用户名: 密码: 验证码:
东海陆架细颗粒沉积物组成分布特征及其物源指示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物由源到汇的搬运过程是整个地球物质循环的一个重要环节;在这一过程中,载有当时主要地质历史事件信息的沉积物汇入海洋;但因受到复杂的海洋环境的改造以及人类活动的影响,这些信息的表现形式可能已经发生了改变。因此,如何反演上述地质历史进程、预测其发展变化,成为海洋地质学研究的重要内容。
     本文通过对长江、黄河、钱塘江、瓯江和闽江等5条中国东部入海河流沉积物稀土元素(REE),以及东海陆架表层细颗粒沉积物中粘土矿物、元素组成等的综合研究,借助数学统计,分析探讨了陆架区细颗粒沉积的物质来源、现代长江入海沉积物在东海陆架区的影响范围,以及由源到汇输运过程中沉积物示踪标记数值改变等问题。
     长江口沉积物REE在<2μm和2-31μm粒级中较富集,但全岩REE总量(ΣREE)在数值上受物质组成占优的2-31μm粒级控制;因粉砂对水动力环境的反映最为敏感,在输运过程中该粒级组成不稳定即可引起全岩REE含量的变化。全岩REE含量在河口附近较高,在东海陆架区由岸向海有减小的趋势,轻重稀土比值自28°N向南有增大的趋势。在长江口和东海内陆架,水动力对沉积物的作用可能对REE含量空间分布模式的形成起着重要作用。
     长江、黄河等五条河流沉积物的ΣREE、轻重稀土含量比值(L/HREE)等参数在数值分布上有所不同。但陆架复杂的水动力环境可造成砂粒级沉积物中轻重矿物分异、粉砂与粘土粒级间级配调整,并由此引起沉积物中REE含量的数值变化。此时,单由砂、粉砂等较大粒级区间内REE含量的分布已经不能准确判断沉积物物源的改变。在长期稳定的陆架沉积环境下,借助沉积物输运模型,有可能解决因水动力因素造成的REE分布变化的问题。
     东海陆架区未能发现在数值上绝对不变的示踪标记物,而引起示踪指标变化的决定性因素尚未明确。因此,本文采用前人研究中可以明显区分沉积物河流来源的指标,借助统计学中聚类和判别分析方法定性地判断东海陆架区沉积物常、微量元素和粘土矿物的可能物源。
     根据四种主要粘土矿物相对含量与细颗粒沉积物微量元素的构成特征,推断研究区表层类长江细颗粒物质主要为现代长江入海沉积物;它们主要分布在东海陆架中、西部区域,在中部可以跨越123°E向东继续延伸,在北部可以达到外陆架的东部边缘。研究区东侧、东海外陆架边缘表层细颗粒沉积物的微量元素构成与现代长江沉积物存在较大差异,具有类黄河沉积物的性质,可能是在更新世冰期干冷气候下形成的产物与现代河流入海细颗粒的混合物。
It is an important task to analyse the change of sediment properties during transportation from rivers to marine settings. Total of 146 sediment samples were collected from the East China Sea Shelf (ECSS) and five rivers, including Huanghe River, Changjiang River, Qiantang River, Ou River and Min River. The sediment grain-size and the contents of rare earth elements (REE) were measured with laser particle size analyzer and ICP-MS respectively. Results show that absolute REE content (ΣREE) and the ratio of LREE (light REE)/HREE (heavy REE) are different in the sediments between rivers. There are higher REE contents in <2μm and 2-31μm fractions in Changjiang Estuary surface sediments, and the bulk sediment REE contents are dominated by the value of the advantage size fractions. In the study area, absolute REE contents of sediments are higher near the estuaries, and it trend downward in seaward direction on the inner shelf of East China Sea. The LREE/HREE ratio has a tendency of increase southward from 28°N, whilst hydrodynamic conditions dominant the spacial distributions of the surficial sediment’s REE parameters. In some cases, the current flows tend to remove the coarser light grains from initial populations, whilst deposit the finer heavy mineral grains. In most situations, the currents will change the ratio of sediment constituents, for example between silts and clays. As a result, the various values of absolute REE content or LREE/HREE ratio in different bulk sediments arose from the change of size-fractions, rather than represent their different sources. Under the long-term stable hydrodynamic environment i.e. the East China Sea Shelf, new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.
