用户名: 密码: 验证码:
油气管道失效模式智能诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输是石油、天然气最为经济合理的运输方式。随着油气管道的大量铺设和管道服役时间的增长,管道失效事故屡有发生,给人民生命财产带来重大损失。影响管道失效的因素众多,普遍具有随机性、模糊性和不完整性等特点,传统诊断方法对管道失效模式的分析常常存在不适应性。智能信息处理理论和技术是近几年在各工程领域和科学研究中得到广泛研究和应用的人工智能方法,其相关模型由于具有高度非线性映射能力、大规模并行分布处理和良好的自适应学习机制,很适合求解传统模式识别和预测方法难以建模解决的问题。因此,将智能信息处理方法和技术应用于管道失效模式诊断问题的研究在机制上具有很好的适应性。
     论文主要针对管道失效模式诊断中的若干典型问题,进行管道失效模式智能诊断理论和应用技术研究。将模式识别和动态预测领域中普遍采用的人工神经网络技术与诊断理论、模式识别、模糊逻辑和系统仿真等方法相结合,构建适合管道失效模式分析的智能诊断方法和模型,并进行求解算法和应用技术研究。
     在智能诊断方法和模型研究方面,论文在对油气管道已有失效模式分析和故障诊断建模技术研究基础上,归纳出三类管道失效模式诊断问题:数值型模式诊断、含模糊信息模式诊断和动态模式诊断,并构造不同的智能模型以实现上述不同问题的求解。
     针对数值型模式诊断问题,构建了自适应确定BP网络结构的方法和实现机制,并应用于具有较为完整测试数据的含缺陷压力管道失效模式诊断;针对含有模糊信息的失效模式诊断问题,考虑已知条件和结果之间无明确因果关系及各环境因素对结果影响的重要程度不同,在传统模糊神经网络基础上建立了加权模糊推理网络,较好解决了腐蚀数据中的模糊性信息对管道腐蚀程度的影响;对于动态模式诊断问题,将过程神经网络和径向基函数神经网络相结合,提出了一种径向基过程神经元网络的概念和模型,模型融合了过程神经网络可表达动态过程效应累积和径向基网络非线性函数逼近能力强的优势,对预测管道腐蚀速率随时间非线性变化问题具有很好的适应性。同时,针对过程变量趋势预测,将传统支持向量回归机的构造思路和方法推广到时变函数空间,建立了一种过程支持向量回归机,该模型可较好地解决动态系统时间预测问题。
     在应用技术研究方面,给出了智能诊断模型在一些典型管道失效模式诊断问题中的应用方法和求解过程。主要包括管道泄漏诊断、管道腐蚀失效模式诊断、管道腐蚀速率预测、含缺陷压力管道失效模式诊断以及管道防腐保温层故障诊断分析等,并获得了较好的应用结果。
     论文针对管道失效模式诊断中的若干典型问题,建立了相关的智能诊断模型和方法,并进行了实际应用研究。这对于油气管道失效事故分析和管道运行完整性评价提供了一种科学方法和手段,可为管网进行风险性评估与运营决策提供科学依据,具有重要的实际意义和应用前景。
Pipeline transportation is the most economical and reasonable transport mode of oil and natural gas. With the large number of oil and gas pipeline laying and the growth of service time, the failure incidents of pipeline happened frequently, which brought great losses for peoples’life and property. There are many factors influencing pipeline failure. Some of them are random, fuzzy, incomplete and other characteristics, traditional diagnostic methods are often not adaptive for pipeline failure mode analysis. Intelligent information processing theory and technology is an artificial intelligence method which is researched and applied extensively in various engineering fields and science research in recent years, because its correlation model has highly nonlinear mapping capability, large-scale parallel processing and good adaptive learning mechanism, it is very suitable for solving the problems which the traditional pattern recognition and prediction methods are difficult to model. Therefore, it has good adaptability for the Intelligent information processing method and technology which are applied in the pipeline failure mode diagnosis.
     In view of some typical issues of pipeline failure mode diagnosis, the paper mainly researches the pipeline failure mode intelligent diagnosis theory and application technology. Combines the Artificial Neural Network theory and diagnosis theory, pattern recognition, fuzzy logic with system simulation methods which are widely used in pattern recognition and dynamic forecasting field, construt the intelligent diagnosis technology and model which are suitful for pipeline failure mode analysis, and carry on solution algorithm and application technology research.
