用户名: 密码: 验证码:
生物可降解导电聚膦腈高分子的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子是一类新兴的功能聚合物,近年来的研究发现,导电高分子不仅具有良好的生物相容性,而且能调节细胞的多重功能(如黏附、增殖、迁移和分化、DNA的合成、蛋自质的分泌等),在生物医学工程领域具有广泛的应用前景和重要的研究价值。本论文以周围神经修复为研究背景,设计合成既具有电活性,同时又具有良好生物相容性和可生物降解性的聚膦腈高分子材料,并对其结构和性能进行表征。通过体外RSC96细胞与材料作用,并辅以电刺激对其进行生物学和电活性评价。本文将电活性和生物降解性的概念同时引入高分子材料的合成,为周围神经组织工程材料的研究开辟了一条新的途经。主要内容如下:
     合成了两种苯胺低聚体:苯胺四聚体和苯胺五聚体。探讨了苯胺四聚体合成过程中的反应温度、氧化剂的用量、质子酸的种类和浓度等因素对产率的影响。对合成苯胺五聚体的双向增长和单向增长两种方法进行比较,单向增长法能制备产率和纯度均较高的苯胺五聚体。利用傅立叶红外光谱(FT-IR)、核磁共振(~1H-NMR、~(13)C-NMR)、紫外可见光谱(UV-Vis)表征了苯胺四聚体和五聚体结构,分别采用循环伏安法(CV)和四点探针法表征了电化学性能和电导率。以六氯环三膦腈为原料,通过热开环聚合方法,合成线性聚二氯膦腈,并研究了聚合过程中的温度、聚合时间等因素对产率的影响。
     通过亲核取代反应,首先制备两种由可降解基团单取代的聚膦腈高分子材料:聚[双(甘氨酸乙酯)]膦腈(PGEE)和聚甲基苯氧基膦腈(PMPP)。在此基础上,将导电苯胺低聚物和可降解基团与聚二氯膦腈接枝,合成两种由导电基团和可降解基团混合取代的聚膦腈导电高分子材料:聚[(甘氨酸乙酯/苯胺五聚体)膦腈](PGAP)、聚[(对甲基苯氧基)/(苯胺四聚体)膦腈](PMAP)。研究了混合取代聚膦腈合成过程中取代基加入顺序、反应温度等对产率的影响。采用FT-IR、~1H-NMR、UV-Vis、~(31)P-NMR等分析方法表征合成聚合物的结构,利用CV、四点探针法对合成的导电聚合物的电化学性能进行测试和表征。结果表明:合成的导电聚膦腈高分子具有类似苯胺低聚体的化学氧化特征,并能进行质子酸的掺杂;四点探针法测得PGAP的电导率为2×10~(-5)S/cm,PMAP的电导率为1.45×10~(-6)S/cm。前者比后者具有更好的电化学性能,与生物电的电导率相近。采用凝胶渗透色谱法(GPC)测试PGAP的分子量:(?)w=2.1×10~5,(?)n=6.2×10~4,分子量分布d=3.42。
     对合成的聚合物PGEE、PMPP、PGAP、PMAP进行体外降解研究。测定降解过程中降解介质pH值、失重率变化和采用扫描电子显微镜(SEM)观察材料微观结构变化表明:聚膦腈的降解性能与侧基的性质有密切的关系,PGAP、PGEE材料比PMAP和PMPP材料具有更好的降解性能。PGAP、PGEE材料在降解过程中溶液的pH值略呈上升的趋势,基本处于中性。
     将RSC96细胞与PGAP、PMAP材料体外联合培养,通过细胞增殖、细胞毒性、溶血试验、SEM观察进行生物学评价。噻唑蓝(MTT)比色法表明PGAP材料能促进细胞的增殖;荧光探针技术测试细胞毒性表明导电材料PGAP与对照组PDLLA一致;溶血试验表明PGAP材料的溶血率符合医用材料的溶血要求;SEM观察表明两种材料都具有良好的神经细胞亲和性。
     设计和制备了电刺激装置,通过设计的电刺激实验,研究PGAP材料在有无电刺激以及电刺激不同方式下,对RSC96细胞生长、增殖的影响。比较了不导电材料PDLLA、PGEE在有无电刺激的条件下对RSC96细胞生长情况。探讨了不同电压和时间的电刺激对细胞的增殖。结果表明:电极与导电材料PGAP接触,能促进细胞增殖和片状伪足的生长;当电极不接触材料,电流从培养液中通过时,与无电刺激相比,细胞伪足的平均长度无显著性差异;不导电材料有电刺激与无电刺激相比,细胞伪足平均长度无显著性差异;电压超过100 mV,电刺激时间超过72 h时,细胞的增殖不再具有显著性差异。
As a new kind of functional material, conducting polymers not only possess good biocompatiblity but also can modulate cellular activities, including cell adhesion, migration, DNA synthesis, and protein secretion, implying a promising application in biomedical field. In this dissertation, a novel electroactive, biocompatible and biodegradable polyphosphazenes were designed and synthesized for peripheral nerve regeneration. The structure and properties of the synthesized polymer were characterized by different methods. Biological evaluation and electrical activation of materials were carried out, via electrical stimulation, by cultivating RSC96 Schwann cells on the surface of the materials. The idea of tethering conducting polymer and biodegradable materials together to create a new kind of polymer explores a new way for regenerating nerve tissue engineering. The major work is summarized as the following:
     Oligoaniline of aniline tetramer and pentamer were synthesized successfully in this part. The influences of reaction temperature, dosage of oxidant and concentration of different proton acid on yield of aniline tetramer were investigated. Two synthetic routes for the preparation of aniline pentamer had been studied. The results showed that the high yield and purity of pentamer should be synthesized through step-by-step method. Chemical structure of aniline tetramer and pentamer was characterized by FT-IR,~1H-NMR, ~(13)C-NMR and UV-Vis. The electrochemical properties of the as-synthesized oligoaniline also were investigated by CV and Four-Point probe method. Reactive poly(dichlorophosphazene) was prepared from hexachlorocyclotriphosphazene by thermal initiated ring-open polymerization. Polymerization conditions were investigated, including polymerization temperature, polymerization time and water concentration in respect to the yield of poly(dichlorophosphazene).
