用户名: 密码: 验证码:
镁锂基合金电解法制备及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金堪称超轻合金,在轻量化要求的工业领域有着诱人的前景。镁锂合金的制备都是采用对掺法,本论文用熔盐电解的方法制备镁锂基合金,并对其电化学过程和机理、合金相结构等进行了深入的研究。在金属的沉积过程、合金化过程、合金的相控制、合金成分的控制等方面取得了重要成果。
     本论文第一部分工作是在LiCl-KCl熔盐体系中,用阴极合金化法在固态镁电极上制备了镁锂合金,在480℃下,通过选择电解参数可以控制生成合金的相组成。在-2.26、-2.30和-2.39V(vs.Ag/AgCl)电位下恒电位电解30分钟分别得到厚度为182、365和2140μm的α、α+β和β相Mg-Li合金。
     本文第二部分工作是在惰性电极上,670℃时通过共电沉积方法直接从KCl-LiCl-MgCl2熔盐体系中电解得到镁锂合金。采用循环伏安法、计时电位法、计时电流法测定了Mg(II)离子在熔盐中的扩散系数,并研究了镁和锂共电沉积的条件。通过恒电流电解制备了三种不同相的镁锂合金,并考察了电解参数及MgCl2浓度对镁锂合金中锂含量的影响。在含有5wt.%MgCl2的熔盐中,MgCl2的极限电流密度为0.35 A·cm-2,超过此值时,Mg和Li就能产生共电沉积;在电流密度为6.21 A·cm-2电解2h条件下,只有当MgCl2浓度小于10wt.%时,才能得到Mg-Li合金。共电沉积法具有工序简单和能耗较低的优点。
     本文第三部分工作是在670℃时,在钼电极上,从LiCl-KCl-MgCl2-XCln(X=A1、Zn和Y,n=2或3)熔盐中直接共电沉积制备镁锂铝、镁锂锌和镁锂钇合金。采用不同的电化学技术研究了Mg(II)、Li(Ⅰ)和第三种合金化元素x(X=A1、Zn和Y)的电还原过程和共沉积条件。首次运用计时电流和计时电位等方法判断各种金属的沉积顺序及合金形成过程。从而实现一种从源头开始,集合金组分共电沉积-合金化-均匀化于一体的熔盐电解制备Mg-Li及Mg-Li基合金的新方法。研究中发现在LiCl-KCl-MgCl2-XCln熔盐体系中,在钼电极上首先形成的是Mg-X合金(X=A1、Zn和Y),之后锂在预先沉积的Mg-X上的欠电位沉积会形成Mg-Li-X合金。三种镁锂基合金共电沉积条件分别为:在含有1 Wt.%AICl3的LiCl-KCl-MgCl2 (5 wt.%)熔盐中,当电流密度低于-0.47A·cm-2或电极电位负于-2.100V时会发生镁、锂和铝的共电沉积;在含1 wt.%ZnCl2的LiCl-KCl-MgCl2 (8 wt.%)熔盐中,当电流密度低于-0.78 A·cm-2或电极电位负于-2.000V时会发生镁、锂和锌的共沉积;镁、锂和铝共电沉积的开始电位是-2.100V,当时会发生发镁、锂和铝的共电沉积;在含5 wt.%YCl3的LiCl-KCl-MgCl2 (5 wt.%)喀盐中,当电流密度低于-0.47 A·cm-2时会发生镁、锂和钇的共沉积。
     通过恒电位和恒电流电解,制取了不同Li和X(X=A1、Zn和Y)含量的镁锂基合金,并对合金产品进行了XRD、金相显微镜、扫描电子显微镜、能谱和ICP等分析。改变MgCl2和XCln浓度和电解参数,可以控制镁锂基合金中锂和X的含量。
     本论文首次研究了多元Mg-Li-X (X=Al、Zn和Y)合金共电沉积机理。其低温电解、液态阴极去极化作用和合金化作用使得电解条件温和,易于实现工业化,为新合金的研究提供了一条可靠的工艺路线。
Mg-Li alloys, is called superlight alloys. These alloys have great potential in the fields of industry for light materials. In general, Mg-Li alloys are conventionally prepared by directly mixing and fusing the metallic elements. In this thesis, Mg-Li based alloys are prepared by electrolysis in molten salts. Moreover, the electrochemical process, the electrochemical mechanism, phase structures of Mg-Li based alloys and so on were deeply investigated. In the aspects of the process of metallic deposition, the alloying procee, phase control of alloys and composition control of alloys, we obtained important achievements.
     In the first section of this thesis, Mg-Li alloys were prepared by cathodic alloying method on solid magnesium electrode in a molten LiCl-KCl (50:50 wt.%) system at 480℃. The phase structures of Mg-Li alloys could be controlled by parameters of electrolysis in molten salt system at low temperature, a, a+P andβphases Mg-Li alloys with the thickness of 182,365 and 2140μm were obtained by potentiostatic electrolysis at-2.26,-2.30 and-2.39 V (vs. Ag/AgCl) for 30 min, respectively.