     On the side of intelligent diagnosis method and model research, the paper summarize three types of pipeline failure mode diagnosis problems, they are numerical mode diagnosis, fuzzy information mode diagnosis and dynamic mode diagnosis on the basis of analyzing gas pipeline failure modes and fault diagnosis modeling technology, and construct different intelligent model to complete the solution of above-mentioned different problems.
     Aimed to the numerical mode diagnosis problem, we construct the adaptive method used to define BP networks structure and completing mechanism, and apply it into the failure modes of pressure pipes with defects;To the fuzzy information mode diagnosis problem, considering the unclear relationship between conditions and results and the importance degree of conditions impacting on results, a weighted fuzzy reasoning networks is constructed based on traditional fuzzy neural networks. It solves the fuzzy information of corrosion data impacting on pipeline corrosion degree better. To the dynamic mode diagnosis problem, process neural networks is combined with RBF neural networks, and the concept and model of RBF process neural networks are introduced, the model integrates the advantages of process neural networks which can express the cumulative effect of the dynamic process and the RBF networks nonlinear function has strong approximation capabilities, it has a good adaptability for the prediction problem of pipeline corrosion rate changing nonlinearly with time. At the same time, in view of the problem of process variables trend prediction, the structural ideas and methods of traditional support vector regression machines are extended to time-varying function space. We establish a process support vector regression machines, the model can solve the time prediction problem of dynamic system better.
     On the side of application technology, the paper gave the application methods and solution process of some typical pipeline failure mode diagnosis problems using intelligent diagnosis model. These problems include pipeline leak diagnosis, pipeline corrosion failure mode diagnosis, pipeline corrosion rate prediction, pipeline failure mode diagnosis with defective pressure and pipelines insulation fault diagnosis analysis,etc, and all of them get the better application results.
     The paper establishes the related intelligent diagnostic model and methods contrary to some typical problems of pipeline failure mode diagnosis, and carries on the practical application research. It provides a kind of scientific method for the oil-gas pipeline failure accident analysis and the integrity assessment of pipeline running, can provide scientific basis for risk assessment and management decision-making of pipelines, and it has important practical significance and application prospects.
引文
[1]李鹤林.油气管道运行安全与完整性管理.石油科技论坛.2007,2:18~25.
    [2]潘家华.油气管道断裂力学分析[M].北京:石油工业出版社.1989.
    [3]闻凤霞等.风险评估及其在油气管道方面的应用.石油工业技术监督.2003,19(2):1~6.
    [4]陈利琼.在役长输管线定量风险技术研究.西南石油学院博士论文.2004.
    [5]何新贵,许少华.过程神经元网络[M].北京:科学出版社,2007.
    [6]潘家华.油气管道的风险分析.油气储运,1995,14(3):11~15.
    [7] W.Kent Muhlbauer. Pipeline Risk Management Manual[M]. First Edition. Gulf Publishing Company, Houston, Texas, 1992.
    [8] W.Kent Muhlbauer. Pipeline Risk Management Manual[M]. Second Edition Gulf Publishing Company, Houston, Texas, 1996.
    [9] Brain Griffin, Mike Zelensky, Basics of Risk Analysis, Accessment and Management, Banff Pipeline Workshop, 1995
    [10] Coulson K.E.W.,Pipe Corrosion-conclusion, New Guidelines Promise More Accurate Damage Assessment, Oil Gas J.,88(15),1990:41-15
    [11]李鹤林.油气管道运行安全与完整性管理.石油科技论坛,2007,2:18~25.
    [12]潘家华.油气管道的风险分析(续一).油气储运.14(4),1995:1~7.
    [13]潘家华.油气管道的风险分析(续完).油气储运.14(5),1995:3~10.
    [14]四川石油管理局编译.管道风险管理.石油工业出版社.1995.
    [15]周方勤.对长输天然气管道进行风险评价的初探.油气储运.2007 (1):60~63.
    [16]中国石油管道公司科技中心.《管道完整性国际标准汇编》(1~3卷).2005.
    [17]中国石油管道分公司管道科技研究中心.《油气管道新技术跟踪及信息体系研究专题报告》(上、下册).2006.
    [18]严大凡等.油气长输管道风险评价与完整性管理.化学工业出版社.2005.
    [19]董玉华.长输管道定量风险评价方法研究.油气储运.2007,20(8):5~8.