     Monosubstituted polyphosphazene of Poly[(glycine ethyl ester)phosphazene] (PGEE) and poly[(methylphenoxy) phosphazene] (PMPP) were prepared by grafting glycine ethyl ester and methoxyphenol on polyphosphazene respectively. Poly[(methylphenoxy)(aniline tetramer) phosphazene] (PMAP) and poly[(glycine ethyl ester)(aniline pentamer) phosphazene] (PGAP) were further synthesized by grafting oligoaniline and biodegradable groups on polyphosphazene as side groups. Some factors affecting yields of two mixed-substituent poly (organophosphazenes), such as reaction temperature and order of substitutional group added, were studied and discussed. FT-IR、~1H-NMR、UV-Vis> ~(31)P-NMR were used to characterize the chemical structure of as-synthesized polymers. The electrochemical properties of PGAP and PMAP were characterized by CV and Four-point probe method. The conductivity of PGAP and PMAP is 2x10~(-5)S/cm and 1.45x10(-6)S/cm respectively, which confirmed that the conductivity of PGAP is better than PMAP. In addition, the molecular weight of PGAP determinated by GPC is Mw= 2.1 x10~5, Mn=6.2x104, and the heterogeneity is d=3.42.
     The pH value of degradation medium, and the variation of molecular weight were determinated and the variation of the morphology and microstructure of PGEE、PMPP、PGAP and PMAP was observed during the degradation in vitro. The results showed that the biodegradability of poly (organophosphazenes) is relevant to the properties of substituent groups. The pH value of degradation medium tended to rise but still in the range of neutral during the whole degradation time of PGAP and PGEE. The results also illustrated that PGAP and PGEE is biodegradable.
     After cultivating RSC96 Schwann cells on the surface of PGAP and PMAP materials, Biological evaluation was carried out through cell proliferation, cytotoxicity, hemolysis test and SEM observation. The viability using MTT assay of RSC96 cells seeded on PGAP films showed that PGAP could promote cells adhesion and proliferation. Fluorescent probe technology indicated that cytotoxicity of PGAP is similar to PDLLA, which suggested PGAP is non-toxic. The results of hemolysis test showed PGAP meets the requirements of medical materials. The SEM results showed that PGAP has better cell affinity than PDLLA. All of the above results suggested that the PGAP copolymer was non-toxic and could support the cell attachment and proliferation.
     A novel adjustable direct current regulated power supply was designed and prepared for stimulating cell growth. In order to elucidate the effect of electrical stimulation through PGAP on RSC96 cells proliferation, experiments were performed in which RSC96 cells grown on PGAP were subjected to a potential through the film, through the solution and not subjected to any stimulation, respectively. The effects of non-conducting material, such as PDLLA and PGEE, with or without electrical stimulation on RSC96 cell proliferation were also evaluated. Different constant potential and stimulation time on proliferation of RSC96 cells were also studied. The results showed that electrical stimulation through the PGAP films could accelerate cells proliferation. Cells grown on PGAP materials in which charge was passed through the solution possessed medican pseudopodium length similar to cells without an electrical stimulus. As for non-conducting materials, medican pseudopodium length is no significantly different between with or without electrical stimulation. In addition, the cell proliferation results using MTT assay showed that there is no significant difference when stimulation potential and time exceed to 100 mV and 72 h, respectively.
引文
[1]Mccaig C D, Rajnicek A M, Song B, et al. Controlling cell behavior electrically:Current views and future potential[J]. Physiological Reviews,2005,85(3):943-978.
    [2]Funk R H, Monsees T, Ozkucur N. Electromagnetic effects-From cell biology to medicine[J]. Progress in Histochemistry and Cytochemistry,2009,43(4):177-264.
    [3]Burr H S. Blueprint for immortality:electric patterns of life discovered in scientific break-through[G]. C W Daniel Co. Ltd,1972.
    [4]Baker B, Spadaro J, Marino A, et al. Electrical-stimulation of articular-cartilage regeneration[J]. Annals of the New York Academy of Sciences,1974,238(11):491-499.
    [5]Ingvar S. Reaction of Cells to Galvanic Current in Tissue Culture[J]. Proceedings of the Society for Experimental Biology and Medicine,1920,17:198-199.
    [6]Kleinsoyer C, Hemmendinger S, Cazenave J P. Culture of human vascular endothelial-cells on a positively charged polystyrene surface, primaria-comparison with fibronectin-coated tissue-culture grade polystyrene[J]. Biomaterials,1989,10(2):85-90.
    [7]Hellsten J, Wennstrom M, Bengzon J, et al. Electroconvulsive seizures induce endothelial cell proliferation in adult rat hippocampus[J]. Biological Psychiatry,2004,55(4):420-427.
    [8]Emerson G G, Segal S S. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries[J]. American Journal of Physiology-Heart and Circulatory Physiology,2001,280(1):160-167.
    [9]Kun A, Martinez A C, Tanko L B, et al. Ca2+-activated K+channels in the endothelial cell layer involved in modulation of neurogenic contractions in rat penile arteries[J]. European Journal of Pharmacology,2003,474(1):103-115.
    [10]Salmons S, Ashley Z, Sutherland H, et al. Functional electrical stimulation of denervated muscles:Basic issues[J]. Artificial Organs,2005,29(3):199-202.
    [11]Dow D E, Dennis R G, Faulkner J A. Electrical stimulation attenuates denervation and age-related atrophy in extensor digitorum longus muscles of old rats[J]. Journals of Gerontology Series A-Biological Sciences and Medical Sciences,2005,60(4):416-424.
    [12]Kern H, Boncompagni S, Rossini K, et al. Long-term denervation in humans causes degeneration of both contractile and excitation contraction coupling apparatus, which is reversible by functional electrical stimulation (FES):A role for myofiber regeneration?[J]. Journal of Neuropathology and Experimental Neurology,2004,63(9):919-931.
    [13]Huang S C. Effect of electrical stimulation on callus maturation during callus distraction in rabbits[J]. Journal of the Formosan Medical Association,1997,96(6):429-434.
    [14]Inoue N, Ohnishi I, Chen D G, et al. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model [J]. Journal of Orthopaedic Research,2002,20(5):1106-1114.
    [15]Hagiwara T, Bell W H. Effect of electrical stimulation on mandibular distraction osteogenesis[J]. Journal of Cranio-Maxillofacial Surgery,2000,28(1):12-19.
    [16]Baldi J C, Jackson R D, Moraille R, et al. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation[J]. Spinal Cord,1998,36(7): 463-469.
    [17]Borgens R B, Bohnert D M. The responses of mammalian spinal axons to an applied DC voltage gradient[J]. Experimental Neurology,1997,145(2):376-389.