     About 260 surface fine-grained (<31μm and 2μm, mainly) sediment samples were collected from ECSS, and measured with ICP-MS, ICP-OES and X-Ray Diffraction. Similar to the bulk sediments, those fingerprints, i.e. clay minerals, major elements and trace elements in the surface fine-grained sediments of the ECSS, are variable in spacial distributions. By now, we haven’t found the absolute stable numerical fingerprints and the reasons of changing. Therefore, we choose the indicators (e.g. clay minerals and trace elements) which can discriminate different river sediments, and use the statistical Clustering and Discriminant Analyses to judge the source of ECSS sediments qualitatively.
     According to clustering analysis results based on four main clay minerals and trace elements, we conclude that the <31μm fractions sediments of the Changjiang-Like mainly distribute in the central and western regions of ECSS, and they come from modern Changjiang River; the fine-grained sediments in southeastern part of ECSS might originate from the Yellow River, or from the relict sediments formed in dry and cold climates such as Pleistocene Ice Age and then mixed with fine modern riverine sediments under marine hydrodynamic processes.
引文
[1]李铁刚,曹奇原,李安春,秦蕴珊,从源到汇:大陆边缘的沉积作用[J].地球科学进展, 2003, 18(5): 713-721.
    [2]高抒,海洋沉积物动力学的示踪物方法[J].沉积学报, 2003, 21(1): 61-65.
    [3] Gao, S., and Collins, M., Modelling Exchange of Natural Trace Sediments between an Estuary and Adjacent Continental shelf [J]. Journal of Sedimentary Petrology, 1992, 62(1): 35-40.
    [4] Owens, P.N., Walling, D.E., and Leeks, G.J.L., Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model. in: I.D.L. Foster, (Ed.), Tracers in Geomorphology, John Wiley & Sons Ltd., 2000, 291-308.
    [5]高抒,浅海细颗粒沉积物通量与循环过程[J].世界科技研究与发展, 2000, 22(5): 73-77.
    [6]程鹏,北黄海细颗粒物质的沉积特征与输运过程,博士学位论文,中国科学院海洋研究所,青岛, 2000.
    [7] Dronkers, J., and Miltenburg, A.G., Fine sediment deposits in shelf seas [J]. Journal of Marine System, 1996, 7: 119-131.
    [8] Waterl, S., The need for a better characterization of a sediment commonly called "mud" [J]. Geo-Marine Letters, 1991, 11: 110-112.
    [9]范德江,杨作升,孙效功,张东奇,郭志刚,东海陆架北部长江、黄河沉积物影响范围的定量估算[J].青岛海洋大学学报, 2002, 32(5): 748-756.
    [10] Cullers, R.L., Barrett, T., Carlson, R., and Robinson, B., Rare-earth element and mineralogic changes in Holoene soil and stream sediment: a case study in the wet mountains, Colorado, U.S.A. [J]. Chemical Geology, 1987, 63: 275-297.
    [11]赵一阳,鄢明才,中国浅海沉积物地球化学[M],北京:科学出版社, 1994.
    [12] Yang, S.Y., Jung, H.S., Choi, M.S., and Li, C.X., The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments [J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419.
    [13] Zhang, C., Wang, L., Li, G., Dong, S., Yang, J., and Wang, X., Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China [J]. Applied Geochemistry, 2002, 17(1): 59-68.
    [14] Yang, S.Y., Li, C.X., Jung, H.S., and Lee, H.J., Discrimination of geochemicalcompositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China [J]. Marine Geology, 2002, 186: 229-241.
    [15] Yang, S.Y., Jung, H.S., and Li, C.X., Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments [J]. Sedimentary Geology, 2004, 164: 19-34.
    [16]秦蕴珊,赵一阳,陈丽蓉,东海地质[M],北京:科学出版社, 1987, p1-11.
    [17]李乃胜,赵松龄,鲍·瓦西里耶夫,西北太平洋边缘海地质[M],哈尔滨:黑龙江教育出版社, 2000, p14-15.
    [18]蓝先洪,晚更新世末期陆架的古环境研究[J].海洋地质动态, 1995(5): 6-8.
    [19]金翔龙,东海海洋地质,海洋出版社,北京, 1992, p1-191.