    [20]廖柯熹等.长输管道失效故障树分析.油气储运,2001,20(1):27~30.
    [21]董玉华.长输管线失效状况模糊故障树分析方法.石油学报,2002,23(4):85~89.
    [22]马丽云等.锅炉管道失效分析专家系统知识库的建立.现代电力,2002,19(2),8~12.
    [23]蔡自兴等.人工智能及其应用(第二版).清华大学出版社,1996.
    [24]陈利群等.油气管道风险的模糊综合评价方法初探.天然气工业.2003,23(2):117~119.
    [25]虞和济等.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002,6~13.
    [26]潘家华.油气管道断裂力学分析[M].北京:石油工业出版社,1989.
    [27] API STANDARD 1160. Managing System Integrity For Hazardous Liquid Pipelines, 2001.
    [28] ASME B 31.8 Supplement. Managing System Integrity of Gas Pipelines, 2001.
    [29] Marty Matheson, et al. New API Standard to Promote Integrity for Liquid Pipe Lines & Gas Industry, 2001, 8.
    [30]刘铁民等.安全评价方法应用指南.化学工业出版社.2005.
    [31]罗云等.风险分析与安全评价.化学工业出版社.2005.
    [32]翁永基等.油气长输管道风险评价与完整性管理[M].北京:化学工业出版社,2005.
    [33]刘杨等.常压储罐系统可靠性研究.石油学报,2002,23(5):96~100.
    [34] Robert L Craig. Decision and risk assessment in natural gas pipeline planning, 1996; OMAE-Volume V, Pipeline technology ASME 1996.
    [35] Simon Haykin.叶世伟,史忠植译.神经网络原理[M].北京:机械工业出版社,2004,245~247.
    [36]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001,45~47.
    [37]杨建刚.人工神经网络实用教程[M].浙江:浙江大学出版社,2001,47~59.
    [38] Martin T.Hagan.神经网络设计.机械工业出版社,2002.
    [39]许少华,何新贵,梁久祯.一类正则模糊神经网络及在沉积微相识别中的应用[J].控制与决策,2002,17(3):332~335.
    [40]王耀南.智能信息处理技术[M].北京:高等教育出版社,2003,192~195.
    [41]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003,55~63.
    [42]韩良浩,王印培等.基于人工神经网络的含缺陷受压管道失效模式的识别[J].化工机械,2006,24(3):154~157.
    [43]何新贵.模糊知识处理的理论与技术[M].北京:国防工业出版社,1998,406~412.
    [44]何新贵,许少华.过程神经元网络[M].北京:科学出版社,2007,147~150.
    [45]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004.
    [46] Kiefner J F, et al.Failure stress levels of flaws in pressurized cylinders[M]. Philadelphia: Americal Society for Testing and Materials. 1973, 461-481.
    [47] Manual for Determining the Remaining Strength of Corroded Pipelines[S].ASME B31G, 1991.
    [48] Canadian Standards Association.Gas Pipeline Systems[S]. CAN/CSA-Z184-M86, 1986.
    [49] Bloom J M, Mailik S N.含缺陷和压力容器及管道的完整性评定规程.华东化工学院出版社.1991.
    [50]魏东吼.含缺陷油气管道断裂失效评定方法探讨.石油规划设计.2009(4):1~5.
    [51]李鸣等.含缺陷压力管道的失效模式与缺陷评定方法分析.江西化工.2000(3):35~38.
    [52]周剑秋.含缺陷压力管道失效概率计算中的间接抽样法.化工机械.2006(4):211~214.
    [53]沈士明.模糊人工神经网络技术在含缺陷压力管道可靠性计算中的应用.压力容器.2002(9):12~15.
    [54]阎平凡.对多层前向神经网络研究的进一步看法.电子学报.2007 (5):82~85.
    [55] Simon Haykin.叶世伟,史忠植译.神经网络原理[M].北京:机械工业出版社,2004,245~247.
    [56] Pandit M, Buchheit K. Optimizing iterative learning control of cyclic production processes with application to extruders. IEEE Trans. on Control Systems Technology, 1999, 7(3):382-390.
    [57] J. Holland, Adaptation in neural and artificial systems[M]. Ann Arbor: Univ. Of Michigan Press, 1975.
    [58]康立山等.非数值并行算法——模拟退火算法[M].北京:科学出版社,2000.
    [59]王兵.过程支持向量机模型及信息变换机制研究.大庆:大庆石油学院,2004.