    [18]Hawryluk G W J, James R, Kwon B K, et al. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury[J]. Neurosurgical Focus,2008,25(5):1-14.
    [19]Politis M J, Zanakis M F, Albala B J. Facilitated regeneration in the rat peripheral nervous system using applied electric fields[J]. The Journal of Trauma,1988,28(9):1375-1381.
    [20]Shen N, Zhu J. Experimental study using a direct current electrical field to promote peripheral nerve regeneration[J]. Journal of Reconstructive Microsurgery,1995,11(3): 189-193.
    [21]Longo F M, Yang T, Hamilton S, et al. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection[J]. Journal of Neuroscience Research,1999,55(2): 230-237.
    [22]刘树清,胥少汀,董永泉,等.陈旧性脊髓损伤患者的脉冲电刺激治疗[J].中华外科杂志,1992,30(5):297-300.
    [23]金来贵,刘玉华,余维豪,等.整体脉冲中频仪治疗脊髓整体脉冲中频仪治疗脊髓型颈椎病106例临床观察[J].中国针灸,1998,18(2):101-102.
    [24]Williams H B. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair:an experimental study[J]. Microsurgery,1996,17(11):589-596.
    [25]Wilson D H, Jagadeesh P. Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field.[J]. Paraplegia,1976, 14(1):12-20.
    [26]Borgens R B, Vanable J W, Jaffe L F. Bioelectricity and regeneration-large currents leave stumps of regenerating newt limbs[J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74(10):4528-4532.
    [27]Sisken B F, Kanje M, Lundborg G, et al. Stimulation of rat sciatic-nerve regeneration with pulsed electromagnetic-fields[J]. Brain Research,1989,485(2):309-316.
    [28]Sisken B F, Walker J, Orgel M. Prospects on clinical-applications of electrical-stimulation for nerve regeneration[J]. Journal of Cellular Biochemistry,1993,51(4):404-409.
    [29]Pomeranz B, Campbell J J. Weak electric-current accelerates motoneuron regeneration in the sciatic-nerve of 10-month-old rats[J]. Brain Research,1993,603(2):271-278.
    [30]顾玉东.臂丛神经损伤与疾病的诊治[M].上海:上海医科大学出版社,]992.326-327.
    [31]朱盛修.周围神经显微修复学[M].北京:科学出版社,1991.40-46.
    [32]李青峰,顾玉东.电场对周围神经再生的影响[J].中华整形烧伤外科杂志,1997,13(1):43-47.
    [33]Rushton D N. Functional electrical stimulation and rehabilitation-an hypothesis[J]. Medical Engineering and Physics,2003,25(1):75-78.
    [34]张立宁,王兴林.电刺激对周围神经再生的影响[J].中国康复理论与实践,2006,12(7):588-590.
    [35]林森,徐建光.功能性电刺激在周围神经损伤修复中的研究进展[J].中国修复重建外科杂志,2005,19(8):669-672.
    [36]Raji A R, Bowden R E. Effects of high-peak pulsed electromagnetic-field on the degeneration and regeneration of the common peroneal nerve in rats[J]. Journal of Bone and Joint Surgery-British Volume,1983,65(4):478-492.
    [37]Kerns J M, Fakhouri A J, Weinrib H P, et al. Electrical-Stimulation of nerve regeneration in the rat-the early effects evaluated by a vibrating probe and electron-microscopy[J]. Neuroscience,1991,40(1):93-107.
    [38]沈宁江,朱家恺.周围神经损伤与修复的电生理评价[J].中国显微外科杂志,1993,16(3):225-227.
    [39]Popovic M R, Popovic D B, Keller T. Neuroprostheses for grasping[J]. Neurological Research,2002,24(5):443-452.
    [40]张克亮,张东,凌彤.经皮电刺激对端侧缝合后神经再生作用的研究[J].中华手外科杂志,2001,17(1):45-47.
    [41]Zheng X J, Zhang J A, Chen T Y, et al. Longitudinally implanted intrafascicular electrodes for stimulating and recording fascicular physioelectrical signals in the sciatic nerve of rabbits[J]. Microsurgery,2003,23(3):268-273.
    [42]Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain:a 20-year literature review[J]. Journal of Neurosurgery,2004,100(3):254-267.
    [43]Williams H B. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair:An experimental study[J]. Microsurgery,1996,17(11):589-596.
    [44]Nicolaidis S C, Williams H B. Muscle preservation using an implantable electrical system after nerve injury and repair[J]. Microsurgery,2001,21(6):241-247.
    [45]Weber D J, Stein R B, Chan K M, et al. Functional electrical stimulation using microstimulators to correct foot drop:a case study[J]. Canadian Journal of Physiology and Pharmacology,2004,82(8-9):784-792.
    [46]Shen N J, Wang S C. Using a direct current electrical field to promote spinal-cord regeneration[J]. Journal of Reconstructive Microsurgery,1999,15(6):427-431.
    [47]Friedel T, Orchard I, Loughton B G. Release of neurosecretory protein from insect neurohemal tissue following electrical-stimulation[J]. Brain Research,1981,208(2): 451-455.
    [48]Mokrusch T, Engelhardt A, Eichhorn K F, et al. Effects of long-impulse electrical stimulation on atrophy and fiber type composition of chronically denervated fast rabbit muscle[J]. Journal of Neurology,1990,237(1):29-34.
    [49]Mokrusch T, Neundorfer B, Engelhardt A, et al. Electrostimulation in neurology-what does direct muscle stimulation contribute in flaccid paralysis?[J]. Biomedical Technology,1990, 35(2):71-72.
    [50]Eberstein A, Eberstein S. Electrical stimulation of denervated muscle:Is it worthwhile?[J]. Medicine and Science in Sports and Exercise,1996,28(12):1463-1469.
    [51]Mullins R D, Sisken J E, Hejase H A, et al. Design and characterization of a system for exposure of cultured-cells to extremely low-frequency electric and magnetic-fields over a wide-range of field strengths[J]. Bioelectromagnetics,1993,14(2):173-186.
    [52]Kanje M, Rusovan A, Sisken B, et al. Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic-nerve[J]. Bioelectromagnetics,1993,14(4):353-359.
    [53]徐建光,顾玉东,沈丽英,等.术中超强电刺激在周围神经损伤治疗中的应用[J].中国修复重建外科杂志,1997,11(4):210-212.