    [20]李凤岐,苏育嵩,海洋水团分析[M],青岛:青岛海洋出版社, 2000.
    [21]许东禹,中国近海地质[M],北京:地质出版社, 1997, p123-130.
    [22]秦蕴珊,黄海地质[M],北京:海洋出版社, 1989: 97-99.
    [23]刘锡清,关于中国近海陆架的残留沉积问题.许东禹(编辑),中国近海地质,地质出版社,北京, 1997, 123-130.
    [24]刘振夏等,东海陆架的古河道和古三角洲[J].海洋地质与第四纪地质, 2000, 20(1): 9-14.
    [25] Milliman, J.D., and Meade, R.H., World-wide delivery of river sediment to the oceans [J]. Journal of Geology, 1983, 91(1): 1-21.
    [26]程天文,赵楚年,我国主要河流入海径流量、输沙量及对沿岸的影响[J].海洋学报, 1985, 7(4): 460-471.
    [27] Saito, Y., and Yang, Z., Historical changes of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea, Proceedings of international symposium on global fluxs of carbon and its related substances in the coastal sea-ocean atmosphere system, M&J International, Yokohama, 1994, 7-12.
    [28] Saito, Y., Yang, Z., and Hori, K., The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene [J]. Geomorphology, 2001, 41(2-3): 219-231.
    [29] DeMaster, D.J., McKee, B.A., Nittrouer, C.A., Jiangchu, Q., and Guodong, C.,Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea [J]. Continental Shelf Research, 1985, 4(1-2): 143-158.
    [30] Milliman, J.D., Beardsley, R.C., Zuo-sheng, Y., and Limeburner, R., Modern Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms [J]. Continental Shelf Research, 1985, 4(1-2): 175-188.
    [31]郭志刚,杨作升,曲艳慧,范德江,东海陆架泥质区沉积地球化学比较研究[J].沉积学报, 2000.
    [32]郭志刚,杨作升,陈致林,毛登,东海陆架泥质区沉积有机质的物源分析[J].地球化学, 2001, 30(5): 416-424.
    [33] Milliman, J.D., Shen, H.T., Yang, Z.S., and Heade, R.H., Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf [J]. Continental Shelf Research, 1985, 4(1/2): 33-45.
    [34] Liu, J., Zhu, R., and Li, G., Rock magnetic properties of the fine-grained sediment on the outer shelf of the East China Sea: implication for provenance [J]. Marine Geology, 2003, 193(3-4): 195-206.
    [35]金翔龙,东海海洋地质[M],北京:海洋出版社, 1992, p196-215.
    [36] Beardsley, R.C., Limeburner, R., Yu, H., and Cannon, G.A., Discharge of the Changjiang (Yangtze River) into the East China Sea [J]. Continental Shelf Research, 1985, 4(1-2): 57-76.
    [37] Sternberg, R.W., Larsen, L.H., and Miao, Y.T., Tidally driven sediment transport on the East China Sea continental shelf [J]. Continental Shelf Research, 1985, 4(1-2): 105-120.
    [38] Nittrouer, C.A., DeMaster, D.J., and McKee, B.A., Fine-scale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea [J]. Marine Geology, 1984, 61(1): 13-24.
    [39] Zhang, J., Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean [J]. Continental Shelf Research, 1999, 19(12): 1521-1543.
    [40] Li, C.X., Zhang, J.Q., Fan, D.D., and Deng, B., Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China [J]. Marine Geology, 2001, 173: 97-120.
    [41]高抒,全球变化中的浅海沉积作用与物理环境演化——以渤、黄、东海区域为例[J].地学前缘, 2002, 9(2): 329-335.
    [42]季福武,东海外陆架Q43柱样沉积物稀土元素地球化学特征及其物源示踪意义,硕士学位论文,青岛海洋大学, 2003.
    [43]杨作升,黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J].海洋与湖沼, 1988, 19(4): 336-346.
    [44]孙白云,黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质, 1990, 10(3): 23-34.
    [45]杨守业,李从先,朱金初,张文兰,长江与黄河沉积物中磁铁矿成分标型意义[J].地球化学, 2000, 29(5): 480-484.
    [46]屈翠辉,郑建勋,杨绍晋等,黄河、长江、珠江下游控制站悬浮物的化学成分及其制约因素的研究[J].科学通报, 1984, 17: 1063-1066.