    [60]郑新侠.16Mn管道钢土壤腐蚀速率描述的人工神经网络方法.西安石油大学学报(自然科学版),2004,19(1):73~76.
    [61]李国勇等.基于模糊神经网络的动态非线性系统辨识研究.系统仿真学报.2007,19(3):560~562.
    [62]张其敏等.埋地管道腐蚀损伤评价.管道技术与设备.2004.3(3):39~41.
    [63]王振峰等.单体模糊神经网络自学习问题研究.电子学报.Vol.25,No.2,2006.
    [64]舒宁等.模式识别的理论与方法[M].武汉:武汉大学出版社.2004,137~138.
    [65]原思聪等.基于模糊预处理的聚类神经网络模型设计.西安建筑科技大学学报(自然科学版).2005(2):274~277.
    [66] R.J. Frank, N. Davey, S.P. Hunt. Time Series Prediction and Neural Networks[J]. Journal of Intelligent and Robotic Systems, 2001, 31(1):91-103.
    [67] Mirchandani, G. On Hidden Nodes for Neural Nets. TEEE Trans.Circ. Syst.,2008,36(5):661-664.
    [68] Kurita,T. A Method to Determine the Number of Hidden Units of Three-layered Neural Networks by Information Criteria, The Transactions of the Institute of Electronics, Information and Communication Engineers, J98-D-II,1872-1878.
    [69]伦淑娴等.自适应模糊神经网络系统在管道泄漏检测中的应用.石油学报.2004(4):101~104.
    [70]张其敏等.埋地管道腐蚀损伤评价.管道技术与设备,2004,3(3):39~41.
    [71] Sontag,E.D., Shattering All Sets of k Points in General position requires (k-1)/2 parameters. Neural Computation, 1997, 9(2):337-348.
    [72]黄琳.稳定性理论.北京:北京大学出版社.1992.
    [73]田赤勇等.基于灰色模糊理论的埋地输油管道腐蚀与防护综合评判.管道技术与设备.2005(4):40~46.
    [74]李东辉等.基于模糊神经网络的故障诊断方法研究.控制与检测.2008(4):69~72.
    [75]孙文瑜等.最优化方法.高等教育出版社,2004.
    [76]李丽蓉.人工神经网络在系统辨识中的研究与应用.华北电力大学学报.2008,27(3):29~33.
    [77]胡玉玲等.基于模糊神经网络的无刷双馈电机的仿真研究.系统仿真学报.2007,18(12):3468~3471.
    [78]贺清碧等.BP神经网络收敛性问题的改进措施.重庆交通大学学报.2005,24(1):143~145.
    [79]郑建国等.基于正交校正共轭梯度法的快速神经网络学习算法研究.电子与信息学报,2002,24(5):667~670.
    [80]帅健等.埋地输油管道的断裂失效概率评估.石油大学学报(自然科学版),2001,25(2):87~90.
    [81]杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430~1433.
    [82]徐丽娜.神经网络控制[M] .哈尔滨工业大学出版社.2003.
    [83] Sergios Theodoridis, Konstantinos Koutroumbas,李晶皎等译.模式识别[M].北京:电子工业出版社,2006,9~12.
    [84]陈桦等.BP神经网络算法的改进及在Matlab中的实现.陕西科技大学学报.2004,22(2):45~47.
    [85] M.Meral, N.S. Sengor. System Identification with Hybrid Elman Network. Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference. New York:IEEE,2004,80-83.
    [86] Xueying Zhang. A Distribution Network Reconfiguration Algorithm Based on Hopfield Neural Network. 4th International Conference on Natural Computation. 2008(3):9-10
    [87] Xiande Liu. A Weighted Fuzzy Reasoning Process Neural Network and Its Application. 4th International Conference on Natural Computation. 2008(3): 59-64.
    [88]刘显德等.一种过程神经元网络模型及其在动态预测中的应用.大庆石油学院学报.2008(4):197~110.
    [89] Jinhu Lu, Guanrong Chen. A Time-Varying Complex Dynamical Network Model And Its Controlled Synchronization Criteria[J]. IEEE Transactions on Automatic Control, 2005,50(6):841-846.
    [90]蒋晓斌等.油气管道腐蚀剩余寿命的预测方法.石油工业技术监督.2005(4):18~20.