    [54]Kern H, Hofer C, Strohhofer M, et al. Standing up with denervated muscles in humans using functional electrical stimulation[J]. Artificial Organs,1999,23(5):447-452.
    [55]Eberstein A, Eberstein S. Electrical stimulation of denervated muscle:Is it worthwhile?[J]. Medicine and Science in Sports and Exercise,1996,28(12):1463-1469.
    [56]Scott W B, Binder-macleod S A. Changing stimulation patterns improves performance during electrically elicited contractions[J]. Muscle and Nerve,2003,28(2):174-180.
    [57]郑修军.神经束内微电极的发展与电子假手[J].国外医学骨科学分册,2002,23(1):15-17.
    [58]Aebischer P, Valentini R F, Dario P, et al. Piezoelectric quidance channels enhance regeneration in the mouse sciatic-nerve after axotomy[J]. Brain Research,1987,436(1): 165-168.
    [59]Valentini R F, Vargo T G, Gardella J A, et al. Electrically charged polymeric substrates enhance nerve-fiber outgrowth invitro[J]. Biomaterials,1992,13(3):183-190.
    [60]Valentini R F, Sabatini A M, Dario P, et al. Polymer electret guidance channels enhance peripheral-nerve regeneration in mice[J]. Brain Research,1989,480(1-2):300-304.
    [61]Shung K K, Cannata J M, Zhou Q F. Piezoelectric materials for high frequency medical imaging applications:a review[J]. Journal of Electroceramics,2007,19:139-145.
    [62]Yu D S, Han J C, Ba L. PbTiO3 nanosized ceramics[J]. American Ceramic Society Bulletin, 2002,81(9):38-39.
    [63]Basser P J. Focal magnetic stimulation of an axon[J]. IEEE Transactions on Biomedical Engineering,1994,41(6):601-606.
    [64]Aebischer P, Valentini R F, Dario P, et al. Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy[J]. Brain Res,1987,436:165-168.
    [65]Fine G, Valentini R F, Bellamkonda R, et al. Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels [J]. Biomaterials,1991,12:775-780.
    [66]Shirakawa H, Louis E J, Macdiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x[J]. Journal of the Chemical Society, Chemical Communications,1977,:578-580.
    [67]王惠忠,王荣顺.掺杂聚苯胺的能带结构和导电机理的研究[J].高等学校化学学报,1991,12(9):1229-1233.
    [68]Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials,2001,22(10): 1055-1064.
    [69]Sengothi K P. Biocompatibility of electroactive polymers in tissues[J]. Journal of Biomedical Materials Research,2000,52(3):467-478.
    [70]Bidez P R, Li S, Macdiarmid A G, et al. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts.[J]. Journal of Biomaterials Science, Polymer edition,2006,17(1-2):199-212.
    [71]Dispenza C, Leone M, Presti C L, et al. Optical properties of biocompatible polyaniline nano-composites[J]. Journal of Non-Crystalline Solids,2006,352(36):3835-3840.
    [72]Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers[J]. Journal of the Chemical Society, Faraday Transactions,1986,82:1259-1264.
    [73]Umana M, Waller J. Protein modifiedelectrodes:the glucose/oxidase/polypyrrole system[J]. Analsis Chemistry,1986,58:2979-2983.
    [74]Wong J Y, Langer R, Ingber D E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91(8):3201-3204.
    [75]Lee J W, Serna F, Nickels J, et al. Carboxylic Acid-Functionalized Conductive Polypyrrole as a Bioactive Platform for Cell Adhesion[J]. Biomacromolecules,2006,7(5):1692-1695.
    [76]Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials,2001,22(10): 1055-1064.
    [77]Schmidt C E, Shastri V R, Vacanti J P, et al. Stimulation of neurite outgrowth using an electrically conducting polymer[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):8948-8953.
    [78]De Giglio E, Sabbatini L, Zambonin P G. Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt-and Ti-substrates as precursors of bioactive interfaces.[J]. Journal of Biomaterials Science Polymer Edition,1999,10(8): 845-858.
    [79]Shi G, Rouabhia M, Wang Z, et al. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide[J].2004,25:2477-2488.
    [80]Garner B, Georgevich A, Hodgson A J, et al. Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth [J]. Journal of Biomedical Materials Research,1999,44(2):121-129.
    [81]Garner B, Hodgson A J, Wallace G G, et al. Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent[J]. Journal of Materials Science Materials in Medicine,1999,10(1):19-27.
    [82]Hodgson A J, John M J, Campbell T, et al. Integration of biocomponents with synthetic structures-Use of conducting polymer polyelectrolyte composites[J]. Proceedings of SPIE-The International Society for Optical Engineering,1996,2716:164-176.
    [83]Wang X, Gu X, Yuan C, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo[J]. Journal of Biomedical Materials Research Part A,2004,68(3):411-422.
    [84]Song H K, Toste B, Ahmann K, et al. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid:A new platform for characterizing neurite extension in complex environments [J]. Biomaterials,2006,27(3):473-484.
    [85]Stauffer W R, Cui X T. Polypyrrole doped with 2 peptide sequences from laminin[J]. Biomaterials,2006,27(11):2405-2413.
    [86]Gomez N, Lee J Y, Nickels J D, et al. Micropatterned polypyrrole:A combination of electrical and topographical characteristics for the stimulation of cells[J]. Advanced Functional Materials,2007,17(10):1645-1653.
    [87]Ateh D D, Vadgama P, Navsaria H A. Culture of human keratinocytes on polypyrrole-based conducting polymers.[J]. Tissue Engineering,2006,12(4):645-655.
    [88]Castano H, O'rear Edgar A; Mcfetridge, Peter S; Sikavitsas V I. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells.[J]. Macromolecular Bioscience,2004,4(8):785-794.
    [89]Williams R L, Doherty P J. A preliminary assessment of poly(pyrrole) in nerve guide studies[J]. Journal of Materials Science:Materials in Medicine,1994,5(6-7):429-433.
    [90]Kamalesh S, Tan P, Wang J, et al. Biocompatibility of electroactive polymers in tissues[J]. Journal of Biomedical Materials Research,2000,52(3):467-478.
    [91]Lakard S, Herlem G, Valles-villareal N, et al. Culture of neural cells on polymers coated surfaces for biosensor applications[J]. Biosensors and Bioelectronics,2005,20(10): 1946-1954.
    [92]George P M, Lyckman A W, Lavan D A, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics[J]. Biomaterials,2005,26(17): 3511-3519.