     In the secnod section of this thesis, Mg-Li alloys were directly prepared by co-electrodeposition method on an inert electrode in a molten LiCl-KCl (50:50 wt.%) system at 670℃. The diffusion coefficient of magnesium ions in the melts was determined by cyclic voltammtery, chronopotentiometry and chronoampertry. The condition of co-electrodeposition of Mg and Li was investigated. Three kinds of phases Mg-Li alloys were prepared via galvanostatic electrolysis. The codepositon of Mg and Li happens when the current indensity exceed about 0.35 A-cm-2 (value of limited current density of MgCl2) in KCl-LiCl melts containing 5 wt.% MgCl2. Under the electrolytic condition of 6.21 A·cm-2 for 2 h, only MgCl2 concentration is lower than 10 wt.%, Mg-Li alloys can be obtained. The method of co-electrodeposition have some advantages, whish are short process time and low energy consumption.
     In the third section of this thesis, this work presents an electrochemical study on the codeposition of Mg, Li and X (X=Al, Zn and Y) on a molybdenum electrode in LiCl-KCl-MgCl2-XCln (X=Al, Zn and Y, n=2 or 3) melts at 670℃to form Mg-Li-X alloys. The electrochemical reduction process and co-electrodeposition conditions of Mg(Ⅱ), Li (Ⅰ) and the third alloying elements were investigated by different electrochemical techniques. The chronopotentiometry and chronoampertry were first applied to investigate deposition order of different metals and alloy formation process. Consequently, Mg-Li and Mg-Li based alloys were prepared by a new method of electrolysis in molten salts. This method can start from origin and incorporate co-electrodeposition, alloying and uniformity into an entire. In LiCl-KCl-MgCl2-XCln system, the first formed alloy is Mg-X alloy. The succeeding underpotential deposition of lithium on pre-deposited Mg-X leads to the formation of a Mg-Li-X alloy. The codeposition conditions of three kinds of Mg-Li based alloys is:The codepositon of Mg, Li and Al occurs at current densities lower than-0.47 A-cm-2 or electrode potentials more negative than-2.100 V in LiCl-KCl-MgCl2 (5 wt.%) melts containing 1 wt.% AlC13. The codepositon of Mg, Li, and Zn occurs at current densities lower than-0.78 A cm-2 or electrode potentials more negative than-2.000 V in LiCl-KCl-MgCl2 (8 wt.%) melts containing 1 wt.% ZnCl2. The codepositon of Mg, Li, and Y occurs at current densities lower than-0.47 A-cm-2 in LiCl-KCl-MgCl2 (5 wt.%) melts containing 5 wt.% YCl3.
     Mg-Li based alloys with different lithium and X (X=Al, Zn and Y) contents were obtained via potentiostatic and galvanostatic electrolysis. The obtained alloys were characterized by XRD, optical microscope, scanning electron microscopy, energy dispersive spectrometry and inductively coupled plasma (ICP). And the lithium and X contents of Mg-Li-X alloys can be controlled by MgCl2 and XCln concentrations and the electrolytic parameters.
     In this thesis, co-electodeposition mechanism of ternary Mg-Li-X (X=Al, Zn and Y) alloys was first investigated. The advantages low temperature electrolysis, the depolarization effect of liquid cathode and the effect of alloying make electrolysis condition moderate and is easy to bring about industrialization. All of this supply a reliable technical routine for new alloy materials.
引文
[1]石南林.复合材料导论.自编教材.中科院金属研究所,2004:9-10页
    [2]乐启帜,崔建忠,李红斌等.Mg-Li合金研究最新进展及其应用.材料导报.2003,17(12):1-4页
    [3]Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y. Journal of Alloys and Compounds,2007,430: 252-256P
    [4]王辅忠,李荣华,费英.Mg-Li基复合材料研究进展.材料科学与工程学报.2003,21(1):134-137页
    [5]马春江,张荻.超轻型Mg-Li合金.宇航材料工艺.1998,28(2):27-32页
    [6]马春江.Mg-Li基复合材料.稀有金属材料与工程.1998,27(3):125-129页
