用户名: 密码: 验证码:
抗菌羊毛纤维制备及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展和人民生活水平的提高,人们对功能性纺织品的需求越来越高,这在一定程度上推动了功能性纺织品的开发进程,今后的纺织品生产,功能性将成为其生存和发展的决定性因素。作为人类有史以来应用最久,最多的传统纤维天然纤维—羊毛纤维不仅是纺织工业的重要原料,而且它具有许多其它纤维不能与之媲美优良的特性。但是作为天然蛋白质纤维—羊毛本身并不具有抗菌功能,它的制品往往为细菌提供了生存的“温床”,对人体健康及环境造成一定的威胁。随着人们对时尚的追求,功能性羊毛制品越来越受到人们的喜爱和亲睐。于是赋予天然羊毛纤维抗菌功能就成了当前所面临的一项重要的攻坚任务。我国又是羊毛生产的重要大国,这就为研究更多更好的抗菌羊毛产品奠定了坚实的基础。
     实验首先研究了不同紫外光(UV)辐照时间对羊毛纤维的结构与性能的影响,并对UV辐照羊毛纤维表面的改性机理进行了初步的探讨;然后制备了载银纳米SiO2抗菌剂(SLS)与壳聚糖-载银二氧化硅抗菌剂(CCTS-SLS),对其结构与性能进行了详细讨论;最后以SLS与CCTS-SLS为抗菌功能材料,采用化学接枝的方法制得抗菌羊毛纤维,并对抗菌羊毛纤维结构、性能以及抗菌层形成机理进行了系统的研究。
     采用JSM-6700F型场发射扫描电镜(SEM)观察了样品的形貌;通过JEM-2010型高分辨透射电镜(HRTEM)、Y-2000型X射线衍射仪(XRD)、FTIR1730红外光谱测试仪(IR)和RFS100/S型拉曼光谱仪(FTR)表征了样品的结构;利用LABTAM-8410型等离子体原子发射光谱仪(ICPS)和ESCALABMKⅡ型多功能电子能谱仪(XPS)表征了样品中的银含量;通过DT-40型差热-热重分析仪表征了样品的热性能;采用活菌计数法、最小抑菌浓度法或振荡烧瓶法对各样品的抗菌性能进行了测试。同时还测试了羊毛纤维的热稳定性、力学性能和摩擦性能。
     通过上述研究,主要取得了以下结论:
     (1)随着辐照时间的增加,羊毛纤维结晶度在不断下降,分子结构中无序化程度提高。羊毛纤维的断裂强力、断裂伸长率、断裂强度在不断下降。UV辐照可在羊毛纤维表面形成活性自由基和悬键,并引入许多新的基团,可进行接枝改性。
     (2)制备的SLS抗菌剂,抗菌剂呈球形,其平均粒径约60nm,且分布均匀。SLS抗菌剂具有良好的缓释性能,对大肠杆菌和金黄色葡萄球菌均具有良好的抗菌性能。
     (3)采用最佳工艺制备的SLS抗菌羊毛纤维,表面形成了一层厚约200 nm的抗菌层,抗菌层与羊毛纤维以价键形式结合,使其摩擦性能和抗菌耐洗涤性能提高。在改性过程中,抗菌羊毛纤维分子的有序化程度提高,使其具有良好的力学性能和热稳定性。制备的抗菌羊毛纤维长度较长,细度变细,卷曲回复率和卷曲弹性率高,这些均有利于提高它的纺织加工性能。
     (4)制备的CCTS-SLS抗菌剂,为层状无定形镶嵌结构,具有CTS与SLS两者的分子结构特征,SLS颗粒包裹在了壳聚糖分子层中,所形成的颗粒大小约110nm左右,颗粒的外围被厚约4nm的CTS分子层包覆,并且复合物中的银含量与SLS相似。CCTS-SLS复合物的缓释性能较好,并具有良好的抗菌性能。
     (5) CCTS-SLS-Wool抗菌羊毛纤维,品质良好,手感柔软,颜色与原羊毛纤维颜色接近,并且CCTS-SLS抗菌剂是以价键形式接枝在了羊毛纤维表面,其分子结构的有序化程度与原羊毛接近。它的力学性能、摩擦性能、热稳定性和抗菌耐洗涤性能与原羊毛纤维相比均有提高。
     利用外场诱导方法即UV辐照的方法对天然羊毛纤维进行表面改性,并将纳米抗菌功能基团通过接枝反应,形成化学键结合的纳米抗菌功能材料/纤维界面层,本质上区别于传统的物理吸附,实现了纤维的抗菌功能长效性、高力学性能和低成本,提高了羊毛纤维的应用与功能等级,改善了其可纺性、服用性和功能内涵,使其性价比和附加值得以提升,并克服了传统处理法水溶液排量多、污染大的问题,有利于节能减排和环境保护。提出的天然羊毛纤维表面纳米功能化改性机理,为建立天然纤维/纳米功能材料结合界面结构化学模型奠定了基础,对高性能功能纤维设计与生产起到重要的理论指导作用。
With the development of society and improvement of living standard, the demand for functional textiles is getting higher and higher, which, to some extent, promotes the development of functional textiles. In the future of textile production, functionality will become the decisive factor in development. Natural wool fiber has been widely used for long in human being history. Being lighter, warmer, softer and smoother than other fibers, wool has been known as superior textile material. But natural wool fiber is not antibacterial and wool textiles can provide living space for bacteria, which is harmful to health and environment. Along with their aspiration for new style, people choose functional wool textiles with more favor. Therefore, it becomes an important challenge to make wool fiber antibacterial. Moreover, China is among the main countries for wool production in the world , which provides good opportunities to develop antibacterial wool products.
     In this paper, the effect of ultraviolet (UV) irradiation on the structures and properties of wool fiber were studied. The mechanism of surface modification of wool fiber by UV irradiation was discussed. Silver-loading nano-SiO2 antibacterial agent (SLS) and chitosan crosslinked Ag-loading nano-SiO2 antibacterial agent (CCTS-SLS) were prepared and discussed in detail with respect to their molecular structures and properties. Antibacterial wool fibers were obtained by grafting SLS and CCTS-SLS antibacterial functional materials. The structures and properties of antibacterial wool fibers and the grafting mechanisms of SLS and CCTS-SLS on wool fiber surfaces were systematically investigated.
     The morphologies of the samples were observed by scanning electron microscopy (SEM). The structures of specimens were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and Fourier transformation Raman spectrometry (FTR). The contents of silver were measured with inductively coupled plasma spectrometry (ICPS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of all specimens were tested using alive-bacteria-counting, minimum inhibitory concentration method (MIC), or flask-shaking method. The thermal stability, mechanical properties and friction behaviors were also measured.
     The main conclusions are as follows:
     (1) With the increase of UV irradiation time, the crystallinity of wool fiber was continuously declined, along with the increase in the degree of disorder in the molecular structure. Moreover, the force, tensile strength and elongation were decreased. The some active free radicals and dangling bonds were formed on the surface of wool fiber during UV irradiation along with the introduction of a lot of new groups, which can be used for grafting with antibacterial agents.
