jain and Robert Goldberg, 2005: 105~145.
    [132] Deb K, Thiele L, Laumanns M. Scalable Multi-objective Optimization Test Problems [J]. In Congress on Evolutionary Computer, IEEE Service Center, Piscataway, New Jersey, 2002, 1: 828~830.
    [133] Van Veldhuizen David A, Gary B Lamont. Evolutionary Computation and Convergence to a Pareto Front [C]. Late Breaking Papers at the Genetic Programming 1998 Conference, Stanford University, California, Stanford Bookstore, 1998: 221~228.
    [134] Deb K. Multi-objective Evolutionary Optimization: Past, Present and Future [J]. Proceedings of the 4th International Conference on Adaptive Computing in Design and Manufacture (ACDM'2000), London: Springer, 2000: 225~236.
    [135] Schott J R. Fault Tolerant Design Using Single and Multi-criteria Genetic Algorithm Optimization [D]. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.
    [136]寇保华.新型反机场末修子母弹射击效能分析及总体优化设计[D].长沙:国防科学技术大学, 2007, 3.
    [137]徐佳.多目标粒子群优化算法研究与应用[D].上海:华东理工大学, 2005, 12.
    [138]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报, 2004, 32(3): 416~420.
    [139]王岁花,冯乃勤,李爱国.一种新颖的粒子群优化算法[J].计算机工程与应用, 2003, 13: 109~134.
    [140]柯晶,钱积新,乔谊正.一种改进的粒子群优化算法[J].电路与系统学报, 2003,10, 8: 87~90.
    [141] Ning L, Qin Y Q. Particle Swarm Optimization with Mutation Operator [J]. Proc. of the 3th International Conference on Machine Learning and Cybermetics, 2004, 8: 26~29.
    [142] Suganthan P N. Particle Swarm Optimiser with Neighborhood Operator [J]. Proc. of the Congress on Evolutionary Computation, Washington DC, 1999: 1958~1962.
    [143] Krink T, Vesterstrom J S. Particle Swarm Optimization with Spatial Particle Extension [J]. Proc. of the 2002 Congress on Evolutionary Computation, Honolulu, Hawaii USA, 2002, 2: 1474~1479.
    [144] Lovbjerg M, Krink T. Extending Particle Swarm with Self-organized Criticality [J]. IEEE Congress on Evolutionary Computation, Hawaii, USA, 2002: 1588~1593.
    [145] Riget J, Vesterstrom J S. A Diversity-Guided Particle Swarm Optimization - the ARPSO [R]. EVALife Technical Report, 2002.
    [146] Kennedy J S. Improving Particle Swarm Performance with Cluster Analysis [J]. Proc. of the 2000 Congress on Evolutionary Computation, Piscataway, NJ, USA: IEEE, 2000: 1507~1512.
    [147] Kennedy J, Mendes R. Population Structure and Particle Swarm Performance [C]. Proc. of IEEE Congress on Evolutionary Computation, Honolulu, Hi USA, 2002, 2: 1671~1676.
    [148] Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance [C]. Proceedings of IEEE Congress on Evolutionary Computation[C], Piscataway, NJ: IEEE Service Center, 1999: 1931~1938.
    [149] Xie X F, Zhang W, Yang Z. A Dissipative Particle Swarm Optimization [J]. IEEECongress on Evolutionary Computation, Honolulu, Hawaii USA, 2002: 1456~1461.
    [150]张丹,李长河.基于混沌的粒子群优化算法研究与进展[J].软件导刊, 2007, 6: 109~110.
    [151]张劲松,李歧强,王朝霞.基于混沌搜索的混合粒子群优化算法[J].山东大学学报, 2007, 2, 37: 47~50.
    [152]赵建民.新概念跃滑式导弹总体设计及其优化方法研究[D].长沙:国防科学技术大学, 2006, 4.
    [153]孙瑞祥,屈梁生.遗传算法优化效率的定量评价[J].自动化学报, 2000, 26 (4): 382~384.
    [154]刘华莹,林玉娥,张君施.基于混沌搜索解决早熟收敛问题的混合子群算法[J].计算机工程与应用, 2006, 13: 77~79.