    [7]于化顺,陈熙琛.Mg-Li基复合材料研究现状.稀有金属.1995,20(5):365-368页
    [8]乐启炽,崔建忠.Mg-Li合金的过去,现在与将来.宇航材料工艺.1997,27(2):1-6页
    [9]曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究.稀有金属材料与工程.1997,26(2):27-30页
    [10]蒋斌,张丁非,彭建等.Mg-Li超轻合金的研究与应用.材料导报.2005,19(5):38-40页
    [11]陈振华.镁合金.北京:化学工业出版社,2004:446-475页,4-9页
    [12]张津,章宗和等.镁合金及应用.北京:化学工业出版社,2004:283-307页,15-36页
    [13]马培华.中国盐湖资源的开发利用与科技问题.地球科学进展.2000, 3:365-375页
    [14]宋彭生.盐湖及相关资源开发利用进展.盐湖研究.1998,(8):50-68页
    [15]黄西平,张琦,郭淑元等.我国镁资源利用现状及开发前景.海湖盐与化工.2004,33(6):1-6页
    [16]Li F Q, Ling B P, Ma P H. Manufacture of Boron-free Magnesia with High Purity from Residual Brine. Chinese Chemical Letters,2004,15 (11): 1353-1356P
    [17]谢刚.熔融盐理论与应用.北京:冶金工业出版社,1998:1-109页
    [18]陈念贻.熔盐结构和熔盐量子化学.北京:冶金工业出版社,1990.362-370页
    [19]捷里马尔斯基.离子熔体化学.沈时英译.北京:冶金工业出版社,1986:1-3页
    [20]Carlin R T, Osteryoung R A. Deposition Studies of Lithium and Bismuth at Tungsten Microelectrodes in LiCl:KCl Eutectic. Journal of the Electrochemical Society,1989,136 (5):1249-1255P
    [21]Piersma B J, Ryan D M, Schumacher E R, et al. Electrodeposition and stripping of lithium and sodium on inert electrodes in room temperature chloroaluminate molten salts. Journal of the Electrochemical Society,1996, 143(3):908-913P
    [22]Castrillejo Y, Martinez A M, Pardo R, et al. Electrochemical behaviour of magnesium ions in the equimolar CaCl2-NaCl mixture at 550℃. Electrochemica Acta,1997,42:1869-1876P
    [23]Martinez A M, Boresen B, Haarberg G M, et al. Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 melts. Journal of the Electrochemical Society,2004,151:C508-513P
    [24]Martinez A M, Boresen B, Haarberg G M, et al. Electrodeposition of magnesium from the eutectic LiCl-KCl melt. Journal of Applied Electrochemistry,2004,34:1271-1278P
    [25]Borresen B, Haarberg G M, Tunold R. Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics. Electrochemica Acta,1997,42:1613-1622P
    [26]Rao G M. Electrochemical studies of magnesium ions in magnesium chloride containing chloride melt at 710±10 degree. Journal of Electroanalytical Chemistry,1988,249:191-203P
    [27]Krishnan A, Lu X G, Pal U B. Solid oxide membrane process for magnesium production directly from magnesium oxide. Metallurgical and Materials Transactions B,1985,36 (4):463-473P
    [28]刘业翔.铝电解节能科研新动向.轻金属.1987,1:32-35页
    [29]王化章,刘业翔.铝电解生产技术的发展趋势及战略.轻金属.1992,6:20-26页
    [30]Gabco M, Fellner P, Lubyova Z. Chronopotentiometric study of aluminium deposition from MCl-AlCl3 melts (M=Na, K and Cs). Electrochemica Acta,1984,29(3):397-401P
    [31]Odegard R, Bjorgum A, Sterten A, et al. Kinetics of aluminium deposition from aluminium chloride-alkali chloride melts. Electrochemica Acta,1982, 27(11):1595-1598P
    [32]Schulze K, Hoff H. Electrode kinetics of aluminium in chloride melts with respect to electrocrystallization. Electrochemica Acta,1972,17:119-133P
    [33]Jafarian M, Mahjani M G, Gobal F, et al. Electrodeposition of aluminum from molten AlCl3-NaCl-KCl mixture. Journal of Applied Electrochemistry,2006,36:1169-1173P
    [34]Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature,2000,407: 361-364P
    [35]赵志国,鲁雄刚,丁伟中等.利用固体透氧膜提取海绵钛的新技术.上海金属.2003,27:40-43页
    [36]程红伟,鲁雄刚,李谦等.固体透氧膜法制备金属钽.金属学报.2006,42:500-504页
    [37]李颖君,王淑兰,钟和香等.电化学还原TiO2反应机理及电极电势的研究.有色金属.2003,55(4):68-70页
    [38]杜继红,奚正平,李晴宇等.电化学还原TiO2制备金属钛及反应过程的研究.稀有金属材料过程.2006,35(3):1045-1049页
    [39]熊炳昆等.锆铪及其化合物应用.北京:冶金工业出版社,2002:1-24页,170-239页,250-269页
    [40]林振汉.有色金属提取手册-锆铪.北京:冶金工业出版社,2002:3-13页,11-128页
    [41]Baboian R, Hill D L, Bailey R A. Electrochemical studies on zirconium and hafnium in molten LiCl-KCl eutectic. Journal of the Electrochemical Society,1965,112(12):1221-1224P