     (2) The SLS antibacterial agent was narrowly distributed spherical particles with the mean particle size of 60 nm. They exhibited excellent release property of silver ions and good antibacterial performance against E. coil and S. aureus.
     (3) The antibacterial wool fiber grafted with SLS under optimized conditions had an antibacterial layer of 200 nm in thickness, which was formed on the wool fiber surface by covalent bonding between SLS and wool fiber. The antibacterial wool fiber showed excellent friction performance and wash resistance property. The improved degree of disorder in the molecular structure during the modification resulted in the good mechanical property and thermal stability. The SLS-wool it was longer and thinner with higher crimp recovery and crimp elasticity, which may be more suitable for processing on conventional textile machinery.
     (4) The morphologies of CCTS-SLS particles were amorphous, layered and embedded with mean particle sizes of 110 nm, which had the characteristic FTIR bands occurring in CTS and SLS. SLS particles were coated by CCTS layer with the thickness of 4 nm. In addition, the content of silver in CCTS-SLS was similar to that of SLS. CCTS-SLS had excellent release property and antibacterial performance, the same as SLS.
     (5) The antibacterial wool fiber grafted with CCTS-SLS had good hand-feeling, thus fully exhibiting the excellent characters of wool fibers. The color was closed to that of original wool fiber. CCTS-SLS particles were grafted by covalent bonding on the surface of wool fiber. The degree of order in the molecular structure was similar to that of original wool fiber. Compared with original wool fiber, CCTS-SLS-wool was improved in mechanical, frictional, thermal and antibacterial wash-resistant properties.
     The surface modification of natural wool fiber was realized using the method of UV radiation. Nano-antibacterial functional materials / fiber interfacial layer came into being in the form of chemical bond combination by grafting reaction, which was clearly different from traditional physical adsorption. This kind of antibacterial functionalization shows many advantages. Firstly, it realizes lasting antibacterial effect, excellent mechanical property and low cost; Secondly, it increases the grade of wool fiber in application and function; Thirdly, it improves the spinnability, serviceability and functionality of wool, thus greatly increasing added value. Finally, it prevents the emissions of contaminated aqueous solution in traditional treatment process and therefore conducive to energy saving, emission reduction and environmental protection. The surface functional modification mechanism of natural wool fiber lays the foundation of the interface structural model between natural fiber and nano-function materials, which, plays an important role of theoretical guidance for the design and manufacture of high-performance fibers.
引文
[1]张素梅.天然植物纤维[J].中国化纤, 2004,11: 45-47.
    [2]刘敬来.天然纤维的发展概述[J].黑龙江纺织, 2006, 1: 1-2.
    [3]王希成.生物化学[M].北京:清华大学出版社, 2001: 40.
    [4] Fraser R. D. B, Gillespie J. M., Macrae T. P., et al. Investigation of the relationship of variations in fibers protein composition upon fleece properties and fabric performance [C]. Proc. 7th Int. Wool text. Res. Conf. (2). Tokyo,1986: 36-44.
    [5] Bradbury J. H.. Advances in Protein Chemistry [M]. New York: Academic Press, 1973: 111-211.
    [6] Rippon J. A.. Wool Dyeing[M]. Bradford: Society of Dyers and Colouris, 1992: 1-51.
    [7] Fraser R. D. B., Macrae T. P., Miller A.. Molecular structure ofα-keratin [J]. Nature, 203: 1231-1233.
    [8] Bradbury J. H., Peters D. E.. The chemical composition of wool IX: Separation and analysis of Macrofibrils [J]. Text Res J, 1972, 42: 471-486.
    [9]金郡潮.羊毛织物等离子体表面改性的研究[D].上海:东华大学, 2003.
    [10]朱若英.对环境友好的羊毛表面改性技术的研究[D].天津:天津工业大学, 2003.
    [11] Hearle J. W. S.. A critical review of the structural mechanics of wool hair fibers[J]. Int J Biol Macromol, 2000, 27(2): 123-138.
    [12] Bird C. L.. The theory and practice of wool dyeing [M]. Yorkshire: Society of Dyers and Coloration, 1972: 127.
    [13] Crewther W. G., Dowling O. M., Steinert P. M., et al. Structure of intermediate filaments[J]. Int J Biol Macromol, 1983, 5: 267-274.
    [14] Ziegler K.. Chemistry of Natural Protein Fibers[M]. New York: Plenum Press, 1977: 267.
    [15] Zahn H.. Wool chemistry and processing [R]. Proceedings of the 9th International Wool Textile Research Conference. Italy: Biella,1995.
    [16]姚穆,周锦芳,黄淑珍等.纺织材料学(2)版[M].北京:中国纺织出版社, 2004: 92-140.
    [17] Jaguo-Grodzinski J.. Modification of polymers under heterogeneous conditions[J]. Progress Polymer Science, 1992, 17 (3): 361-415.
    [18]罗延龄.高聚物辐射接枝技术及其应用[J].合成橡胶工业, 1998, (3): 142-145.
    [19]张正国,袁少权,哈鸿飞.棉纤维预辐射接枝苯乙烯的研究[J].辐射研究与辐射工艺学报, 1994, (4): 220-223.
    [20] Chan C.. Polymer surface modification and characterization[M]. Germany : Carl Hanser Verlag, 1994.
    [21] Silva C. J. S. M., Prabaharan M., Georg Gübitz, et al. Treatment of wool fibres with subtilisin and subtilisin-PEG[J]. Enzyme Microb Tech, 2005, 36: 917-922.
    [22] Silva C. J. S. M., Sousa F., Gübitz G., et al. Chemical modifications on proteins using glutaraldehyde[J]. Food Technol Biotechnol, 2004, 42(1): 51-56.
    [23] Nolte H., Bishop D. P., Hocker H.. Effects of proteolytic and lipolytic enzymes on untreated and shrink resist treated[J]. Wool J Text Inst, 1996, 87(1): 212-226.
    [24] Cortez J., Bonner P. L. R., Griffin M.. Application of transglutaminases in the modification of wool textiles[J]. Enzyme Microb Tech, 2004, 34: 64-72.
    [25]王兰兰,张辉,章德发. TiO2溶胶整理羊毛织物的抗紫外线性能研究[J].毛纺科技, 2008, 6: 1-4.
    [26] Suzana J., Vanja K., Georg M., et al. Tyrosinase-catalysed coupling of functional molecules onto protein fibres[J]. Enzyme Microb Tech, 2008, 42: 535-542.
    [27] Kamel M. M., Zawahry El M. M., Ahmed N. S. E., et al. Ultrasonic dyeing of cationized cotton fabric with natural dye, Part 1: Cationization of cotton using Solfix E[J], Ultrasonics Sonochemistry, 2009,16: 243-249.