    [47] Zhang, J., Huang, W.W., Liu, M.G., Gu, Y.Q., and Gu, Z.Y., Element concentration and partitioning of loess in the Huanghe (Yellow River) drainage basin, North China [J]. Chemical Geology, 1990, 89(1-2): 189-199.
    [48] Zhang, J., Huang, W.W., Liu, M.G., and Zhou, Q., Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang) [J]. Journal of Geophysical Research, 1990, 95(C8): 13,227-13,288.
    [49]赵一阳,鄢明才,黄河、长江、中国浅海沉积物化学元素丰度比较[J].科学通报, 1992, 13: 1202-1204.
    [50] Kunze, G.W., Anomalies in the ethylene glycol solvation technique used in X-ray diffraction [J]. Clay and clay Minerals, 1954, 3: 88-93.
    [51] Pierce, J.W., and Siegel, F.R., Quantification in clay mineral studies of sediments and sedimentary rocks [J]. Journal of Sedimentary Petrology, 1969, 39(1): 187-193.
    [52] Biscaye, P.E., Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin, 1965, 76: 803-832.
    [53] Cook, H.E., Johnson, P.D., Matti, J.C., and Zemmels, I., Methods of Sample Preparation and X-Ray Diffraction Data Analysis, X-Ray Minerology Laboratory, Deep Sea Drilling Project, University Of California, Riverside [J]. Initial Reports of the DSDP 1975, 28: 999-1007.
    [54] Caitcheon, G.G., The significance of various sediment magnetic mineral fractions for tracing sediment sources in Killimicat Creek [J]. Catena, 1998, 32: 131-142.
    [55] Wall, G.J., and Wilding, L.P., Mineralogy and related parameters of fluvial suspended sediments in northwestern Ohio [J]. Journal of Environmental Quality, 1976, 5: 168-173.
    [56] Oldfield, F., Rummery, T.A., Thompson, R., and Walling, D.E., Identification of suspended sediment sources by means of mineral magnetic measurements: some preliminary results [J]. Water Resources Research, 1979, 15: 211-219.
    [57] Peart, M.R., and Walling, D.E., Techniques for establishing suspended sediment sources in two drainage basins in Devon, UK: a comparative assessment, Sediment Budgets, IAHS Press, Wallingford, 1988, 269-279.
    [58] Foster, I.D.L., and Walling, D.E., Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years [J]. Hydrological Sciences Journal, 1994, 39: 347-368.
    [59] He, Q., and Owens, P.N., Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach. in: I.D.L. Foster, A.M. Gurnell, and B.W. Webb, (Eds.), Sediment and Water Quality in River Catchment, John Wiley, Chichester, 1995, 207-227.
    [60] Owens, P.N., Walling, D.E., He, Q., Shanahan, J., and Foster, I.D.L., The use of caesium-137 measurements to establish a sediment budget for the Start catchment, Devon, UK [J]. Hydrological Sciences Journal, 1997, 42: 405-423.
    [61] Walden, J., Slattery, M.C., and Burt, T.P., Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis [J]. Journal of Hydrology, 1997, 202: 353-372.
    [62] Wallbrink, P.J., Murray, A.S., Olley, J.M., and Olive, L.J., Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using 137Cs and 210Pb [J]. Water Resources Research, 1998, 34: 879-887.
    [63] Freydier, R., Michard, A., Lange, G. D., and Thomson, J., Nd isotopic compositions of Eastern Mediterranean sediments: tracers of the Nile influence during sapropel S1 formation? [J]. Marine Geology, 2001, 177:45-62.
    [64] Naidu, A.S., M.W., H., Mowatt, T.C., and Wajda, W., Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic [J]. Marine Geology, 1995, 127: 87-104.
    [65] Nigam, R., Foraminiferal assemblages and their use as indicators of sediment movement: a study in the shelf region off Navapur, India [J]. Continental Shelf Research, 1986, 5(4): 421-430.
    [66] Wang, P., and Murray, J.W., The use of foraminifera as indicators of tidal effects in estuarine deposits [J]. Marine Geology, 1983, 51: 239-250.
    [67] Gao, S., and Collins, M., Net sand transport direction in a tidal inlet, using foraminiferal tests as natural tracers [J]. Estuary, Coastal and Shelf Science, 1995, 40: 681-697.