    [42]Kawase M, Ito Y. The electroformation of Zr metal, Zr-Al alloy and carbon films on ceramic. Jounal of Applied Electrochemistry,2003, 33:785-793P
    [43]Basile F, Chassaing E, Lorthioir G. Electrochemical reduction of ZrCl4 in 'molten NaCl, CsCl and KCl-LiCl and chemical reaductions coupled to the electrodeposition of zirconium. Journal of Applied Electrochemicstry, 1981,11:645-651P
    [44]Kipouros G J, Flengas S N. Electrorefining of zirconium metal in alkali chloride and alkali fluoride fused electrolyte. Journal of the Electrochemical Society,1985,132(5):1087-1098P
    [45]Sakamura Y. Zirconium behaviour in molten LiCl-KCl eutectic. Journal of the Electrochemical Society,2004,151(3):C187-193P
    [46]Shirai O, Uozumi K, Iwai T, et al. Electrode reaction of the Np3+/Np couple at liquid and Bi electrodes in LiCl-KCl eutectic melts. Journal of Applied Electrochemistry,2004,34:323-330P
    [47]Cotata A, Bouteillon J, Poignet J C. Electrochemistry of molten LiCl-KCl-CrCl3 and LiCl-KCl-CrCl2 mixtures. Journal of Applied Electrochemistry,1997,27:651-658P
    [48]Serrano K, Taxil P. Electrochemical reduction of trivalent uranium ions in molten chlorides. Journal of Applied Electrochemistry,1999,29: 497-503P
    [49]Masset P, Bottomley D, Konings R, et al. Electrochemistry of uranium in molten LiCl-KCl eutectic. Journal of the Electrochemical Society,2005, 152(6):A1109-1115P
    [50]Prabhakara Reddy B, Vandarkuzhali S, Subramanian T, et al. Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl-KCl eutectic. Electrochemica Acta,2004,49:2471-2478P
    [51]Mohamedi M, Bouteillon J, Poignet J C, et al. Electrochimical impedance spectroscopy study of indium couples in LiCl-KCl eutectic at 450℃. Electrochimica Acta,1996,41(9):1495-1504P
    [52]Serp J, Konings R J M, Malmbeck R, et al. Electrochemical behaviour of plutonium ion in LiCl-KCl eutectic melts. Journal of Electroanalytical Chemistry,2004,561:143-148P
    [53]Shirai O, Iwai T, Suzuki Y, et al. Electrochemical behaviour of actinide ions in LiCl-KCl eutectic melts. Journal of Alloys and Compounds,1998, 271-273:685-688P
    [54]Nakajima H, Nohira T, Hagiwara R. Electrodeposition of metallic molybdenum films in ZnCl2-NaCl-KCl-MoCl3 systems at 250℃. Ecletrochimica Acta,2006,51:3776-3780P
    [55]刘冠昆,童叶翔,洪惠婵等.氯化物熔体中钇离子在铁电极上的电还原.物理化学学报.1998,14(5):463-466页
    [56]杨绮琴,丘开容,刘冠昆等.氯化物熔体中钇的电还原和合金化.中国稀土学报.1994,12(2):116-119页
    [57]赵立忠,段淑贞,魏寿昆.钇离子在氟化物熔盐体系中的电化学还原.中国稀土学报.1993,11(3):271-273页
    [58]赵立忠,段淑贞,顾学范等.钇离子在氯化物熔盐中的电化学还原.中国稀土学报.1992,10(4):326-330页
    [59]李宝善,苏连永.SmCl3在LiCl-KCl熔盐中的电化学反应.甘肃联合大学学报.2006,20(3):55-56页,60页
    [60]陆庆桃,叶云蔚,李国勋.氯化钕熔盐电解的阴极过程.中国稀土学报.1991,9(1):17-19页
    [61]陆庆桃,余仲兴,颜晓勇.氧化钕电解的阴极过程及钕的溶解行为.上海金属(有色分册).1991,12(4):1-7页
    [62]梁行方,马宏军,段淑贞等.在氟盐体系中钕离子阴极过程的研究.稀土.1999,20(4):21-23页
    [63]祁雪,焦树强,朱鸿民.NaCl-CsCl熔盐中Ce(Ⅲ)离子的阴极过程研究.中国稀土学报.2004,22:319-322页
    [64]Ghosh S, Vandarkuzhali S, Venkatesh P, et al. Redoc behaviour of cerium oxychloride in molten MgCl2-NaCl-KCl eutectic. Electrochimica Acta, 2006,52(3):1206-1212P
    [65].陈必清,王建朝,刘青等.低温熔盐中Yb-Ni合金膜的电沉积研究.武汉理工大学学报.2006,28(8):5-8页
    [66]杜森林,刘应明,路连清等.直流脉冲电解Al-La合金的研究.稀土.1993,14(3):66-69页
    [67]杜森林,苏明忠.氯化物熔盐中Nd3+在液体Ga电极上还原的电化学行为.金属学报.1991,27(3):B171-175页
    [68]赵敏寿,冯力,唐定骧.浅谈铝电解槽制备铝-稀土合金方法.稀土.1986,3:48-52页
    [69]苏明忠,彭建军,宋丕莹等.熔盐电解制备Ga-Nd合金的研究.中国稀土学报.1992,10(2):173-174页
    [70]苏明忠,宋丕莹,邹天楚等.熔盐电解制取A1-Dy合金.稀土.1995,16(5):61-63页
    [71]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中镨钴合金形成的电化学研究.中山大学学报.1997,36(2):118-121页
    [72]童叶翔,杨绮琴,刘冠昆等.熔盐电解制取镧铜中间合金的研究.中国稀土学报.1991,9(4):311-314页
    [73]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中电解研制镨镍合金.稀有金属.1994,18(6):433-435页