    [155]李宁,孙德宝,岑冀刚.带变异算子的粒子群优化算法[J].计算机工程与应用, 2004, 17: 12~15.
    [156]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报, 2004, 27: 897~903.
    [157] Utyuzhnikov S V, Fantini P, Guenov M D. A Method for Generating a Well-distributed Pareto Set in Nonlinear Multiobjective Optimization [J]. 2006, 1~28.
    [158]薛娟,郑金华.多目标进化算法中非均匀问题的研究[D].湘潭:湘潭大学, 2005, 4.
    [159]徐建伟,黄辉先,彭维.多目标进化算法的分布度评价方法[J].计算机工程, 2008, 10, 34: 208~212.
    [160] Messac A, Batayneh W M, Ismail-Yahaya A. Production Planning Optimization with Physical Programming [J]. Engineering Optimization, 2002, 34 (4): 323~340.
    [161]窦毅芳.稳健性优化设计理论与方法及其在固体发动机中的应用研究[D].长沙:国防科学技术大学, 2007, 11.
    [162]汪泽焱,刘海燕,倪明放.基于神将网络的多目标权系数修改算法[J].解放军理工大学学报, 2000, 10, 1: 19~22.
    [163]张新波.动态多目标决策问题的灰色分析方法[J].电路与系统学报, 2004, 6, 9: 118~121.
    [164]薄瑞峰,李瑞琴.基于Pareto最优的概念结构方案多目标决策方法[J].西安交通大学学报, 2006, 9, 40: 1114~1116.
    [165]徐济超,马义中.多指标稳健设计质量特性的度量[J].系统工程理论与实践, 1998, 8: 45~48.
    [166]魏世振,韩玉启,陈传明.基于信噪比的多元质量损失函数研究[J].管理工程学报, 2004, 18: 4~7.
    [167] Sunar M, Kahraman R. A Comparartive Study of Multi-objective Optimization Methods in Structural Design [J]. Turk J Engin Environ Sci, 1998, 9: 69~78.
    [168]程绪铎.航天器弹性附件伸展动力学研究[J].宇航学报, 2000, 7, 3: 106~111.
    [169]贾英宏,徐世杰,荆武兴.带弹性附件的航天器的动力学与变结构控制[J].哈尔滨工业大学学报, 2003, 1, 35: 1~4.
    [170]孙丕忠.多学科设计优化算法及其在空中发射运载火箭设计中的应用研究[D].长沙:国防科学技术大学, 2005, 12.
    [171]李哲.多学科优化设计在航空航天领域的应用及发展[J].航天返回与遥感, 2004, 9, 25 (3): 65~70.
    [172]陈刚,康兴无,闫桂荣.基于多目标多学科设计优化方法的再入弹道设计研究[J].宇航学报, 2008, 7, 29 (4): 1210~1215.
    [173]董师颜,张兆良.固体火箭发动机原理[M].北京:北京理工大学出版社, 1996.
    [174]方丁酉,张为华,杨涛.固体火箭发动机内弹道学[M].长沙:国防科技大学出版社, 1997, 10.
    [175]刘巍.尾翼弹气动特性研究[D].长沙:国防科学技术大学, 2005, 12.
    [176]严恒元.飞行器气动特性分析与工程计算[M].西安:西北工业大学出版社, 1990, 6.
    [177]王元有.固体火箭发动机设计[M].北京:国防工业出版社, 1984, 11.
    [178] Jurgen Teich. Pareto-Front Exploration with Uncertain Objectives [J]. The 1st International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag, 2001: 314~328.
    [179] Hughes E J. Evolutionary Multi-objective Ranking with Uncertainty and Noise [J]. The 1st International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag, 2001: 329~343.
    [180] Philipp Limbourg. Multi-objective Optimization of Problems with Epistemic Uncertainty [J]. Springer-Verlag Berlin Heidelberg, LNCS 3410, 2005: 413~427.
    [181] Delaurentis D A. A Probabilistic Approach to Aircraft Design Emphasizing Stability and Control Uncertainties [D]. Georgia Institute of Technology, 1998.
    [182] French S. Uncertainty and Imprecision: Modeling and Analysis [J]. The Journal of the Operational Research Society, 1995, 46(1): 45~51.