    [93]Wan Y, Wu H, Wen D. Porous-conductive chitosan scaffolds for tissue engineering,1. Preparation and characterization.[J]. Macromolecular Bioscience,2004,4(9):882-890.
    [94]Wan Y, Yu A, Wu H, et al. Porous-conductive chitosan scaffolds for tissue engineering Ⅱ. in vitro and in vivo degradation.[J]. Journal of Materials Science:Materials in Medicine,2005, 16(11):1017-1028.
    [95]Jiang X P, Marois Y, Traore A, et al. Tissue reaction to polypyrrole-coated polyester fabrics: An in vivo study in rats[J]. Tissue Engineering,2002,8(4):635-647.
    [96]Shastri V R, Schmidt C E, Kim H T, et al. Polypyrrole-a potential candidate for stimulated nerve regeneration[J]. Materials Research Society Symposium Proceedings,1996,414: 113-118.
    [97]Chen S J, Wang D Y, Yuan C W, et al. Template synthesis of the polypyrrole tube and its bridging in vivo sciatic nerve regeneration[J]. Journal of Materials Science Letters,2000, 19(23):2157-2159.
    [98]贾 骏,姚月玲,宋应亮,等.导电高分子聚吡咯纯钛表面改性对成骨细胞生长、增殖和功能分化的影响[J].临床口腔医学杂志,2003,19(1):4-7.
    [99]Minehan D S, Marx K A, Tripathy S K. DNA binding to electropolymerized polypyrrole: The dependence on film characteristics [J]. Journal of Macromolecular Science-Pure and Applied Chemistry,2001,38(12):1245-1258.
    [100]Maier C E, Geraudie J, Singer M. The effect of electrical stimulation of brachiospinal nerves on protein synthesis in the forelimb regenerate [J]. Brain Research,1982,255(1): 155-159.
    [101]Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials,2001,22(10): 1055-1064.
    [102]Waugaman M, Sannigrahi B, Mcgeady P, et al. Synthesis, characterization and biocompatibility studies of oligosiloxane modified polythiophenes[J]. European Polymer Journal,2003,39(7):1405-1412.
    [103]Guimard N K, Sessler J L, Schmidt C E. Toward a biocompatible and biodegradable copolymer incorporating electroactive oligothiophene units[J]. Macromolecules,2009, 42(2):502-511.
    [104]Green R A, Lovell N H, Poole-warren L A. Cell attachment functionality of bioactive conducting polymers for neural interfaces [J]. Biomaterials,2009,30(22):3637-3644.
    [105]Kim D H, Richardson-burns S M, Hendricks J L, et al. Effect of immobilized nerve growth factor on conductive polymers:Electrical properties and cellular response[J]. Advanced Functional Materials,2007,17(1):79-86.
    [106]Luo S C, Ali E M, Tansil N C, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces:Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility[J]. Langmuir,2008,24(15):8071-8077.
    [107]Richardson-burns S M, Hendricks J L, Foster B, et al. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells[J]. Biomaterials,2007,28(8):1539-1552.
    [108]Li M, Bidez P, Guterman-tretter E, et al. Research progresses on electroactive and electrically conductive polymers for tissue engineering scaffolds [J]. Acta Academiae Medicinae Sinicae,2006,28(6):845-848.
    [109]Davey J M, Too C O, Ralph S F, et al. Conducting polyaniline/calixarene salts:Synthesis and properties[J]. Macromolecules,2000,33(19):7044-7050.
    [110]Wang C H, Dong Y Q, Sengothi K, et al. In-vivo tissue response to polyaniline[J]. Synthetic Metals,1999,102(1-3):1313-1314.
    [111]Kamalesh S, Tan P, Wang J, et al. Biocompatibility of electroactive polymers in tissues[J]. Journal of Biomedical Materials Research,2000,52(3):467-478.
    [112]Mattioli-belmonte M, Giavaresi G, Biagini G, et al. Tailoring biomaterial compatibility:in vivo tissue response versus in vitro cell behavior[J]. The International Journal of Artificial Organs,2003,26(12):1077-1085.
    [113]Jeong S I, Jun I D, Choi M J, et al. Development of electroactive and elastic nanofibers that contain Polyaniline and Poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion[J]. Macromolecular Bioscience,2008,8(7):627-637.
    [114]Cullen D K, Patel A R, Doorish J F, et al. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers[J]. Journal of Neural Engineering,2008,5(4):374-384.
    [115]Li M, Guo Y, Wei Y, et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications[J]. Biomaterials,2006,27(13):2705-2715.
    [116]Hu J, Huang L, Zhuang X, et al. Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells[J]. Biomacromolecules,2008,9(10): 2637-2644.
    [117]Guo Y, Li M, Mylonakis A, et al. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications[J]. Biomacromolecules,2007,8(10): 3025-3034.
    [118]Whitehead M A, Fan D, Akkaraju G R, et al. Accelerated calcification in electrically conductive polymer composites comprised of poly(ϵ-caprolactone), polyaniline, and bioactive mesoporous silicon[J]. Journal of Biomedical Materials Research,2007,83(1): 225-234.
    [119]Guterman E, Cheng S, Palouian K, et al. Peptide-modified electroactive polymers for tissue engineering applications[J]. Abstracts of Papers of the American Chemical Society,2002, 224(2):420-428.
    [120]Guterman T E. Electroactive polymerswith enhanced biocompatibility for neural tissue engineering:getting one step closer to interlligent nanostructured scaffolds[D]. Philadelphia, USA:Drexel University,2003.
    [121]Cheng S. Nanostructured, electroactive and bioapplicable materials[D]. Philadelphia: Drexel University, USA,2002.
    [122]Ngamna O, Morrin A, Moulton S E, et al. An HRP based biosensor using sulphonated polyaniline[J]. Synthetic Metals,2005,153(1-3):185-188.
    [123]Wallace G G, Spinks G M, Teasdale P R. Polyanilines and polythiopenes conductive electroactive polymers[M]. Boca Raton:CRC Press LLC, USA,1997.107-125.
    [124]Otero T F, Sansinena J M. Bilayer dimensions and movement in artificial muscles[J]. Bioelectrochem. Bioenerg,1997,42:117-122.
    [125]Frost and Sullivan. Absorbable and Erodible Biomaterials Products Markets[R]. City of Mountain View, U. S.:1995:10.