    [28] Meshram M. W., Patil V. V., Mhaske S. T.,et al. Graft copolymers of starch and its application in textiles[J]. Carbohyd Polym, 2009, 75: 71-78.
    [29] Hae Y. C., Seong O. H., Jung S. L.. Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers[J]. Appl Surf Sci, 2008, 255: 2466-2473.
    [30] Sacak M., Fazll O.. Benzoyl-peroxide-initiated graft copolymerization of poly(ethylene terephthalate) fibers with acrylic acid[J]. J Appl Polym Sci, 1993, (50): 1909-1914.
    [31] Sacak M., Pulat E.. Benzoyl-peroxide-initiated graft copolymerization of poly(ethylene terephthalate) fibers with acrylamide[J]. J Appl Polym Sci, 1989, (38): 539-545.
    [32] Hebeish A., Shalaby S. E., Bayazeed A.M.. Graft polymerization of methyl methacrylate on polyethylene terephthalate) fibers using H2O2 as initiator[J]. J Appl Polym Sci, 1981, (26): 3252-3258.
    [33] Pradhan A. K., Pati N. C., Nayak P. L.. Grafting vinyl monomers onto polyester fibersⅢ. Graft copolymerization of methyl methacrylate onto poly(ethylene terephthalate) using potassium permanganate-oxalic acid redox system[J]. J Appl Polym Sci, 1982, (27): 2131- 2136.
    [34] Bajpai U. D. N., Jain A., Ray S. J.. Grafting of polyacrylamide on to guar gum using K2S2O8 ascorbic acid redox system[J]. Appl Polym Sci, 1990, (39): 2187-2194.
    [35] Kubota H., Murata Y., Ogiwara Y.. Effect of solvent in photo-induced graft copolymerization of vinyl monomers on cellulose[J]. J Polym Sci Polym Chem Ed, 1973, (11): 485-492.
    [36] Seiber R. P., Needles H. L.. Photo-initiated vapor-phase grafting of acrylic monomers onto fibrous substrate in the presence of biacetyl[J]. J App Polym Sci, 1975, (19): 2187-2206.
    [37] Kazunori Y., Hideyo T., Shigeaki T.. Hydrophilic and adhesive properties of polyethylene plates grafted with rophilic monomers[J]. J Appl Polym Sci, 1992, (46): 1065-1085.
    [38]王春霞.常压等离子射流对纺织品表面改性的均匀性和渗透性研究[D].上海:东华大学, 2008.
    [39] Dorota B., Andrzej W., Wodzimierz B.. Selected properties of wool treated by low temperature plasma [J]. Fibers and Textiles in Eastern Europe, 2004, 12 (2): 58-62.
    [40] George A. F. R., Frances A. W.. A study of the influence of structure on the effectiveness of chitosan as an antifelting treatment for wool[J]. J Biotechnol, 2001, 89: 297-304.
    [41] Kan C. W.. Surface characterization of low temperature plasma treated wool[J]. Autex Research J, 2003, (4): 194-215.
    [42]卢可盛.低温常压等离子体处理羊毛改性技术研究[J].上海纺织科技, 2004 ,32 (2): 31-33.
    [43] Kan C. W.,Chan K. W., Marcus Y. C. W.. The possibility of low temperature plasma treated wool fabric for industrial use[J]. Autex Research Journal , 2004 ,4 (1): 37-44.
    [44]王雪燕,陈杰路.等离子体处理代替绢丝脱胶的探讨[J].陕西纺织, 1997, (3): 16-18.
    [45]张著.真丝织物等离子体接枝聚合改性闭[J].纺织学报, 1996,17 (4): 201-203.
    [46]杨彦波译.低温等离子体处理柞蚕丝的物理性能[J].丝绸, 1995, (9): 54-55.
    [47] Ward T. L., Benerito R. R.. Modification of cotton by radio-frequency plasma of ammonia[J]. Textile Res J, 1982, 52: 256.
    [48] Ozdogan E., Saber R., et al. A new approach for dyeability of cotton fabrics by different plasma polymerization[J]. Color Technol, 2002,118: 100-103.
    [49]王雪燕,陈杰路,李尊朝等.低温等离子体处理对竺麻织的深染性研究[J].印染, 1997, 23(4): 59
    [50] Wong K. K., Tao X. M., et al. Low temperature plasma treatment of linen[J]. Textile Res J, 1999, 69(11): 864-855.
    [51]郭士恒,江雪梅,杨建忠.辉光和电晕低温等离子处理对羊毛表面性能的改性研究[J].毛纺科技, 2007, 6: 22-25.
    [52]叶华萍,刘今强,邵建中.低温等离子体表面改性防止蚕丝织物纰裂[J].纺织学报, 2004, 25(6): 14-17.
    [53] Kan C. W., Chan K., Yuen C. W. M., et al. Surface properties of low Temperature treated wool fabrics[J]. J. Mater Process Tech,1998, 83: 180-184.
    [54] Binias B.,Wlochowicz A., Binias W.. Selected properties of wool treated by low temperature plasma[J]. Fibers Text East Eur, 2004, 12: 58-62.
    [55] Yu I., Takeo M., Makoto W., et al. Plasma treatment of silk fabrics for better dyeability[J]. J Photo polym Sci Tech, 2002, 15: 299-306.
    [56] Kan C. W.,Chan K.,Yuen C. W. M., et al. The effect of low temperature plasma on the chrome dyeing of wool fibre[J]. J Mater Process Tech,1998, 82: 122-126.
    [57]邢晓东,王晓工.聚合物表面紫外光接枝技术及应用进展[J].化工进展, 2008, 27(1): 50-57.
    [58]杨小波,詹晓力,陈丰秋.聚丙烯固相接枝聚合及接枝机理研究进展[J].石油化工, 2003, (1): 145-153.
    [59]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社, 2003.
    [60]黄晨,王红,许云辉等.蚕丝织物辐射接枝丙烯酰胺的改性[J].纺织学报, 2008, 29(3): 5-8.
    [61]王会勇,刘瑞芹,谢雷东等.羊毛辐射接枝甲基丙烯酸缩水甘油脂研究[J].辐射研究与辐射工艺学报, 2003, 21(3): 189-192.
    [62]肖晴宇.聚乙烯中空纤维膜紫外光接枝改性研究[D].天津:天津工业大学, 2005.
    [63]邹小明.紫外光接枝聚丙烯(PP)表面改性[D].湖北:湖北工业大学, 2006.
    [64]宁炜.聚合物表面胺化接枝改性的研究[D].北京:北京化工大学, 2006.
    [65]张正东.暗区表面光接枝化学及技术研究[D].北京:北京化工大学, 2006.
    [66]刘瑞芹,谢雷东,姚思德等.真丝绸表面光接枝2-(双甲基胺)乙基甲基丙烯酸酯改性研究[J].辐射研究与辐射工艺学报, 2005, 23(2): 116-117.