    [183] Kirby M R, Mavris D N. Forecasting Technology Uncertainty in Preliminary Aircraft Design [J]. AIAA-99-01-5631, 1999.
    [184] Mantis G C. Quantification and Propagation of Disciplinary Uncertainty via Bayesian Statistics [D]. Georgia Institute of Technology, 2002.
    [185]张为华,李晓斌.飞行器多学科不确定性设计理论研究概述[J].宇航学报, 2004,25(6): 702~706.
    [186] Goh C K, Chiam S C, Tan K C. An Investigation on Noisy Environments in Evolutionary Multi-Objective Optimization [J]. IEEE Congress on Evolutionary Computation, 2006, 6: 1~6.
    [187] Beyer H G. Evolutionary Algorithms in Noisy Environments: Theoretical Issues and Guidelines for Practice [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186: 239~267.
    [188] Sano Y, Kita H. Optimization of Noisy Fitness Functions by means of Genetic Algorithms Using History of Search with Test of Estimation [J]. Proc. of the 2002 Congress on Evolutionary Computation, 2002, 1: 360~365.
    [189] Babbar M, Lakshmikantha A, Goldberg D E. A Modified NSGA-2 to Solve Noisy Multi-objective Problems [C]. Genetic and Evolutionary Computation Conference, Chicago, Illinois, USA, 2003, 2723: 21~27.
    [190] Hughes E J. Constraint Handling with Uncertain and Noisy Multi-objective Evolution [J]. Proc. of the Congress on Evolutionary Computation 2001, Piscataway: IEEE Service Center, 2001, 2: 963~970.
    [191] Hughes E J. Multi-Objective Probabilistic Selection Evolutionary Algorithm [J]. Technical Report DAPS/EJH/56/2000, Department of Aerospace, Power & Sensors, Cranfield University, 2000.
    [192] Fieldsend J E, Everson R M. Multi-objective Optimisation in the presence of Uncertainty [J]. Proc. of the 2005 IEEE Congress on Evolutionary Computation, 2005, 9, 1: 243~250.
    [193]李晓斌,张为华,王中伟.固体火箭发动机装药不确定性优化设计[J].固体火箭技术, 2006, 4: 269~273.
    [194]李晓斌,张为华,王中伟.基于物理规划的固体火箭发动机不确定性优化设计[J].固体火箭技术, 2006, 29 (3): 165~168.
    [195]李晓斌,张为华,王中伟.基于证据理论的固体火箭发动机不确定性设计[J].弹箭与制导学报, 2006, 26 (2): 420~422.
    [196]李晓斌.不确定性设计优化理论与方法及其在固体助推发动机设计中的应用研究[D].长沙:国防科学技术大学, 2006, 9.
    [197] Mccormick D J. Distributed Uncertainty Analysis Technique for Conceptual Launch Vehicle Design [D]. Georgia Institute of Technology, 2001.
    [198]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993, 12.
    [199] Huang Z W, Li X L, Yong D. The Low-altitude Wind Ahear and Its Influence upon Hedgehopping [J]. American Institute of Aeronautics & Astronautics or Published with Permission of Authors and/or Author(s)' Sponsoring Organization, 2000, 12, 01:1~4.
    [200]盖斯勒,成楚之.风对发射飞行器的影响[M].北京:国防工业出版社, 1976.
    [201]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社, 2000, 8.
    [202]张松兰,刘晓利.风场建模与弹道仿真[J].弹箭与制导学报, 2006, 26: 550~552.
    [203]张松兰,刘晓利.风切变对弹道落点散布的影响[J].战术导弹控制技术, 2006, 3 (54): 107~108.
    [204]范培蕾,张晓今,杨涛.高超声速飞行试验风场建模与仿真分析[J].战术导弹技术, 2009, 2: 76~82.
    [205]胡永红.数据融合方法在小型飞行器高度定位中的应用[J].计算机测量与控制, 2006, 14(10): 1371~1373.
    [206]许可,刘和光. SZ-4雷达高度计及其在轨测量结果[J].遥感学报, 2007, 7, 11(4): 439~445.
    [207]蔡玉林,程晓,孙国清.星载雷达高度计的发展及应用现状[J].遥感信息, 2006, 4: 74~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700