    [126]Vacanti J P, Langer R. Synthetic Biodegradable Polymer Scaffolds[M]. Boston:A. Atala and D. J. Mooney Asso, Birkhauser,1997.
    [127]Schlechter M. Business Communications Company Market[EB/OL]. [2005-05-09].http://www.biz-lib.com/zbupl75. html.
    [128]Schacht E, Vandorpe J, Dejardin S, et al. Biomedical applications of degradable polyphosphazenes[J]. Biotechnology and Bioengineering,1996,52(1):102-108.
    [129]Cohen S, Bano M C, Cima L G, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering[J]. Clinical Materials,1993,13(1-4):3-10.
    [130]Gunatillake P A, Adhikari R. Biodegradable synthetic polymers for tissue engineering[J]. European Cells and Materials,2003,5(6):1-16.
    [131]Lee K Y, Mooney D J. Hydrogels for tissue engineering[J]. Chemical Reviews,2001, 101(7):1869-1879.
    [132]Williams D F. Mechanisms of biodegradation of implantable polymers[J]. Clinical Materials,1992,10(1-2):9-12.
    [133]Gunatillake P A, Adhikari R. Biodegradable synthetic polymers for tissue engineering[J]. European Cells and Materials,2003,5:1-16.
    [134]Hench L L, Polak J M. Third-generation biomedical materials[J]. Science,2002,295(5557): 1014-1018.
    [135]Ratner B D, Bryant S J. Biomaterials:Where we have been and where we are going[J]. Annual Review of Biomedical Engineering,2004,6:41-75.
    [136]Xie J W, Macewan M R, Willerth S M, et al. Conductive core-sheath nanofibers and their potential application in neural tissue engineering[J]. Advanced Functional Materials,2009, 19(14):2312-2318.
    [137]Huang L H, Hu J, Lang L, et al. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer[J]. Biomaterials, 2007,28(10):1741-1751.
    [138]Huang L H, Zhuang X L, Hu J, et al. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications[J]. Biomacromolecules,2008,9(3):850-858.
    [139]Rivers T J, Hudson T W, Schmidt C E. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications[J]. Advanced Functional Materials,2002, 12(1):33-37.
    [140]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.83-90.
    [141]Shin S R, Park S J, Yoon S G, et al. Synthesis of conducting polyaniline in semi-IPN based on chitosan[J]. Synthetic Metals,2005,154(1-3):213-216.
    [142]Cheng D M, Xia H B, Chan H S. Synthesis and characterization of surface-functionalized conducting polyaniline-chitosan nanocomposite[J]. Journal Of Nanoscience And Nanotechnology,2005,5(3):466-473.
    [143]Thanpitcha T, Sirivat A, Jamieson A M, et al. Preparation and characterization of polyaniline/chitosan blend film[J]. Carbohydrate Polymers,2006,64(4):560-568.
    [144]Mao C, Zhu A P, Wu Q, et al. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity[J]. Colloids and Surfaces,2008,67(1):41-45.
    [145 Nud L A, Petrova V A, Frolov V I, et al. Heterogeneous aniline graft polymerization on chitosan and the physicochemical properties of the product[J]. Polymer Science,2005, 47(2):90-95.
    [146]Hu J, Huang L H, Zhuang X L, et al. Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells[J]. Biomacromolecules,2008,9(10): 2637-2644.
    [147]Hosseini S H, Simiari J, Farhadpour B. Chemical and electrochemical grafting of polyaniline onto chitosan[J]. Iranian Polymer Journal,2009,18(1):3-13.
    [148]Tiwari A, Singh V. Synthesis and characterization of electrical conducting chitosan-graft-polyaniline[J]. Express Polymer Letters,2007,1(5):308-317.
    [149]Manners I. Polymers and the periodic table:recent developments in inorganic polymer science[J], Angewandte Chemie,1996,35:1602-1621.
    [150]Allcock H R, Kugel R L. Synthesis of high polymeric alkoxy and aryloxyphosphonitriles[J]. Journal of the American Chemical Society,1965,87(18):4216-4217.
    [151]Allcock H R, Kugel R L, Valan K J. Phosphonitrilic compoundsⅥ,high molecular weight poly(alkoxy and aryloxyphosphazene)[J]. Inorganic Chemistry,1966,5(10):1709-1715.
    [152]Allcock H R, Kugel R L. Phosphonitrilic compounds. Vii. High molecular weight poly(diaminophosphazenes)[J]. Inorganic Chemistry,1966,5(10):1716-1718.
    [153]Allcock H R, Fuller T J, Mack D P, et al. Synthesis of poly[(amino acid alkyl ester)phosphazenes][J]. Macromolecules,1977,10(4):824-830.
    [154]Allcock H R, Fuller T J, Matsumura K. Hydrolysis pathways for aminophosphazenes[J]. Inorganic Chemistry,1982,21(2):515-521.
    [155]任杰.可降解与可吸收材料[M].北京:化学工业出版社,2003.151-162.
    [156]Singh A, Krogman N R, Sethuraman S, et al. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes[J]. Biomacromolecules,2006,7(3):914-918.
    [157]俞耀庭;张兴栋.生物医用材料[M].天津:天津大学出版社,2000.60.
    [158]Lakshmi S, Katti D S, Laurencin C T. Biodegradable polyphosphazenes for drug delivery applications[J]. Advanced Drug Delivery Reviews,2003,55(4):467-482.
    [159]Laurencin C T, El S F, Ibim S E, et al. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration[J]. Journal of Biomedical Materials Research,1996,30(2):133-138.
    [160]Allcock H R, Pucher S R, Scopelianos A G. Synthesis of poly(orgnaophosphazenes) with glycolic acid ester and lactic acid ester side groups:prototypes for new bioerodible polymers[J]. Macromolecules,1994,27(1):1-4.
    [161]Delprato C, De J R, Houalla D, et al. Functionalization of Poly[(alkoxy)phosphazenes]: Synthesis and characterization of poly(phosphazenes) containing hydroxyl groups[J]. Macromolecules,1995,28(7):2500-2505.
    [162]Andrianov A K, Svirkin Y Y, Legolvan M P. Synthesis and biologically relevant properties of polyphosphazene polyacids[J]. Biomacromolecules,2004,5(5):1999-2006.
    [163]Allcock H R, Singh A, Ambrosio A M, et al. Tyrosine-bearing polyphosphazenes[J]. Biomacromolecules,2003,4(6):1646-1653.