    [67]曹书梅.羊毛纤维与丙烯酸酯类单体接枝共聚物活性染料染色[J].毛纺科技, 2000, (3): 33-35.
    [68] Deng J. P., Wang L., Liu L. Y., et al. Developments, new applications of UV-induced surface graft polymerizations[J]. Prog Polym Sci, 2008, doi: 10.1016/j. prog polymsci. 2008.06.002
    [69] Guan J., Gao C., Feng L., Shen J.. Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers[J]. J Appl Polym Sci, 2000, 77: 2505-2512.
    [70] Zhao G., Chen Y., Wang X.. Surface modification of polyethylene film by arylamide graft and alcoholysis for improvement of antithrombogenicity[J]. Appl Surf Sci, 2007, 253: 4709-4714.
    [71] Chen Y., Liu P.. Surface modification of polyethylene by plasma pretreatment and UV-induced graft polymerization for improvement of antithrombogenicity[J]. J Appl Polym Sci, 2004, 93: 2014-2018.
    [72] Wolf R. A.. Unique atmospheric plasma surface pretreatment approach for improving adhesion[J]. J Vinyl Addit Technol, 2007, 13: 87-90.
    [73] Chen K. S., Ku Y. A., Lin H. R., et al. Surface grafting polymerization of N-vinyl-2-pyrrolidone onto a poly(ethylene terephthalate) nonwoven by plasma pretreatment and its antibacterial activities[J]. J Appl Polym Sci, 2006,100: 803-809.
    [74] Chen K. S., Tsai J. C., Chou C. W., et al. Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface[J]. Mater Sci Eng C, 2002, 20: 203-208.
    [75] Ng S. W., Neoh K. G., Wong Y. T., et al. Surface graft copolymerization of viologens on polymeric substrates[J]. Langmuir, 2001, 17: 1766-1772.
    [76] Zhang J., Cui C. Q., Lim T. B., Kang E. T.. Functionalization of self-assembled monolayers on gold by UV-induced graft polymerization[J]. Macromol. Chem Phys, 2000, 201: 1653-1661.
    [77] Chen Y., Kang E. T., Neoh K. G., et al. Surface functionalization of poly(tetrafluoroethylene) films via consecutive graft copolymerization with glycidyl and aniline[J]. J Phys Chem B, 2000, 104: 9171-9178.
    [78] Yu Z. J., Kang E. T., Neoh K. G.. Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers[J]. Polymer, 2002, 43: 4137-4146.
    [79] Zhang M. C., Kang E. T., Neoh K. G., et al. Thermal imidization of poly(amic acid) precursors on glycidyl methacrylate (GMA) graft-polymerized aluminium and copper surfaces[J]. Polymer, 2001, 42:453-462.
    [80]张一甫,胡泽军.苎麻落麻纤维丙烯腈接枝共聚的研究[J].岳阳师范学院学报(自然科学版), 2001, 14(4): 54-56.
    [81]张一甫,张长安,曾竟成等.苎麻落麻纤维MMA接枝共聚的研究[J].材料科学与工程, 2002, 20(4): 824-826.
    [82]朱谱新,杜宗良,郑庆康等.乙烯基单体接枝苎麻的性能[J].纺织科学研究, 2000, (4): 15-20.
    [83]周春晓,陈国强.甲基丙烯酸十二氟庚酯接枝蚕丝纤维的结构[J].纺织学报, 2008, 29(3): 74-77.
    [84]陈贵翠,张立峰,李瑞洲.羊毛低温等离子体处理技术[J].纺织科技进展, 2007, 5: 75-76.
    [85]朱若英,滑均凯,黄故等.紫外线辐射处理的羊毛染色性能研究[J].毛纺科技, 2002, (3): 13-16.
    [86] Yachmenev V. G., Blanchard E. J., Lambert A. H.. Use of ultrasonic energy for intensification of the bio-preparation of greige cotton [J]. Ultrasonics, 2004, (42): 87-91.
    [87] Kamel M. M., Reda M. E. S.. Ultrasonic assisted dyeingⅢ: Dyeing of wool with lac as a natural dye [J]. Dyes Pigments, 2005, 65(2): 103-110.
    [88]费燕娜,邓炳耀,高卫东等.超声波处理对羊毛纤维润湿性的影响[J].纺织学报, 2008, 29(9): 26-29.
    [89]展义臻,王晓芳,赵雪等.超声波对羊毛弱酸性染料染色性能的影响[J].毛纺科技, 2008, (8): 1-5.
    [90]吴艳杰.拉伸羊毛的发展现状[J].江苏纺织, 2005, (11): 41-42.
    [91]张淑洁.拉伸细化羊毛纤维的性能及其产品开发[D].天津:天津工业大学, 2003.
    [92]武达机.再论羊毛拉伸细化的理论与应用创新[J].上海毛麻科技, 2005, 6: 6-9.
    [93]李选刚.细化羊毛的研究-制备、性能与检测[D].苏州:苏州大学, 2004.
    [94]张德良.羊毛纤维细化拉伸方式初探[J].上海纺织科技, 2006, 34(10): 5-7.
    [95]刘冰.溶胶-凝胶技术在羊毛针织物和交联剂在棉针织物抗起毛起球整理中的应用研究[D].上海:东华大学, 2007
    [96]张亚鹏,阎克路,宋风霞.溶胶-凝胶技术在纺织品抗紫外整理中的应用[J].印染, 2004, 7: 21-24.
    [97]迟刚.溶胶凝胶在棉织物抗菌整理中的应用[D].青岛:青岛大学, 2006.
    [98]叶早萍,阎克路.溶胶-凝胶技术在羊毛防毡缩整理中的应用[J].印染, 2006, 7: 11-14.
    [99] Mathltig B., B
    [101] Jeanette M. C., Yao J., Alberto N.. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems[J]. Textile Res J, 2004, 74(10): 887-898.
    [102] Petar J., Dragan J.. Shrinkage properties of peroxide-enzyme-biopolymer treated wool[J]. Textile Res J, 2001,71(11): 948-953.
    [103]赵雪,何瑾馨,展义臻.生物酶在羊毛染整加工中的应用研究[J].毛纺科技, 2008, 11: 9-12.
    [104]李霞,高卫东.酶复合整理改善羊毛织物的防缩性能[J].江南大学学报(自然科学版), 2008, 7(2): 234-238.
    [105] Joao C., Phillip L. R. B., Martin G.. Application of transglutaminases in the modification of wool textiles[J]. Textile Res J, 2004, 34: 64-72.
    [106]沈细周,邓沁兰.凉爽羊毛的研究现状与应用[J].江苏纺织, 2007, 7: 41-42.
    [107]李芝,刘卉敏,武伟红.阻燃羊毛纤维的热性能研究[J].河北大学学报(自然科学版), 2005, 25(4): 386-390.
    [108]葛旭升,李芝,王俊敏.阻燃羊毛纤维的热稳定性研究[J].保定学院学报, 2008, 21(4): 13-15.