    [68] Boucsein, B., and Stein, R., Particulate organic matter in surface sediments of the Laptev Sea (Arctic Ocean): application of maceral analysis as organic-carbon-source indicator [J]. Marine Geology, 2000, 162: 573-586.
    [69] Graham, I.J., Glasby, G.P., and Churchman, G.J., Provenance of the detrital component of deep-sea sediments from the SW Pacific Ocean based on mineralogy, geochemistry and Sr isotopic composition [J]. Marine Geology, 1997, 140: 75-96.
    [70] Parra, M., Faugeres, J.C., Grousset, F., and Pujol, C., Sr-Nd isotopes as tracers of fine-grained detrital sediments: the South-Barbados accretionary prism during the last 150 kyr [J]. Marine Geology, 1997, 136: 225-243.
    [71] Kasten, S., Glasby, G.P., Schulz, H.D., Friedrich, G., and Andreev, S.I., Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow [J]. Marine Geology, 1998, 146: 33-52.
    [72] Krom, M.D., Cliff, R.A., Eijsink, L.M., Herut, B., and Chester, R., The characterization of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes [J]. Marine Geology, 1999, 155: 319-330.
    [73] Krom, M.D., Michard, A., Cliff, R.A., and Strohle, K., Sources of sediment to the Ionian Sea and western Levantine basin of the Eastern Mediterranean during S-1 sapropel times [J]. Marine Geology, 1999, 160: 45-61.
    [74] Fagel, N., Robert, C., Preda, M., and Thorez, J., Smectite composition as a tracerof deep circulation: the case of the Northern North Atlantic [J]. Marine Geology, 2001, 172: 309-320.
    [75]周晓静,浙江沿岸粘土矿物与长江物质示踪标记的初步研究,硕士学位论文,海洋地质,中国科学院海洋研究所,青岛, 2003.
    [76]周晓静,高抒,贾建军,长江粘土矿物示踪标记稳定性的初步研究[J].海洋与湖沼2003, 34(6): 683-692.
    [77] Ishiga, H., and Dozen, K., Geochemical indications of provenance change as recorded in Miocene shales: opening of the Japan Sea, San’in region, southwest Japan [J]. Marine Geology, 1997, 144: 211-228.
    [78] McManus, J., Grain size determination and interpretation. in: M. Tucker, (Ed.), Techniques in Sedimentology, Wiley Blackwell, 1988, 63-85.
    [79] Shepard, F.P., Nomenclature based on sand-silt-clay rations [J]. Journal of sediment petrology, 1954, 24: 151-158.
    [80] Kraus, M.J., Basn-scale changes in floodplain paleosols: implications for interpreting alluvial architecture [J]. Journal of sedimentary research, 2002 72(4): 500-509.
    [81] Setti, M., Marinoni, L., and López-Galindo, A., Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica [J]. Clay Minerals, 2004, 39(4): 405-421.
    [82] Sinha, R., Bhattacharjee, P.S., Sangode, S.J., Gibling, M.R., Tandon, S.K., Jain, M., and Godfrey-Smith, D., Valley and interfluve sediments in the Southern Ganga plains, India: Exploring facies and magnetic signatures [J]. Sedimentary Geology, 2007, 201(3-4): 386-411.
    [83] Robbins, J.A., and N, E.D., Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs [J]. Geochimica et Cosmochimica Acta, 1975, 39: 285-304.
    [84]邓兵,中国东部海区沉积物元素地球化学特征及沉积物、有机碳埋藏通量的初步研究,博士后出站报告,华东师范大学,上海, 2005.
    [85] Konert, M., and Vandenberghe, J., Comparison of laser grain-size analysis with pipette and sieve analysis:a solution for the underestimation of the clay fraction [J]. Sedimentology, 1997, 44: 523-535.
    [86]贾建军,高抒,薛允传,图解法与矩法沉积物粒度参数的对比[J].海洋与湖沼, 2002, 33(6): 577-582.
    [87] Liu, J.P., Li, A.C., Xu, K.H., Velozzi, D.M., Yang, Z.S., Milliman, J.D., and DeMaster, D.J., Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156.
    [88]杨守业,李从先,长江与黄河沉积物REE地球化学及示踪作用[J].地球化学, 1999, 28(4): 374-380.