    [164]Allcock H R, Pucher S R, Scepelianos A G. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules.[J]. Biomaterials,1994,15(8): 563-569.
    [165]Singh A, Krogman N R, Sethuraman S, et al. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes[J]. Biomacromolecules,2006,7(3):914-918.
    [166]Crommen J H, Schacht E H, Mense E H. Biodegradable polymers:Ⅱ. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes][J]. Biomaterials,1992, 13(9):601-611.
    [167]Kumbar S G, Bhattacharyya S, Nukavarapu S P, et al. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications[J]. Journal of Inorganic and Organometallic Polymers and Materials,2006,16(4):365-385.
    [168]Barrett E W, Phelps M V, Silva R J, et al. Patterning poly(organophosphazenes) for selective cell adhesion applications[J]. Biomacromolecules,2005,6(3):1689-1697.
    [169]Nair L S, Bhattacharyya S, Bender J D, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications[J]. Biomacromolecules,2004,5(6):2212-2220.
    [170]Laurencin C T, Nair L S. Polyphosphazene nanofibers for biomedical applications: Preliminary studies[J]. Nanoengineered Nanofibrous Materials,2004,169:283-302.
    [171]Laurencin C T, Morris C D, Jacques H P, et al. Osteoblast culture on bioerodible polymers: studies of initial cell adhesion and spread[J]. Polymers for Advanced Technologies,1992, 3(6):359-364.
    [172]Langone F, Lora S, Veronese F M, et al. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis[J]. Biomaterials,1995,16(5):347-353.
    [173]Aldini N N, Fini M, Rocca M, et al. Peripheral nerve reconstruction with bioabsorbable polyphosphazene conduits[J]. Journal of Bioactive and Compatible Polymers,1997,12(1): 3-13.
    [174]Bhattacharyya S, Kumbar S G, Khan Y M, et al. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers:scaffolds for bone tissue engineering[J]. Journal of Biomedical Nanotechnology,2009,5(1):69-75.
    [175]黄利红,胡军,庄秀丽,等.电活性可生物降解材料聚乳酸与苯胺五聚体嵌段共聚物的合成与表征[J].高等学校化学学报,2005,26(9):1771-1773.
    [176]Laurencin C T, Norman M E, Elgendy H M, et al. Use of polyphosphazenes for skeletal tissue regeneration[J]. Journal of Biomedical Materials Research,1993,27(7):963-973.
    [177]Lemmouchi Y, Schacht E, Dejardin S. Biodegradable Poly[(Amino Acid Ester)phosphazenes] for Biomedical Applications[J]. Journal of Bioactive and Compatible Polymers,1998,13(1):4-18.
    [178]Zhu K Z, Wang L X, Jing X B, et al. Poly(phenylene sulfide-tetraaniline):The soluble conducting polyaniline analogue with well-defined structures[J]. Macromolecules,2001, 34(24):8453-8455.
    [179]Liu S, Zhu K, Zhang Y, et al. Synthesis and electrical conductivity of poly(methacrylamide) (PMAA) with fixed length oligoaniline as side chains[J]. Materials Letters,2005,59(28): 3715-3719.
    [180]孙再成,邝力,景遐斌,等.化学和电化学方法合成苯/胺封端苯胺四聚体[J].高等学校化学学报,2002,23(03):496-499.
    [181]Wei Y, Yang C, Wei G, et al. A new synthesis of aniline oligomers with three to eight amine units[J]. Synthetic Metals,1997,84(1-3):289-291.
    [182]Shacklette L W, Wolf J F, Gould S, et al. Structure and properties of polyaniline as modeled by single-crystal oligomers[J]. The Journal of Chemical Physics,1988,88(6):3955-3961.
    [183]Honzl J, Metalov M. Polyaniline compounds-Ⅲ:Reaction of phenyl-and methyllithium with N,N'-diphenyl-p-quinone diimine[J]. Tetrahedron,1969,25(17):3641-3652.
    [184]Macdiarmid A G, Zhou Y, Feng J, et al. Isomers and isomerization processes in poly-anilines [J]. Antec'99:Plastics Bridging the Millennia, Conference Proceedings,1999, 1-3:1563-1567.
    [185]Shacklette L W, Wolf J F, Gould S, et al. Structure and properties of polyaniline as modeled by single-crystal oligomers[J]. The Journal of Chemical Physics,1988,88(6):3955-3961.
    [186]Wei Y, Hsueh K F, Jang G W. A study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline[J]. Macromolecules,1994,27(2): 518-525.
    [187]Allcock H R, Best R J. Phosphonitrilic compounds:part I. The mechanism of phosphonitrilic chloride polymerization capacitance, conductance, and electron-spin resonance studies[J]. Canadian Journal of Chemistry,1964,42:447-455.
    [188]Allen C W. Linear cyclic and polymeric phosphazenes[J]. Ceordination Chemistry Reviews, 1994,130:137-173.
    [189]Fan K W, Zhu Z X, Den Z Y. An experimental model of an electrical injury to the peripheral nerve.[J]. Burns Journal of the International Society for Burn Injuries,2005, 31(6):731-736.
    [190]Zhu K, Wang L, Jing X, et al. Poly(phenylene sulfide-tetraaniline):the soluble conducting polyaniline analogue with well-defined structures[J]. Macromolecules,2001,34(24): 8453-8455.
    [191]Wang L X, Soczkaguth T, Havinga E, et al. Poly(phenylenesulfidephenylenamine) (PPSA) The compound of polyphenylenesulfide with polyaniline[J]. Angewandte Chemie International Edition,1996,35(13-14):1495-1497.
    [192]Wang Z Y, Kuang L, Meng X S, et al. New route to incorporation of [60]fullerene into polymers via the benzocyclobutenone group[J]. Macromolecules,1998,31(16): 5556-5558.
    [193]Chen R, Benicewicz B C. Preparation and properties of poly(methacrylamide)s containing oligoaniline side chains[J]. Macromolecules,2003,36(17):6333-6339.
    [194]刘四委,朱凯征,张艺,等.含苯胺低聚物侧链的导电共聚物的合成与性能研究[J].高分子学报,2005,2(2):264-268.
    [195]陈蕾,闫玉华,万涛,等.PDLLA/HA/FK506复合神经导管的制备及体外降解性能[J].武汉理工大学学报,2006,28(11):41-43.
    [196]陈连喜,熊康,傅杰,等.聚癸二酸酐/聚乳酸共混薄膜的制备和降解性能[J].武汉理工大学学报,2004,26(7):49-51.