    [109]孙建红,徐建中,陈灵智.稀土氧化物溶胶对羊毛纤维的阻燃改性及其热降解[J].河北大学学报(自然科学版), 2008, 28(2): 470-474.
    [110]金鲜英,宋延林,江雷.纳米界面材料在纺织领域的新进展[J].中国纺织, 2004, 11: 162-163.
    [111]宿颖峰,赤峰.高新技术在羊毛改性加工中的应用[J].天津纺织技术, 2005, 43(1): 13-15.
    [112]周璐瑛,易曙晖,王继征等.远红外羊毛制品的研制[J].北京纺织, 1997, 18(2): 52-57.
    [113]王建平.抗菌纤维的最新进展[J].针织工业, 2000, 5: 27-29.
    [114]邱红娟,何叶丽.纺织品抗菌整理的新进展[J].印染, 2005, 5: 51-52.
    [115]邢铁玲.羊毛功能性整理技术的进展[J].毛纺科技, 2005, (2): 31-33.
    [116]周忠清.新型无机固体杀菌剂和抗菌剂[J].现代化工, 1996, 17(7): 20-22.
    [117]黄占杰.无机抗菌剂的发展及应用[J].材料导报, 1999, 13(2): 35-37.
    [118]肖丽平,李临生,李利东.抗菌防腐剂(Ⅲ)天然抗菌防腐剂[J].日用化学工, 2002, 32(2): 78-81.
    [119]李志光,谢文刚,张铭.茶多酚、灵芝等提取物与细菌作用的研究[J].食品科学, 1999, 7: 49-51.
    [120]高向华.银/沸石复合抗菌剂的制备及性能研究[D].山西太原:太原理工大学, 2003.
    [121] Labro M. T.. Antibacterial agents-phagocytes: new concepts for old in immunomodulation[J]. Inter J Antimicrob Ag, 1998, (10): 11-21.
    [122]李炜罡,吕维平,王海滨等.抗菌材料进展,化工新型材料[J]. 2003, 31(3): 7-10.
    [123] Moriyama Y., Imai S.. Ag containing antibacterial ceramics[J]. Ceramics Japan, 1996, 31(7):584-586.
    [124] Oya A.. Antibacterial active carbon fiber for water purification[J]. J Antibact Antifung Agent, 1997, 25: 175-182.
    [125] Mills A., Hunts S. L.. An overview of semiconductor photocatalysis[J]. J Photochem Photobiol A: Chem, 1997, 108: 1-35.
    [126] Jon C. S., Raymond A. S.. Inactivation of phage MSZ by iron-aided titanium dioxide photocatalysis[J]. Appl Environ Microb, 1994, 60(1): 344-347.
    [127] Kayano S., Toshiya W.. Kazuhito H., Studies on photokilling of bacteria on TiO2 thin film[J]. J Photochem Photobiol A: Chem, 2003, 156 (3): 227-233.
    [128] Angela G. R., Gesar P., Nevenka A., et al. Interaction between E.coli inactivation and DBP-precursors-dihydroxybenzene isomers-in the photocatalytic process of drinking-water disinfection with TiO2[J]. J Photochem Photobiol A: Chem, 2001, 139(2): 233-241.
    [129]张昌辉,谢瑜,徐旋.抗菌剂的研究进展[J].化工进展, 2007, 26(9): 1237-1242.
    [130] Yuranova T., Rincon A. G., Bozzi A., et al. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver[J]. J Photochem Photobiol A: Chem, 2003, (161): 27-34.
    [131]郭凤芝,黄玉丽,丛琳.用壳聚糖/纳米TiO2对毛针织物进行功能性整理[J]. 2008, 3: 13-16.
    [132]王炳,张建波,朱平.无机金属离子对羊毛织物的抗菌整理[J].毛纺科技, 2005, (3): 5-8.
    [133] Paola T., Patrizia M., Giuliano F.. Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation[J]. J Mol Struct, 2003, 650: 105–113.
    [134] Giuliano F., Masuhiro T.. Chemical modification of wool fibers with acid anhydrides[J]. J Appl Polym Sci, 1999, 71: 1573.
    [135] Arai T., Freddi G.. Absorption of metal cations by modified B. mori silk and preparation of fabrics with antimicrobial activity[J]. J Appl Polym Sci, 2001, 80: 297.
    [136] Freedi G., Arai T.. Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexs[J]. J Appl Polym Sci, 2001, 82: 3513.
    [137] Bradley R. H., Mathieson I.. Chemical interactions of ultraviolet light with wool fiber surfaces[J]. J Colloid Interf Sci, 1997, 194: 338-343.
    [138] Jan?a J., Czernichowski A.. Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure[J]. Surf and Coat Tech, 1998, 98: 1112-1115.
    [1]朱若英.对环境友好的羊毛表面改性技术研究[D].天津:天津工业大学, 2003.
    [2]罗延龄.高聚物辐射接枝技术及其应用[J].合成橡胶工业, 1998, (3):142-145.
    [3]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社, 2003: 63-80.
    [4]张正国,袁少权,哈鸿飞.棉纤维素预辐射接枝苯乙烯的研究[J].辐射研究与辐射工艺学报, 1994, (4): 220-223.
    [5]黄晨,王红,许云辉等.蚕丝织物辐射接枝丙烯酰胺的改性[J].纺织学报, 2008, 29(3): 5-8.
    [6]刘瑞芹,谢雷东,姚思德等.真丝绸表面光接枝2-(双甲基胺)乙基甲基丙烯酸酯改性研究[J].辐射研究与辐射工艺学报, 2005, 23(2):116-117.
    [7]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社, 2001: 47-50.
    [8] Shao J. Z., Liu J. Q., Zheng J. H., et al. FTIR spectroscopic study of the wool surface modification in permonosulphate/sulphite process[J]. Textile Res J ,2001, 22(5): 285-288.
    [9] Wojciechowska E., W?ochowicz A., Wese?ucha-Birczyńska A.. Application of Fourier-transform infrared and Ramans pectroscopy to study degradation of the wool fiber keratin[J]. J Mol Struct, 1999,511–512: 307–318.
    [10] Li W. X., Liao Q.. Study on the spectroscopic behavior of super-fine wool powder by FT-IR and FT-Roman spectroscopy[J]. J Anal Sci , 2007, 23(5): 519-522.
    [11] Wojciechowska E., Rom M., W?ochowicz A., et al. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment[J]. J Mol Struct, 2004, 704(1-3): 315–321.
    [12] Jordi F., Lourdes C., Meritxell M., et al. X-ray diffraction analysis ofinternal wool lipids[J]. Chem Phys Lipids, 2004,130(2): 159–166.
    [13] Aluigi A., Zoccola M., Vineis C., et al. Study on the structure and properties of wool keratin regenerated from formic acid[J]. Int J Biol Macromol, 2007, 41(3): 266–273.
    [14] Hill R. R., Ghadimi M.. Alkali-promoted yellowing of wool, yellow degradation products from a model for protein-bound cystine[J]. Journal of the Society of Dyers and Colourists, 1996,112(5-6): 148-152.