    [91] W.V.贝克曼等.阴极保护手册,胡士信等译.北京:化学工业出版社,1992:1~9.
    [92]罗金恒等.管道土壤腐蚀速率测试方法.油气储运.2007(11):50~52.
    [93]周剑秋,沈士明.含缺陷压力管道可靠性研究特点及进展.化工机械,1997,24(6):356~358.
    [94]胡小芳等.用人工神经网络预测天然气管道内腐蚀速度.油气储运.2004(9):56~58.
    [95] M.G.方坦纳,N.D.格林著,腐蚀工程,左景伊译,第二版,北京:化学工业出版社,1982:66~67.
    [96] Asaii B,Rahman M. A. Anti-Corrosion,1997,(24):1~3.
    [97]Н.Л.托尔晓夫著.金属腐蚀及其保护的理论.华保定等译.第二版.北京:机械工业出版社.1964:64~65.
    [98]喻西崇等.腐蚀管道的剩余强度计算方法研究.力学学报.2004(3):281~287.
    [99]李志安.压力容器断裂理论与缺陷评定.大连:大连理工大学出版社.1994.
    [100]薛爱芹等编译.埋地管道腐蚀的快速测量法.防腐保温技术.2002(3):43~45.
    [101] PENG Jun. Study of Neural Network Disturbance Learning and Application in RoboCup. High Technology Letters, 2007,13(2):203-206.
    [102] TSOI A C. Locally recurrent Globally Feedforword Networks. A critical review of architectures IEEE transactions on natural networks, 1994,5(2):229-239.
    [103] Chappelle O, Vapnik V,Bousquet O. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1):131-160.
    [104] Pandit M, Buchheit K. Optimizing iterative learning control of cyclic production processes with application to extruders[J]. IEEE Trans. on Control Systems Technology, 1999, 7(3): 382-390.
    [105] O.L.Mangasarian, D.R.Musicant. Lagrangian support vector machines[J]. Journal of Machine Learning Research, 2001, 1:161-177.
    [106]王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社.1998,126~129.
    [107]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004.
    [108]何新贵等.过程神经元网络的若干理论问题.中国工程科学,2000(2):40~44.
    [109]何新贵等.过程神经元网络的训练及其应用.中国工程科学,2001(4):31~35.
    [110]许少华等.输入输出均为时变函数的过程神经元网络及应用.软件学报,2003(4).
    [111] Sang-Hoon Oh, Effect of Nonlinear Transformations on Correlation Between Weighted Sums in Multilayer Percetrons. IEEE Trans. On Neural Networks, 2005(3):508-510.
    [112]李大华.应用泛函简明教程[M].武昌:华中理工大学出版社,2000,96~102.
    [113] Nello Cristianini, John Shawe-Taylor.李国正等译.支持向量机导论[M].北京:电子工业出版社,2004.
    [114] CONCAWE Western European Cross-country Oil Pipelines 30 Year Performance Statistics Report, 2002, 1/02.
    [115] Bruce Phillips PE. How to Ensure Integrity in Non-Piggable Pipelines. Pipeline & Gas Journal, 2001, 10.
    [116]邵小健,支持向量机中若干优化算法研究[D].山东:山东科技大学,2005.
    [117]易继锴等.智能控制技术[M].北京:北京工业大学出版社.2002.
    [118]苏高利等.关于支持向量回归机的模型选择.科技通报.2006,22(2),154~158.
    [119] Platt, J C. Sequential Minimal Optimisation: a fast algorithm for training support vector machines [M]. Microsoft Research, 1998.
    [120] Brain Griffin, Mike Zelensky. Basics of risk analysis, Assessment and management, Banff/95 Pipeline Workshop, 1995.
    [121] Coulson K.E.W..Pipe Corrosion-conclusion, New Guidelines Promise More Accurate Damage Assessment, Oil Gas J., 88(15),1990:41~44.
    [122]李盼池等.支持向量机在模式识别中的核函数特性分析.计算机工程与设计.2005(2):302~304.
    [123]林雪梅.四川输气管线失效分析.焊管,1998,21(4):55~58.
    [124]彭星煜等.基于BP神经网络的油气长输管道失效概率预测.管道.2009(5):12~16.
    [125] Richard Turley. Probability approach promises enhanced maintenance program. Pipeline & Gas Ind,2001,(1):69~73.