    [89]秦蕴珊,赵一阳,陈丽蓉,赵松龄,东海地质[M],北京:科学出版社, 1987, p29-31.
    [90] Nesbitt, H.W., and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. nature, 1982, 299: 715-717.
    [91] Wei, G., Liu, Y., Li, X.-h., Shao, L., and Fang, D., Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 331-342.
    [92]杨守业, Jung, H.S.,李从先, Lim, D.I.,黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J].地球化学, 2004, 33(1): 99-105.
    [93] Zhang, J., and Zhang, X., Composition and Provenance of Sandstones and Siltstones in Paleogene, Huimin Depression, Bohai Bay Basin, Eastern China [J]. Journal of China University of Geosciences, 2008, 19(3): 250-270.
    [94] Ferrell, R.E., and Aharon, P., Mineral assemblages occurring around hydrocarbon vents in the northern Gulf of Mexico [J]. Geo-Marine Letters, 1994, 14(2-3): 74-80.
    [95] Mascolo, N., Summa, V., and Tateo, F., Characterization of toxic elements in clays for human healing use [J]. Applied Clay Science, 1999, 15(5-6): 491-500.
    [96] Dawson, S.A., and Evans, J.E., Geological Causes of Local Variation in Coastal Bluff Recession Rates, Northeast Ohio Shoreline of Lake Erie [J]. Environmental Geosciences, 2001, 8(1): 1-10.
    [97] Amorosi, A., Centineo, M.C., Dinelli, E., Lucchini, F., and Tateo, F., Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain [J]. Sedimentary Geology, 2002,151(3-4): 273-292.
    [98] Frascari, F., Matteucci, G., and Giordano1, P., Evaluation of a eutrophic coastal lagoon ecosystem from the study of bottom sediments [J]. Hydrobiologia, 2002, 475-476(1): 387-401.
    [99] Morais, J.O.d., Tintelnot, M., Irion, G., and Pinheiro, L.S., Pathways of clay mineral transport in the coastal zone of the Brazilian continental shelf from Cearáto the mouth of the Amazon River [J]. Geo-Mar Lett, 2006, 26: 16-22.
    [100] Bertrand, S., Charlet, F., Chapron, E., Fagel, N., and De Batist, M., Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259(2-3): 301-322.
    [101] Diekmann, B., Hofmann, J., Henrich, R., Füterer, D.K., R?hl, U., and Wei, K.-Y., Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary [J]. Marine Geology, 2008, 255(1-2): 83-95.
    [102] Steinke, S., Hanebuth, T.J.J., Vogt, C., and Stattegger, K., Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17,000 yr [J]. Marine Geology, 2008, 250(3-4): 199-210.
    [103] Vogt, C., and Knies, J., Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation -- The clay mineral group smectite perspective [J]. Marine Geology, 2008, 250(3-4): 211-222.
    [104]刘志飞, Colin, C., Trentesaux, A., Blamart, D.,南海南部晚第四纪东亚季风演化的粘土矿物记录[J].中国科学D辑2004, 34(3): 272-279.
    [105] Das, S.S., Maurya, A.S., Pandey, A.C., Bhan, U., and Rai, A.K., Influence of sediment source and monsoonal variations on the late Quaternary clay mineral assemblages at ODP site 728A, northwestern Arabian Sea [J]. Current Science, 2008, 95(9, 10): 1320-1326.
    [106] Liu, Z., Tuo, S., Colin, C., Liu, J.T., Huang, C.-Y., Selvaraj, K., Chen, C.-T.A., Zhao, Y., Siringan, F.P., Boulay, S., and Chen, Z., Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation [J]. Marine Geology, 2008, 255(3-4): 149-155.
    [107] Rex, R.W., and Bauer, W.R., New amine reagents for X-ray determination ofexpandale clays in dry samples [J]. Clay and clay minerals, 1964, 13: 411-418.
    [108] Xu, D.Y., Mud sedimentation on the East China Sea shelf[A]. in: Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea[C], China Ocean Press, Hangzhou, 1983, 506-516.
    [109]杨晓顺,瓯江悬沙的粘土矿物[J].海洋通报, 1995, 14 (3 ): 86-92.
    [110] Ren, M.-E., and Shi, Y.-L., Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea [J]. Continental Shelf Research, 1986, 6(6): 785-810.