    [15]蒋冶欣.减少丝光羊毛在染色过程中的损伤和泛黄[D].上海:东华大学, 2000.
    [16]板津敏彦,荣谷悦司.羊毛角蛋白质提取技术[J].纤维加工(日), 1997, 49(11): 26-31.
    [17]张尚德,张汉武.羊毛学[M].西安:陕西科学技术出版社, 1986: 248.
    [18]李龙,李欢意.山羊绒制品工程[M].上海:东华大学出版社, 2004: 19.
    [19] Ludger P., Jeffrey S. C., Robert G. G.. Adsorption of amino-functional polymer particles onto keratin fibres[J]. J Colloid Interface Sci, 1998,198(2): 368-377.
    [20] Ana L. M. H., Carlos V. S., Miguel D. I., et al. Mechanical properties evaluation of new composites with protein biofibers reinforcing poly(methyl methacrylate)[J]. Polym, 2005,46(19): 8233-8238.
    [21] Gerald J. S., Ian J. M., Vincent D.. Phototendering of wool sensitized by naturally occurring polyphenolic dyes[J]. J Photochem Photobio A, 2005,169(2): 147–152.
    [22] Bradley R. H., Mathieson I.. Chemical interactions of ultraviolet light with wool fiber surfaces[J]. J Colloid Interf Sci,1997, 194: 338–343.
    [23] Millington K. R., Church J. S.. The photodegradation of wool keratin II. Proposed mechanisms involving cystine[J]. J Photochem Photobio B, 1997, 39(3): 204-212.
    [24]荆煦瑛,陈式棣,么恩.红外光谱指南[M].天津:天津科学技术出版社, 1992: 81-84.
    [25]董庆年.红外光谱法[M].北京:化学工业出版社, 1979: 155.
    [26] Gerald J. S.. New trends in photobiology(invited review) photodegradation of keratin and other structure proteins[J]. J Photochem Photobio B, 1995, 27(3): 187-198.
    [27]曾红,李建宇,王锡臣.聚合物表面紫外光接枝改性的研究[J].现代化工, 1999, 19(8): 11.
    [28] Zohdy M. H., Naggar A. M. E., Abdallah W. A.. Silk screen printing of some reactive dyes on gamma irradiated wool fabrics [J]. Polym Degrad Stab, 1997, 55(2): 185-189.
    [29] Bracco P., Brunella V., Luda M. P., et al. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation[J]. Polym, 2005, 46(24): 10648-10657.
    [30]牛梅,魏丽乔,王淑花等.纳米抗菌剂/羊毛纤维复合新方法[J].复合材料学报, 2006, 23(1): 124-128.
    [1]黄汉生.日本抗菌、防霉剂的开发与应用近况[J].现代化工, 1997, 18(11): 40-42.
    [2] Jiang S., Wang L., Yu H. J., et al. Preparation of crosslinked polystyrenes with quaternary ammonium and their antibacterial behavior[J]. React Funct Polym, 2005, 62: 209-213.
    [3] Hong I. T., Koo C. H.. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Mater Sci Eng A, 2005, 393(1): 213-222.
    [4] Imazato S., Torii Y., Takatsuka T., et al. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) against bacteria in human carious dentin[J]. J Oral Rehabil, 2001, 28: 314-319.
    [5] Kawashita M., Tsuneyama S., Miyaji F., et al. Antibacterial silver-containing silica glass prepared by sol–gel method[J]. Biomaterials, 2000, 21: 393-398.
    [6] Sepp? L., Korhonen A., Nuutinen A.. Inhibitory effect on S. mutans by fluoride-treated conventional and resin-reinforced glass ionomer cements[J]. Eur J Oral Sci, 1995, 103: 182-185.
    [7] Syafiuddin T., Hisamitsu H., Toko T., et al. In vitro inhibition of caries around a resin composite restoration containing antibacterial filler[J]. Biomaterials, 1997, 18: 1051-1057.
    [8] Tanagawa M., Yoshida K., Matsumoto S., et al. Inhibitory effect of antibacterial resin composite against streptococcus mutans[J]. Caries Res, 1999, 33: 366-371.
    [9] Yamamoto O., Sawai J., Sasamoto T.. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution[J]. Int J of Inorg Mater, 2000, 2: 451-454.
    [10]江山.新型高分子抗菌剂及抗菌材料的研究[D].杭州:浙江大学, 2003.
    [11]赵崇立.国外塑料抗菌剂新产品介绍[J].化工新型材料, 1999, 27(8): 35-36.
    [12] Modak S. M., Fox C. L. J.. Binding of silver sulfadiazine to the cellular components of pseuomonas aeruginosa[J]. Biochem Pharmaco, 1973, (22): 2391-2404.
    [13] Berger T. J., Spadaro J. A., Chapin S. E., et al. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells[J]. Agents Chemother, 1976, (9): 357-358.
    [14] Williams R. L., Doherty P. J., Vince D. G., et al. The biocompatibility of silver[J]. Crit Rev Biocompat, 1989, (5): 221-243.
    [15] Oloffs A., Grosse S. C., Bisson S., et al. Biocompatibility of silver-coated polyurethane catheters and silver-coated dacron material[J]. Biomaterials,1994, (15): 753-758.
    [16] Iwata Y.. The latest trend of inorganic antibacterial agents[J]. Zeolite News Lett, 1996, (2): 8-15.
    [17]季君晖,史维明.抗菌材料[M].北京:化学工业出版社, 2003: 8.
    [18] Oya A.. A series of lectures on practical inorganic antibacterial agents-opening lecture[J]. Antibac Antifungal Agents, 1996, (6): 429-432.
    [19]侯文生.载银4A沸石抗菌剂及载银锌纳米SiO2抗菌纤维的制备、结构与性能的研究[D],太原:太原理工大学, 2007.
    [20] TIC, Ed. Trend of the latest technology judging from Japanese patents: antibacterial and antifungal ceramics (Ⅱ) [P]. Osaka series No: 1014, 1998.
    [21]汤戈,王振家.无机抗菌材料的发展和应用[J].材料科学与工程, 2002, (2): 298.
    [22]山本则幸,加藤秀橱.无机系抗菌剂的特长及应用[J].抗菌抗生剂, 1998, (10): 428-434.
    [23] Noriaki M., Hideo H.. Colloid formation effects on depth profile of implanted Ag in SiO2 glass[J]. Appl Phys Lett, 1993, (63): 2050-2052.
    [24]朱海青.凹凸棒石载铜(银)抗菌剂的研制及性能研究[D].合肥:合肥工业大学大学, 2005.
    [25]王淑花.粘胶纤维表面改性技术及机理的研究[D].太原;太原理工大学, 2008.
    [26] Jeon H. J., Yi S. C., Oh S.. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method[J]. Biomaterials, 2003, 24: 4921-4928.