    [197]Allcock H R, Fuller T J, Matsumura K. Hydrolysis pathways for aminophosphazenes[J]. Inorganic Chemistry,1982,21(2):515-521.
    [198]吴增树.生物材料毒理学及应用[M].成都:成都科技大学出版社,1988:256.
    [199]Lemmouchi Y, Schacht E, Dejardin S. Biodegradable Poly[(Amino Acid Ester) phosphazenes] for Biomedical Applications[J]. Journal of Bioactive and Compatible Polymers,1998,13(1):4-18.
    [200]Grolleman C W, De V A, Wolke J G, et al. Studies on a bioerodible drug carrier system based on polyphosphazene Part I. Synthesis[J]. Journal of Controlled Release,1986,3(1-4): 143-154.
    [201]Schacht E, Vandorpe J, Dejardin S, et al. Biomedical applications of degradable polyphosphazenes[J]. Biotechnology and Bioengineering,1996,52(1):102-108.
    [202]Allcock H R, Coggio W D. Synthesis and properties of high polymeric phosphazenes with (trimethylsilyl)methyl side groups[J]. Macromolecules,1993,26(4):764-771.
    [203]Allcock H R, Pucher S R. Polyphosphazenes with glucosyl and methylamino, trifluoroethoxy, phenoxy, or (methoxyethoxy)ethoxy side groups[J]. Macromolecules, 1991,24(1):23-34.
    [204]Mochel V D, Cheng T C. Thermolysis of polyphosphazenes.1. carbon-13 nuclear magnetic resonance study of rearrangement of poly(bismethoxyphosphazene)[J]. Macromolecules, 1978,11(1):176-179.
    [205]Ferrar W T, Distefano F V, Allcock H R. Thermal rearrangement of [NP(OCH3)2]3 and [NP(OCH3)2]4[J]. Macromolecules,1980,13(6):1345-1350.
    [206]Seckel B R. Enhancement of peripheral-nerve regeneration[J]. Muscle and Nerve,1990, 13(9):785-800.
    [207]Tang J, Jing X, Wang B, et al. Infrared spectra of soluble polyaniline[J]. Synthetic Metals, 1988,24(3):231-238.
    [208]Allcock H R, Kwon S. An ionically crosslinkable polyphosphazene: poly[bis(carboxylatophenoxy)phosphazene] and its hydrogels and membranes[J]. Macromolecules,1989,22(1):75-79.
    [209]Robinson P H, Vanderlei B, Hoppen H J, et al. Nerve regeneration through a 2-ply biodegradable nerve guide in the rat and the influence of acth4-9 nerve growth-factor[J]. Microsurgery,1991,12(6):412-419.
    [210]Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials[J]. Biomaterials,2001,22(10): 1055-1064.
    [211]Guimard N K, Gomez N, Schmidt C E. Conducting polymers in biomedical engineering[J]. Progress in Polymer Science,2007,32(8):876-921.
    [212]Niple J C, Daigle J P, Zaffanella L E, et al. A portable meter for measuring low frequency currents in the human body[J]. Bioelectromagnetics,2004,25(5):369-373.
    [213]唐劲松,詹瑞云,倪少儒,等.聚苯胺导电机理的探讨[J].化学物理学报,1989,2(2):140-145.
    [214]Cheng D, Ng S C, Chan H S. Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles[J]. Thin Solid Films,2005,477(1-2):19-23.
    [215]熊佳.导电复合材料的制备及其性能的研究[D].西安:西北工业大学,2005.
    [216]Guimard N K, Gomez N, Schmidt C E. Conducting polymers in biomedical engineering[J]. Progress in Polymer Science,2007,32(8):876-921.
    [217]Heath C A, Rutkowski G E. The development of bioartificial nerve grafts for peripheral-nerve regeneration[J]. Trends in Biotechnology,1998,16(4):163-168.
    [218]姚春梅,邓联东,李爱贵,等.新型可生物降解医用高分子材料-聚膦腈[J].高分子通报,2005,5(3):21-24.
    [219]Li S M, Mccarthy S. Further investigations on the hydrolytic degradation of poly(DL-lactide)[J]. Biomaterials,1999,20(1):35-44.
    [220]Bunge R P. The role of the Schwann cell in trophic support and regeneration[J]. Journal of Neurology,1994,241:19-21.
    [221]Mosmann T. Rapid colorimetric assay for cellular growth and survival-application to proliferation and cyto-toxicity assays[J]. Journal of Immunological Methods,1983, 65(1-2):55-63.
    [222]贾文英,史弘道.细胞毒性试验评价医用装置生物相容性的研究概况[J].实用美容整形外科杂志,2001,12(5):253-255.
    [223]Kam N W, Jan E, Kotov N A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein [J]. Nanoletters,2009,9(1):273-278.
    [224]管映亭,陶用珍,金志浩.蛋白石/聚左旋乳酸复合材料与人成骨细胞的相容性[J].中国临床康复,2006,10(45):68-70.
    [225]王 昕, 施嬿萍,朱雪涛.MTT法评价医用高分子材料的细胞毒性[J].山东生物医学工程,2003,22(1):46-47.
    [226]Sheller R A, Schmidt C E. Protein expression in primed PC 12 cells after electrical stimulation and enhanced neurite outgrowth[J]. Journal of neurochemlstry,2002,811: 92-92.
    [227]门吉英.聚吡咯/聚乳酸电活性复合物的制备、表征和生物相容性研究[D].重庆:重庆大学,2005.
    [228]Hynes R O, Patel R, Miller R H. Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development[J]. Journal of Neuroscience,1986,6(3):867-876.
    [229]Patel N, Poo M M. Orientation of neurite growth by extracellular electric fields[J]. Journal of Neuroscience,1982,2(4):483-496.
    [230]Stewart R, Erskine L, Mccaig C D. Calcium-channel subtypes and intracellular calcium stores modulate electric field-stimulated and field-oriented nerve growth [J]. Developmental Biology,1995,171(2):340-351.
    [231]Davenport R W, Mccaig C D. Hippocampal growth cone responses to focally applied electric-fields[J]. Journal of Neurobiology,1993,24(1):89-100.
    [232]Cork R J, Mcginnis M E, Tsai J, et al. The growth of pc 12 neurites is biased towards the anode of an applied electrical-field[J]. Journal of Neurobiology,1994,25(12):1509-1516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700