    [74]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中电解制取镨钴合金的研究.广东有色金属学报.1993,3(2):111-115页
    [75]刘冠昆,洪惠婵,杨绮琴等.电解制备铒钴中间合金的电化学研究.中国稀土学报.1994,12(4):309-312页
    [76]王宇,何凤荣,刘冠昆等.二甲基甲酰胺中电沉积制备钐钴合金.应用化学:2002,19(1):88-90页
    [77]徐秦英,王建朝,郭承育.乙酰胺-尿素-NaBr熔体中Dy-Co合金的电化学制备.华中师范大学学报.2006,40(2):217-221页
    [78]王旭,翟玉春,谢宏伟等.熔盐电解制备硼及金属硼化物的开发前景.材料导报.2008,22(6):58-60页
    [79]宋明志,安慧.熔盐电解法制备元素硼粉.辽宁化工.2004,33(8):469-470页
    [80]刘仪柯,马文会,戴永年等.融盐电解法直接制备太阳能级硅新工艺的探讨.有色金属:冶炼部分.2008,2:31-33页
    [81]Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction
    of insulating silicon dioxide to silicon. Nature Materials,2003,2: 397-401P
    [82]Yasuda K, Nohira T, Hagiwara R, et al. Direct electrolyric reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon. Electrochemica Acta,2007,53(1):106-110P
    [83]段淑珍,乔芝郁.熔盐化学原理和应用.北京:冶金工业出版社,1990:337-393页
    [84]Iida T, Nohira T, Ito Y. Electrochemical formation of Yb-Ni alloy films by Li codeposition method in a molten LiCl-KCl-YbCl3 system. Electrochemica Acta,2003,48:1531-1536P
    [85]Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Ni alloy films in a molten LiCl-KCl-SmCl3 system. Electrochemica Acta,2001,46: 2537-2544P
    [86]Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phase control of Pr-Ni alloys in a molten LiCl-KCl-PrCl3 system. Jounal of the Electrochemical Society,2005,152 (4):C183-189P
    [87]Konishi H, Nohira T, Ito Y. Formation and phase control of Dy alloy films by electrochemical implantation and displantation. Jounal of the Electrochemical Society,2001,148 (7):C506-511P
    [88]Iida T; Nohira T, Ito Y. RBS analysis of Sm-Ni alloy films prepared by a molten salt electrochemical process. Journal of Alloys and Compounds, 2005,386:207-210P
    [89]Castrillejo Y, Bermejo M R, Barrado E, et al. Electrodeposition of Ho and Electrochemical Formation of Ho-Al Alloys from the Eutectic LiCl-KCl. Jounal of the Electrochemical Society,2006,153 (10):C713-721P
    [90]Bermejo M R, Gomez J, Medina J, et al. The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes. Journal of
    Electroanalytical Chemistry,2006,588(2):253-266P
    [91]Castrillejo Y, Bermejo M R, Barrado E, et al. Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes. Electrochemica Acta,2006,51(10):1941-1951P
    [92]Castrillejo Y, Bermejo M R, Barrado A I, et al. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes. Electrochemica Acta,2005,50(10):2047-2057P
    [93]Castrillejo Y, Bermejo M R, Diaz Arocas P, et al. Electrochemical behaviour of praseodymium (III) in molten chlorides. Journal of Electroanalytical Chemistry,2005,575:61-74P
    [94]Bermejo M R, Barrado E, Martinez A M, et al. Electrodeposition of Lu on W and Al electrodes:Electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu(III) in the eutectic LiCl-KCl. Journal of Electroanalytical Chemistry,2008,617:85-100P
    [95]Morrice E, Shedd E S, Wang M M, et al. Preparation of cobalt-rare-earth alloys by electrolysis. Journal of Metals,1969,21(1):34-37P
    [96]Zhang X, Jiao S Q, Xiao S J, et al. Electrochemical behavior of magnesium and aluminium ions in alkali chloride melt. Materials Science Forum,2005,488:811-814P
    [97]Polyakova L P, Taxil P, Polyakov E G. Electrochemical behaviour and codeposition of titanium and niobium in chloride-fluoride melts. Journal of Alloys and Compounds,2003,359:244-255P
    [98]Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Co alloys by cedeposition of Sm and Co in a molten LiCl-KCl-SmCl3-CoCl2 systtem. Ecletrochimica Acta,2003,48:2517-2521P
    [99]Tong Y X, Liu P, Liu L Z, et al. Electrochemical behaviors of Fe2+ and Sm3+ in Urea-NaBr low temperature melt and their inductive codeposition.