    [27]王彬.纳米SiO2基无机抗菌剂的研制[D].四川:四川大学, 2005.
    [28]王彬,毛健,侯廷红等.焙烧温度对载Ag多孔SiO2抗菌性能的影响[J].材料开发与应用, 2004, 19(5): 22-25.
    [1]唐增荣.抗菌剂JNS-2000在纺织品上的应用研究[J].印染助剂, 2002, 4: 23-26.
    [2]严玉蓉.聚丙烯超细粉体多功能共混纤维的研究[D].广州:华南理工大学, 2003.
    [3]张军译.服装卫生学[M].北京:轻工业出版社, 1987: 190-191.
    [4]何中琴译.棉纺织品的耐久性防臭整理[J].印染译丛, 1997, 2: 43-44.
    [5]李艳.纳米无机抗菌剂及抗菌织物研究[D].西安:西北大学, 2002.
    [6]王广阔,马建伟,杨英贤.纳米抗菌纺织品的制备技术及其应用前景[J].纺织科技进展, 2004, 6: 1-3.
    [7]李燕飞,安玉山.抗菌剂和抗菌织物加工方法及展望[J].山东纺织科技, 2003, (6): 32-33.
    [8]赵家祥.抑菌织物发展综述[J].产业用纺织品, 2000, (8): 2-3.
    [9]王建平.抗菌纤维的最新进展[J].针织工业, 2000, 5: 27-29.
    [10]邱红娟,何叶丽.纺织品抗菌整理的新进展[J].印染, 2005, 5: 51-52.
    [11]沈春银,章忠秀,盛季生.抗菌纤维的研究进展及发展趋势[J].南通工学院学报, 1999, (3): 33-37.
    [12] Anderson R. L., Berkelman B., Mackel D.C., et al. Investigations into the survival of pseudomonas aeruginosa in poloxamer-iodine[J]. Appl Environ Microbiol,1984, 47(4): 757-762.
    [13]高新方.抗菌纤维与纺织品受到世界各国高度关注[J].新纺织, 2004, 1: 10-12.
    [14]闵洁.无机抗菌剂及其纤维应用[J].合成纤维, 2002, 31(2): 21-24.
    [15]牛梅,魏丽乔,王淑花等.纳米抗菌剂/羊毛纤维复合新方法[J].复合材料学报, 2006, 23(1): 124-128.
    [16]邱玮丽,马晓华,杨清河等.用衰减全反射红外光谱研究纳米SiO2粒子在复合涂层中的迁移现象[J].复合材料学报, 2004, 21(4): 54-57.
    [17]李莹,于建,郭朝霞.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响[J].高分子学报, 2003, 2: 235-240.
    [18] Jeffrey E., Plowman. Proteomic database of wool components [J]. J Chromatogr B, 2003, 787(1): 63–76.
    [19] Pielesz A., Freeman H. S., Wese?ucha-Birczyńska A., et al. Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies [J]. J Mol Struct, 2003, 651–653: 405–418.
    [20] Max F., Donald L., Emory M., et al. The orientation of the-helices in-keratin fibres [J]. Int J Biol Macromol, 2003, 33(1-3): 149–152.
    [21] Hou X. L., Wang S. Y.. Study on structures of cashmere and wool fibers by confocal laser raman microscopy[J]. Wool Spinning Technology, 2004, 1: 38-41.
    [22] Xu B. S., Niu M., Wei L. Q., et al. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation[J]. J Photoch Photobio A, 2007, 188: 98-105.
    [23] Shao J. Z., Liu J. Q., Zheng J. H., et al. FTIR spectroscopic study of the wool surface modification in permonosulphate/sulphite process[J]. Textile Res J, 2001, 22(5): 285-288.
    [24] Li W. X., Liao Q.. Study on the spectroscopic behavior of super-fine wool powder by FT-IR and FT-Roman spectroscopy[J]. J Anal Sci , 2007, 23(5): 519-522.
    [25] El?bieta W., Monika R., Andrzej W., et al. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment[J]. J Mol Struct, 2004, 704(1-3): 315–321.
    [26]姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京:中国纺织出版社, 2004: 125-135.
    [27]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社, 2001: 49.
    [28]李芝,刘卉敏,武伟红等.阻燃羊毛纤维的热性能研究[J].河北大学学报(自然科学版), 2005, 25(4): 386-390.
    [29] Popescu C., Segal E., Iditoiu C.. A kinetic model for the thermal decomposition of wool [J]. Thermochimica Acta, 1995, (256): 419-427.
    [30] Xu W. L., Cui W. G., Li W. B., et al. Development and characterizations of super-fine wool powder [J]. Powder Technol, 2004, (140): 136-140.
    [31] Tian C. M., Shi Z. H., Zhang H. Y., et al. Study on the thermal stability of wool treated with flame-retardant reagents[J]. Thermochim Acta, 1995, 284: 435-439.
    [1]黄梅芳.壳聚糖接枝共聚物的合成及其功能化自组装研究[D].合肥:中国科学技术大学, 2006.
    [2] Tokura S., Ueno K., Miyazaki S., et al. Molecular weight dependent antimicrobial activity of chitosan[J]. Macromol. Symp., 1997, 120: 1-9.
    [3]赵婷.冠醚交联壳聚糖-纳米银分子组装抗菌材料的研究[D].四川:四川大学, 2006.
    [4]俞继华,冯才旺,唐有根.甲壳素和壳聚糖的化学改性及其应用[J].广西化工, 1997, 26(3): 28-32.
    [5] Hirano S., Midorikawa T.. Novel Method for the preparation of N-acylchitosanfiber and N-acylchitosan-cellulose fiber [J]. Biomaterial, 1998, (1-3): 293-297.
    [6]蒋玉湘,李鹏程.壳聚糖硫酸酯制备方法[J].海洋科学, 2004, 28(6): 75-77.
    [7]郭开宇,赵谋明.甲壳素/壳聚糖的研究进展及其在食品工业中的应用[J].食品发酵工业, 2001, 26(1): 59-64.
    [8] Garolan C. A., Blair H. S., Allen S. J., et al. N,O-carboxymethyl chitosan, a water soluble derivativeand potential‘Green’food preservative[J]. Chem Eng Res Des,1991,69(3): 195-196.
    [9]崔毅,杨霞等.羧甲基壳聚糖的合成和光谱研究[J].光谱实验室, 2002,19 (6): 850-852.
    [10]胡新婷.壳聚糖及其衍生物的抑菌性能评价[D].西安:西安建筑科技大学, 2006.
    [11]王晓红,马建标.甲壳素、壳聚糖及其衍生物的应用[J].功能高分子学报, 1999, 12 (2): 197-212.
    [12]许晨,卢灿辉.壳聚糖季铵盐的合成及结构表征[J].功能高分子学报, 1997, 10 (1): 52-55.
    [13]钟婧,洪艳,陈勇.壳聚糖季铵盐的最新研究进展[J].中国组织工程研究与临床康复, 2008, 12(6): 1115-1118.