    [126] He Xin-Gui, Liang Jiu-Zhen. Process neural networks[C]. In:World Computer Congress 2000, Proceedings of Conference on Intelligent Information Processing. Beijing: Tsinghua University Press, 2000, 143-146.
    [127] John Godfrey. Colonial uses risk assessment to enhance system integrity. Pipeline & Gas Industry, 2001(6):49-61.
    [128] Philip J.Dusek. Pipeline Integrity Program Helps Optimize Resources. Pipeline & Gas Journal, 1994(3):36-40.
    [129]赵永玲.基于神经网络控制系统的故障诊断研究.大庆:大庆石油学院,2003.
    [130]余建星等.埋地输油管道腐蚀风险分析方法研究.油气储运,2001,20(2):5~12.
    [131]刘扬等.低渗透油田地面工程总体规划方案优化研究.石油学报,2000,21(2):88~95.
    [132]魏立新,刘扬等.固定修复长度的埋地输油管道开挖方案.大庆石油学院学报,2002,26(3):69~70.
    [133]赵洪激,刘扬等.埋地长输管道大修开挖长度优化方法.天然气与石油,2000,18(2):5~7.
    [134]刘扬等.环形掺热水集输系统优化设计及分析.石油学报,1999,20(1):77~81.
    [135]赵洪激,刘扬等.埋地输油管道开挖修复施工方案分析.施工与焊接,2003,1:33~35.
    [136]魏立新,刘扬等.埋地长输管道在线开挖应力计算方法.石油工程建设,2002,28(1):7~10.
    [137]刘扬等.套管头结构模糊可靠性分析.石油学报,1994,15(1):120~126.
    [138]王玉梅等.国外天然气管道事故分析.油气储运,2000,19(7).
    [139]胡建华等.石油管道的水击及其控制.油气储运.2000,16(9):46~47.
    [140]蒋奇等.基于波形特征提取的管道腐蚀缺陷量化研究.中国机械工程.2004(12):2074~2077.
    [141] C. A. Erken, K. Yalcin. Evaluating and forecasting banking crises through neural network models: An application for Turkish banking sector[J]. Expert Systems with Applications, 2007, 33(4):809-815.
    [142] Jones D, et al. Risk assessment approach to pipeline life management. Pipes & Pipelines Int,1998,43(1):5~18.
    [143] Sergios Theodoridis, Konstantinos Koutroumbas.李晶皎等译.模式识别[M].北京:电子工业出版社,2006,9~12.
    [144]陈明等.用改进的BP神经网络评判管道的腐蚀类型.石油工程建设.2005(6):4~7.
    [145]喻西崇等.利用模糊综合评判评价注水管道腐蚀程序.西南石油学院学报.2003(3):79~82.
    [146]王珂等.油气管道风险评价技术研究.辽宁化工.2010(1):35~38.
    [147]康立山等.非数值并行算法——模拟退火算法[M].北京:科学出版社,2000.
    [148] DRAYE J S. Dynamic recurrent NN, A Dynamical Analysis. IEEE Trans SMC(B), 1996,26(2):692-706.
    [149]刘俊强等.复杂大系统建模的模糊神经网络方法.系统仿真学报,2001(3).
    [150]阎平凡等.人工神经网络与模拟进化计算.清华大学出版社,2000.
    [151] He Xin-gui, Liang Jiu-zhen. Process Neural Networks In World Computer Congress 2000, Proceedings of Conference on Intelligent Information Processing. Beijing:Tsinghua University Press, 2000, 143~146.
    [152] Wise K A, Broy D J. Agile Missile Dynamics and Control. Journal of Guidance, Controland Dynamics, 1998(3):441~449.
    [153] Linsker R. Towards an Organizing Principle for a Layered Perceptual Netword. In Neural Information Processing Systems. New York: American Institute of Physics.1998,21(3):484~494.
    [154]李荣钧.模糊多准则决策理论与应用.科学出版社,2002.
    [155]徐士良.计算机常用算法[M].北京:清华大学出版社,1995,95~101.
    [156]王士同.模糊系统、模糊神经网络及应用程序设计.上海科学技术文献出版社,1998.
    [157] Nello Cristianini, John Shawe-Taylor.李国正,王猛等译.支持向量机导论[M].北京:电子工业出版社,2004.
    [158]舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉:武汉大学出版社,2004,137~138.
    [159] Nello Cristianini.支持向量机导论.2004.
    [160]王珊.数据库系统概论(第四版).高等教育出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700