    Journal of Rare Earths,2001,19(4):275-279P
    [100]Liu L Z, Tong Y X, Yang Q Q. Electroreduction of Co(Ⅱ), Ni(Ⅱ) and Co-deposition with La(Ⅲ) in urea-NaBr Melt. Rare Metals,2000,19(3): 237-241P
    [101]李义根.液态阴极熔盐电解法制备锌-稀土中间合金的研究.有色矿冶.1992,5:24-29页
    [102]Castrillejo Y, Bermejo M R, Diaz Arocas P, et al. The electrochemical behaviour of the Pr(Ⅲ)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl. Journal of Electroanalytical Chemistry,2005, 579:343-358P
    [103]刘世友.锂的新用途与展望.金属世界.1994,2:12-13页
    [104]封国富,张晓.世界锂工业发展格局的变化对中国锂工业的影响和对策.稀有金属.2003,27(1):57-61页
    [105]贾永忠,周园,杨金贤.真空热还原-蒸馏法制备高纯金属锂.无机化学学报,2001,17(5):735-739页
    [106]В·И·科干.锂(第二版).李广才译.北京:中国工业出版社,1962:3-8页
    [107]Ю·И·奥斯特罗什科等.锂的化学与工艺学.曾华珗译.北京:中国工业出版社,1965:5-10页
    [108]Henry O H, Cordiano H V. The lithium-magnesium equilibrium diagram. Transactions of American Institute Mining and Metals Engineering,1934, 111:319-332P
    [109]Saldau P, Shamrai F. Equilibrium diagrams of the system magnesium-lithium. Zeitschrift fur Anorganische and Allgemeine Chemie, 1935,224:388-398P
    [110]Jackson J H, Frost P D, Loonam A C, et al. Magnesium-lithium base alloys-preparation, fabrication, and general characteristics. Transactions of
    American Institute Mining and Metals Engineering,1949,185:149-168P
    [111]Hauser F E, Landon P R, Dorn J E. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy. Transactions of American Society for Metals, 1956,48:986-1002P
    [112]Frost P D. Technical and economic status of magnesium-lithium alloys. Washington DC:NASA,1965:4-18P
    [113]Elkin F M, Davydov V G. Russian Ultralight Constructional Mg-Li Alloys. Their Structure, Properties, Manufacturing, Applications, Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications,2004:94-99P
    [114]Matsuzawa K, Koshihara T, Kojima Y. Age-hardening and mechanical properties of Mg-Li-Al alloys. Journal of Japanese Institute of Light Metals,1989,39:45-51P
    [115]Ohnishi T, Ito T. Work-hardening and annealing characteristics of Mg-Li binary alloys. Journal of Japanese Institute of Light Metals,1989,39: 15-20P
    [116]Massalski T B, Murray J L, Benett L H, et al. Binary alloy Phase Diagrams. American Society for Metals,1990
    [117]Zhang M L, Wu R Z, Wang T, et al. Microstructure and mechanical properties of Mg-xLi-3Al-1Ce alloys. Transactions of Nonferrous Metals Society of China,2007,17:s381-384P
    [118]Wu R Z, Zhang M L, Wang T. Microstructure characterization and mechanical properties of Mg-9Li-5Al-1Zn-0.6RE alloy. Transactions of Nonferrous Metals Society of China,2007,17:s448-451P
    [119]Smolinski J. Electrolytic deposition and diffusion of lithium into magnesium. Journal of Applied chemistry,1956,6:180-186P
    [120]Smolinski J, Hannam J C, Leach A L. An electrolytic method for the direct production of magnesium lithium alloys from lithium chloride. Journal of Applied chemistry,1956,6:187-196P
    [121]颜永得,张密林,韩伟等.KCl-LiCl-MgCl2熔盐体系中共电沉积制备Mg-Li合金及理论分析.无机化学学报.2008,24(6):902-906页
    [122]Lin M C, Tsai C Y, Uan J Y. Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl. Scripta Materialia, 2007,56:597-600P
    [123]彭晓东,杨艳,谢卫东.Mg-Li-Sr合金及其电解制备方法.中国发明专利:CN101070576
    [124]Yan Y D, Zhang M L, Han W, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts. Electrochimica Acta,2008,53:3323-3328P
    [125]张密林,颜永得,韩伟等.熔盐电解共沉积制备不同相组成镁锂锌合金的方法.中国发明专利.专利号:CN101319337
    [126]张密林,韩伟,田阳等.一种镁锂-钐合金及其熔盐电解制备方法.中国发明专利.专利号:CN101285142
    [127]张密林,韩伟,杨育圣等.一种熔盐电解制备镁锂镝合金的方法.中国发明专利.专利号:CN101285143
    [128]张密林,李梅,赵全友等.镁锂钬合金、镁锂钬合金的熔盐电解制备方法及装置.中国发明专利.专利号:CN101302593
    [129]张密林,韩伟,田阳等.一种镁锂-铈镧合金及其熔盐电解法制备方法.中国发明专利.专利号:CN101302594
    [130]Haferkamp H, Bach F W, Juchmann P. New magnesium-lithium alloys of higher ductility. Aluminium,2000,76:1046-1050P
    [131]Saito N, Mabuchi M, Nakanishi M, et al. The aging behavior and the