    [14] Singh D. K., Ray A. R.. Graft Copolymerization of 2-hydroxyethylmetha crylate onto chitosan films and their blood compatibility[J]. J Appl Polym Sci, 1994, 53(8): 1152-1121.
    [15]彭长宏,汪玉庭等.接枝羧基壳聚糖的合成及其对重金属离子的吸附性能[J].环境科学, 1998, 19(5): 29-33.
    [16]姜建生,钱沙华等.交联壳聚糖在硒的形态分析中的应用研究[J].光谱学和光谱分析, 1999, 19(1): 75-77.
    [17]谭淑英,汪玉庭,程格.交联壳聚糖乙酸酯冠醚对金属离子的吸附性能研究[J].环境科学, 1998, 17(6): 569-575.
    [18] Teixeira M. A., Patterson W. T., Dunn E. J., et al. Assessment of chitosan gels for the controlledrelease of agrochemical [J]. Ind Eng Chem Res, 1990, (29): 1205-1209.
    [19] Khairoun I., Deriessens F. C. M., Boltong M. G., et al. Addition of cohesion promoters to calcium phosphate cements [J]. Biomaterials,1999, 20(4): 393-398.
    [20]方波,宋道运,陈鸿雁等.微球形壳聚糖胺基吸附剂的制备及性能[J].化工科技, 2000, 8(3): 20-23.
    [21]卢娜.壳聚糖抗菌整理精纺呢绒的研究[D].苏州:江南大学, 2006.
    [22]陈维国,关立平.壳聚糖处理羊毛的染色性能研究[J].纺织学报,1999, 20(5): 39-42.
    [23]张子涛,陈东辉.壳聚糖在毛纺织工业中的应用[J].毛纺科技, 2001, (3): 27-29.
    [24] Yen M. S.. Application of chitosan/nonionci surfactant mixture in reactive dyes for dyeing wool fabrics[J]. J Appl Polym Sci, 2001, (80): 2859-2864.
    [25]尤克非,章忠秀,杨静新.壳聚糖处理羊毛织物用M型活性染料染色工艺探讨[J].南通工学院学报, 2003, 2(1): 10-14.
    [26]周文常,汪南方.壳聚糖处理对羊毛纤维染色性能的影响[J].毛纺科技, 2007, (10): 14-18.
    [27]季莉,施亦东,陈衍夏等.环保型羊毛防毡缩整理[J].毛纺科技, 2004, (6): 15-18.
    [28]黄玉丽,王宪迎,王树兰.羊毛生物法防毡缩技术的研究[J].印染, 2004, (6): 1-3.
    [29]侯文生,载银4A沸石抗菌剂及载银锌纳米SiO2抗菌纤维的制备、结构与性能的研究[D].太原:太原理工大学, 2007.
    [30] Yuan Q., Venkatasubramanian R., Hein S., et al. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer[J]. Acta Biomater, 2008, 4(4): 1024–1037.
    [31] Papadimitriou S., Bikiaris D., Avgoustakis K., et al. Chitosan nanoparticles loaded with dorzolamide and pramipexole[J]. Carbohydr Polym , 2008, 73(1): 44–54.
    [32] Zhang Y., Hou W. S., Wei L. Q., et al. Nano-SiO2 coated and modif ied by Al(OH)3 / Neopelex[J]. Mater Rev , 2006, 20(5): 670-672.
    [33]袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能[J].高分子材料科学与工程, 2004, 20(1): 51-55.
    [34] Wu Y., Zheng Y. L., Yang W. L., et al. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer[J]. Carbohydr Polym, 2005, 59(2): 165–171.
    [35]张苏敏.壳聚糖金属配合物与壳聚糖衍生物的合成及应用研究[D].西安:西北大学, 2005.
    [36]聂雪.改性壳聚糖金属螯合物的合成及电催化性能研究[D].长沙:中南大学, 2005.
    [37]胡道道.壳聚糖固定化希夫碱配合物研究[D].西安:西北大学, 2001.
    [38] Rungby J., Ellermann E. S., Danscher G.. Effects of selenium cultured macrophages [J]. Arch Toxicol, 1987, 61: 40-45.
    [39] Webster D. A., Spadaro A. J., Becker R. U., et al. Silver and trentment of chronic ostermyelitis[J]. Clin Orthop Rel Res, 1981, 161: 105-114.
    [40] Choi B. K., Kim K. Y., Yoo Y. J., et al. In vitro antimicrobial activity of a chitooligosaccharide mixture against actinobacillus actinomycetemcomitans and streptococcus mutans [J]. Int J Antimicrob Agents, 2001,18(6): 553–557.
    [41] Hu S. G., Jou C. H., Yang M. C.. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxy-valeric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid[J]. Biomaterials , 2003, 24(16): 2685–2693.
    [42] Shi Z. L., Neoh K. G., Kang E. T., et al. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles[J]. Biomaterials, 2006, 27(11): 2440–2449.
    [1]朱若英.对环境友好的羊毛表面改性技术的研究[D].天津:天津工业大学, 2003.
    [2]侯秀良.山羊绒纤维结构与热学性能研究[D].上海:东华大学, 2002.
    [3]夏朝红,戴奇,房韦等.几种多糖的红外光谱研究[J].武汉理工大学学报, 2007, 29(1): 45-47.
    [4] Ye C. H.. Adsorption performance on As (Ⅲ) with cross-linked chitosan[J]. J Zhangzhou Technical Institute, 2008 ,10(2): 19-22.
    [5] Baroni P., Vieira R. S., Meneghetti E., et al. Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes[J]. J Hazard Mater, 2008,152(3): 1155–1163.
    [6] Chen Y., Liu Y. F., Tan H. M., et al. Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers[J]. Carbohyd Polym, 2009, 75: 287-292.
    [7] Hamoudi A., Khouchaf L., Depecker C., et al. Microstructural evolution of amorphous silica following alkali-silica reaction[J]. J Non-Cryst Solids, 2008, 354 (45-46): 5074–5078.
    [8] Zhang Y., Hou W. S., Wei L. Q., et al. Nano-SiO2 Coated and Modif ied by Al(OH)3 / Neopelex[J]. Mater Rev, 2006, 20(5): 670-672.
    [9]牛梅,魏丽乔,王淑花等.纳米抗菌剂/羊毛纤维复合新方法[J].复合材料学报, 2006, 23(1): 124-128.
    [10] Xu B. S., Niu M., Wei L. Q., et al. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation[J]. J Photoch Photobio A, 2007, 188: 98-105.
    [11]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社, 2001: 49.
    [12]李芝,刘卉敏,武伟红等.阻燃羊毛纤维的热性能研究[J].河北大学学报(自然科学版), 2005, 25(4): 386-390.
    [13] Tian C. M., Shi Z. H., Zhang H. Y., et al. Study on the thermal stability of wool treated with flame-retardant reagents[J]. Thermochim Acta,1995, 284: 435-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700