    [111] Yang, S.Y., Jung, H.S., Lim, D.I., and Li, C.X., A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63( (1-2)): 93-120.
    [112]郭志刚,杨作升,王兆祥,黄东海海域水团发育对底质沉积物分布的影响[J].青岛海洋大学学报, 1995, 25(1): 75-83.
    [113]林承坤,长江口及其邻近海域粘性泥沙的数量与输移[J].地理学报, 1992, 47(2): 108-118.
    [114] Gibbs, R.J., Clay mineral segregation in the marine environment [J]. Journal of sediment petrology, 1977, 47(1): 237-243.
    [115] Griffin, J.J., Windom, H., and Goldberg, E.D., The distribution of clay minerals in the World Ocean [J]. Deep-Sea Research, 1968, 15: 433-459.
    [116] Harvey, C., and Browne, P., Mixed-layer clays in geothermal systems and their effectiveness as mineral geothermometers, Proceedings World Geothermal Congress, 2000.
    [117] Fagel, N., Boski, T., Likhoshway, L., and Oberhaensli, H., Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193: 159-179.
    [118]汤艳杰,贾建业等,粘土矿物的环境意义[J].地学前缘, 2002, 9(2): 337-344.
    [119]蓝先洪,粘土矿物作为古气候指标矿物的探讨[J].地质科技情报, 1990, 9(4): 31-35.
    [120]张乃娴,粘土矿物与风化作用[J].建材地质, 1992(6): 2-6.
    [121]陈建强,周洪瑞,王训练(编辑),沉积学及古地理学教程,地质出版社,北京, 2004, p170-278.
    [122]陈华胄,台湾海峡表层沉积物中重矿物特征及其物质来源[J].台湾海峡, 1993, 12(2): 136-144.
    [123]洪文兴,何松裕,黄舜华,郭国璋,候鸿泉,朱祥坤,独居石中稀土元素4分组效应的研究及其地质意义[J].自然科学进展, 1999, 9(12增刊): 1287-1290.
    [124] Liu, K.-K., Peng, T.-H., Shaw, P.-T., and Shiah, F.-K., Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: an overview and a brief synthesis [J]. Deep-Sea Research II, 2003, 50: 1055-1064.
    [125] Cullers, R.L., Barrett, T., Carlson, R., and Robinson, B., Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A [J]. Chemical Geology, 1987, 63(3-4): 275-297.
    [126] de Meijer, R.J., Bosboom, J., Cloin, B., Katopodi, I., Kitou, N., Koomans, R.L., and Manso, F., Gradation effects in sediment transport [J]. Coastal Engineering, 2002, 47(2): 179-210.
    [127] Tánczos, I.C., Selective transport phenomena in coastal sands, University Groningen, 1996, pp. ISBN 90-367-0669-6.
    [128] Chen, Z., Song, B., Wang, Z., and Cai, Y., Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation [J]. Marine Geology, 2000, 162: 423–441.
    [129]庄克琳,毕世普,苏大鹏,长江水下三角洲表层沉积物稀土元素特征[J].海洋地质与第四纪地质, 2005, 25(4): 15-22.
    [130] Chen, Z., Saito, Y., Hori, K., Zhao, Y., and Kitamura, A., Early Holocene mud-ridge formation in the Yangtze offshore, China: a tidal-controlled estuarine pattern and sea-level implications [J]. Marine Geology, 2003, 198(3-4): 245-257.
    [131] Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D.M., Xiao, S.B., and Yang, Z.S., Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224.
    [132] Garzanti, E., And, S., and Vezzoli, G., Grain-size dependence of sediment composition and environmental bias in provenance studies [J]. Earth andPlanetary Science Letters, 2009, 277(3-4): 422-432.
    [133] Yang, S.Y., Li, C.X., Lee, C.B., and Na, T.K., REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators [J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139.
    [134]蒋富清,周晓静,李安春,李铁刚,δEuN-ΣREEs图解定量区分长江和黄河沉积物[J].中国科学,D辑, 2008, 38(11): 1460-1468.
    [135]杨守业,李从先, Jung, H.S., Choi, M.S.,黄河沉积物中REE制约与示踪意义再认识[J].自然科学进展, 2003, 13(4): 365-371.
    [136]杨守业,李从先,长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质, 1999, 19(2): 19-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700