    mechanical properties of the Mg-Li-Al-Cu alloy. Scripta Materialia,1997, 36(5):551-555P
    [132]于化顺,闵光辉,陈熙琛.合金元素在Mg-Li基合金中的作用.稀有金属材料与工程.1996,25(2):1-5页
    [133]Sanschagrin A, Tremblay R, Angers R, et al. Mechanical properties and microstructure of new magnesium-lithium base alloys. Materials Science and Engineering A,1996,220(1):69-77P
    [134]黄清民,魏晓伟.超轻质Mg-Li合金的研究现状.特种铸造及有色合金.2005,(Z1):55-59页
    [135]Brown R. Magnesium automotive meeting. Light Meral Age,1992, 50(5-6):18-24P
    [136]Song G S, Mark S, Milo K. Some new characteristics of the strengthening phase in (3-phase magnesium-lithium alloys containing aluminum and beryllium. Materials Science Engineering A,2004,371:371-376P
    [137]Yamamoto A, Ashida T, Kouta Y, et al. Precipitation in Mg-(4-13)%Li-(4-5)%Zn ternary alloys. Materials Transactions,2003, 44(4):619-624P
    [138]Yamamoto A, Ashida T, Kouta Y, et al. Precipitation in Mg-11mass%Li-10mass%Zn alloy. Journal of Japanese Institute of Light Metals,1992,42(12):797-803P
    [139]王涛.稀土在镁锂合金中的作用及机理.哈尔滨工程大学博士学位论文.2008:10-15页
    [140]徐光宪.稀土(下).北京:冶金工业出版社,1995:462-463页
    [141]Tanno O, Ohuchi K, Matuzawa K, et al. Effect of rare-earth on structures and mechanieal properties of Mg-8%Li alloys. Journal of Japanese Institute of Light Metals,1992,42(1):3-9P
    [142]大内清明,岩泽秀,镰土重晴.Mg-8Li合金的组织与机械性质及稀土
    元素的影响.轻金属.1992,(8):446-452P
    [143]Xu D K, Liu L, Xu Y B, et al. The strengthening effect of icosahedral phase on as-extruded Mg-Li alloys. Scripta Materialia,2007,57(3): 285-288P
    [144]陈增.熔盐电解法制备镁合金的研究.哈尔滨工程大学博士学位论文.2008:29-37页
    [145]Yang L, Hudson R G. Some investigations of the Ag/AgCl in LiCl-KCl eutectic reference electrode. Journal of the Electrochemical Society,1959, 106:986-990P
    [146]Serp J, Allibert M, Terrier A L, et al. Electroseparation of Actinides from Lanthanides on Solid Aluminum Electrode in LiCl-KCl Eutectic Melts. Journal of the Electrochemical Society,2005,152:C167-172 P
    [147]邵元华,朱果逸,董献堆等.电化学原理-方法和应用.第二版.北京:化学工业出版社,2005:156-168页
    [148]吴浩青,李永舫.电化学动力学.北京:高等教育出版社,1998:113-132页
    [149]查全性.电极过程动力学导论.北京:科学出版社,2002:252-272页
    [150]胡会利,李宁.电化学测量.北京:、国防工业出版社,2007:147-153页
    [151]田绍武.电化学研究方法.北京:科学出版社,1984:201-249页
    [152]周仲柏,陈永言.电极过程动力学基础教程.武汉:武汉大学出版社,1987:66-78页
    [153]Trojanova Z, Drozd Z, Lukac P, et al. Deformation Behaviour of Mg-Li Alloys at Elevated Temperatures. Materials Science and Engineering A, 2005,410:148-151P
    [154]Sanschagrin A, Tremblay R, Angers R, et al. Mechanical properties and microstructure of new magnesium-lithium base alloys. Materials Science and Engineering A,1996,220 (1-2):69-77P [155] Trojanova Z, Drozd Z, Kudela S, et al. Strengthening in Mg-Li matrix composites. Composites Science and Technology,2007,67:1965-1973P[156]于旭光,邱竹贤.熔盐电解法制取A1-Si合金.东北大学学报:自然科学版.2004,25(5):442-444页[157]邱竹贤,李庆峰.NaCl-AlCl3融盐电解中MnCI2对改善A1-Mn合金电沉积层的作用.稀有金属材料与工程.1994,23(6):32-35页[158]徐君莉,石忠宁,邱竹贤.熔盐电解法制取Al-Li母合金.矿冶工程.2004,24(3):56-58页[159] Zhang M L, Yan Y D, Hou Z Y, et al. An electrochemical method for the preparation of Mg-Li alloys at low temperature molten salt system. Journal of Alloys and Compounds,2007,440:362-366P [160] Lu H M, Zou X, Fang K M, et al. Preparation of Al-Si-Ti master alloys by electrolysis of silica and titania in cryolite-alumina melts. Rare Metals, 2000,19:141-146P [161] Yang B G, Qiu Z X, Gao B L. Electrolytic preparation of Al-Ca master alloy in liquid Al cathode. Transactions of Nonferrous Metals Society of
    China,2000,10(2):246-249P[162]张永健,罗亮明.氯化镁电解时液镁阴极析出相过程的研究.中南矿冶学院学报.199l,22(5):529-533页[163]张永健,罗亮明.氯化镁电解阴极过程机理及液镁析出状态的研究.中南矿冶学院学报.1994,25(2):176-181页[164] Southampton Electrochemistry Group. Instrumental Methods in Electrochemistry. Chichester:Ellis Horwood,1985:210-239P [165] Berzins T, Delahay P. Oscillographic Polarographic Waves for the Reversible Deposition of Metals on Solid. Journal of the American Chemical Society,1953,75:555-559P [166] Laity R W, McIntyre J D E. Chronopotentiometric Diffusion Coefficients
    in Fused Salts I. Theory.Journal of the American Chemical Society,1965, 87:3806-3812P
    [167]Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications. New York:John Wiley & Sons,1980:156-163P
    [168]Zhang M L, Yan Y D, Hou Z Y, et al. Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature. Chinese Chemical Letters, 2007,18(3):329-332P
    [169]Yan Y D, Zhang M L, Han W, et al. Electrochemical Codeposition of Mg-Li Alloys from a Molten KCl-LiCl-MgCl2 System. Ecletrochimica Acta,2008,53(8):3323-3328P
    [170]Alamo A, Banchik A D. Precipitation phenomena in the Mg-31at%Li-1 at% Al alloy. Journal of Materials Science,1980,15(1):222-229P
    [171]Liu T, Wu S D, Li S X, et al. Microstructure evolution of Mg-14% Li-1% Al alloy during the process of equal channel angular pressing. Materials Science and Engineering A,2007,460:499-503P
    [172]Willner E. LA141XA, a Magnesium-Lithium Alloy for Aerospace Vehicles. Metalscope,1962,11:5-8P
    [173]Liu T, Wu S D, Jiang C B, et al. Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing. Materials Science and Engineering A,2003,360:345-349P
    [174]Kim Y W, Kim D H, Lee H I, et al. Widmanstatten type Solidification in Squeeze Casting of Mg-Li-Al Alloys. Scripta Materialia,1998,38: 923-929P
    [175]Drozd Z, Trojanova Z, Kudela S. Deformation behaviour of Mg-Li-Al alloys. Journal of Alloys and Compounds,2004,378:192-195P
    [176]Drozd Z, Trojanova Z, Kudela S. Degradation of the mechanical properties of a Mg-Li-Al composite at elevated temperatures studied by
    the stress relaxation technique. Materials Science and Engineering A, 2007,462:234-238P
    [177]Murken J, Hohner R, Skrotzki B. Strain path dependence of the precipitate size evolution of an Al-Mg-Li alloy under combined thermal and mechanical loading. Materials Science and Engineering A,2003,363(1-2): 159-170P
    [178]杨绮琴,方北龙,童叶翔.应用电化学.第二版.广州:中山大学出版社,2005:172-178页
    [179]Takuda H, Enami T, Kubota K, et al. The formability of a thin sheet of Mg±8.5Li±Zn alloy. Journal of Materials Processing Technology,2000, 101(1-3):281-286P
    [180]Song J M, Wen T X, Wang J Y. Vibration fracture properties of a lightweight Mg-Li-Zn alloy. Scripta Materialia,2007,56(6):529-532P
    [181]Wang J Y, Hong W P, Hsu P C, et al. Microstructures and mechanical behavior of processed Mg-Li-Zn alloy. Materials Science Forum,2003, 419-422:165-170P
    [182]Chiu C H, Wu H Y, Wang J Y, et al. Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments. Journal of Alloys and Compounds,2008,460 (1-2):246-252P
    [183]Takuda H, Kikuchi S, Tsukada T, et al. Effect of strain rate on deformation behaviour of a Mg-8.5Li-1Zn alloy sheet at room temperature. Materials Science and Engineering A,1999,271 (1-2): 251-256P
    [184]Lin Y N, Wu H Y, Zhou G Z, et al. Mechanical and anisotropic behaviors of Mg-Li-Zn alloy thin sheets. Materials and Design,2008,29(10): 2061-2065P
    [185]赵亮,赵平.热处理对Mg-7.28Li-8.02Y合金显微组织和力学性能的影 响.金属热处理.2008,33(8):37-47页
    [186]Drits M E, Guzey L S, Kharakterova M L, et al. Mg-Li-Y system in the magnesium-rich range (up to 15% Li, up to 15% Y). Russian Metallurgy, 1981,4:200-202P
    [187]Drits M E, Guzey L S. Isothermal sections and properties of alloys of the Mg-Li-Y system in the magnesium-rich region. Russian Metallurgy,1981, 2:210-212P
    [188]Higashi K, Kubota K, Neite G. Proceeding of Magnesium Alloys and Their Applications. Garmisch Partenkirchen,1992:293-300P
    [189]Takuda H, Kikuchi S, Yoshida N, et al. Tensile Properties and Press Formability of a Mg-9Li-1Y Alloy Sheet. Materials Transactions,2003, 44(11):2266-2270P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700